Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Molecules ; 26(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885691

RESUMO

Folate-aminocaproic acid-doxorubicin (FA-AMA-hyd-DOX) was firstly synthesized by our group. It was indicated that FA-AMA-hyd-DOX was pH-responsive, and had strong cytotoxicity on a folate receptor overexpressing cell line (KB cells) in vitro. The aim of our study was to further explore the potential use of FA-AMA-hyd-DOX as a new therapeutic drug for breast cancer. The cellular uptake and the antiproliferative activity of the FA-AMA-hyd-DOX in MDA-MB-231 cells were measured. Compared with DOX, FA-AMA-hyd-DOX exhibited higher targeting ability and cytotoxicity to FR-positive tumor cells. Subsequently, the tissue distribution of FA-AMA-hyd-DOX was studied, and the result confirmed that DOX modified by FA can effectively increase the selectivity of drugs in vivo. After determining the maximum tolerated dose (MTD) of FA-AMA-hyd-DOX in MDA-MB-231 tumor-bearing nude mice, the antitumor effects and the in vivo safety of FA-AMA-hyd-DOX were systematically evaluated. The data showed that FA-AMA-hyd-DOX could effectively increase the dose of DOX tolerated by tumor-bearing nude mice and significantly inhibit MDA-MB-231 tumor growth in vivo. Furthermore, FA-AMA-hyd-DOX treatment resulted in almost no obvious damage to the mice. All the positive data suggest that FA-targeted FA-AMA-hyd-DOX is a promising tumor-targeted compound for breast cancer therapy.


Assuntos
Ácido Aminocaproico/farmacologia , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Ácido Fólico/farmacologia , Ácido Aminocaproico/síntese química , Ácido Aminocaproico/química , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Doxorrubicina/síntese química , Doxorrubicina/química , Sistemas de Liberação de Medicamentos , Feminino , Ácido Fólico/síntese química , Ácido Fólico/química , Humanos , Camundongos , Polietilenoglicóis/química , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Chem Asian J ; 16(17): 2552-2558, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34296823

RESUMO

A pH-responsive smart nanocarrier with significant components was synthesized by conjugating the non-emissive anticancer drug methyl orange and polyethylene glycol derived folate moiety to the backbone of polynorbornene. Complete synthesis procedure and characterization methods of three monomers included in the work: norbornene-derived Chlorambucil (Monomer 1), norbornene grafted with polyethylene glycol, and folic acid (Monomer 2) and norbornene attached methyl orange (Monomer 3) connected to the norbornene backbone through ester linkage were clearly discussed. Finally, the random copolymer CHO PEG FOL METH was synthesized by ring-opening metathesis polymerization (ROMP) using Grubbs' second-generation catalyst. Advanced polymer chromatography (APC) was used to find the final polymer's molecular weight and polydispersity index (PDI). Dynamic light scattering, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) were utilized to explore the prodrug's size and morphology. Release experiments of the anticancer drug, Chlorambucil and the coloring agent, methyl orange, were performed at different pH and time. Cell viability assay was carried out for determining the rate of survived cells, followed by the treatment of our final polymer named CHO PEG FOL METH.


Assuntos
Antineoplásicos/química , Portadores de Fármacos/química , Ácido Fólico/análogos & derivados , Plásticos/química , Polietilenoglicóis/química , Pró-Fármacos/química , Antineoplásicos/síntese química , Antineoplásicos/toxicidade , Compostos Azo/síntese química , Compostos Azo/química , Compostos Azo/toxicidade , Sobrevivência Celular/efeitos dos fármacos , Clorambucila/síntese química , Clorambucila/química , Clorambucila/toxicidade , Corantes/síntese química , Corantes/química , Corantes/toxicidade , Preparações de Ação Retardada/síntese química , Preparações de Ação Retardada/química , Preparações de Ação Retardada/toxicidade , Doxorrubicina/síntese química , Doxorrubicina/química , Doxorrubicina/toxicidade , Portadores de Fármacos/síntese química , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Ácido Fólico/síntese química , Ácido Fólico/química , Ácido Fólico/toxicidade , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Plásticos/síntese química , Plásticos/toxicidade , Polietilenoglicóis/síntese química , Polietilenoglicóis/toxicidade , Polimerização , Pró-Fármacos/síntese química , Pró-Fármacos/toxicidade
3.
Bioconjug Chem ; 32(8): 1617-1628, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34251183

RESUMO

The folate receptor (FR) is an interesting target for radiotheranostics due to its overexpression in several tumor types. The progress in developing novel folate radioconjugates is, however, slow due to the synthetic challenges that folate chemistry presents. The goal of this study was, thus, to establish versatile solid-phase synthetic strategies for a convenient preparation of novel folate conjugates. Two approaches were established based on an orthogonal fluorenylmethyloxycarbonyl (Fmoc)-protection strategy to enable a modular buildup of an albumin-binding DOTA conjugate (known as OxFol-1) using folic acid (oxidized folate version) as a targeting agent. The main difference between the two approaches was the sequence of conjugating the single structural units. The approach that introduced the folate entity as the last unit appeared particularly useful for the preparation of conjugates based on 6R- or 6S-5-methyltetrahydrofolic acid (5-MTHF; a reduced folate version) as targeting entity. Three types of folate conjugates were synthesized either with a p-iodophenyl-based albumin binder (OxFol-1, 6R-RedFol-1, and 6S-RedFol-1) or without an albumin-binding entity (OxFol-14, 6R-RedFol-14, and 6S-RedFol-14). All six conjugates were obtained with high chemical purity (>98%) after 9-13 synthesis steps and a single final HPLC purification. Radiolabeling with lutetium-177 was feasible at high molar activity, and the resulting radioconjugates were stable over at least 24 h. Biodistribution and SPECT/CT imaging studies confirmed the favorable effect of an albumin-binding entity to increase the tumor uptake and reduce kidney retention of folate radioconjugates. The increased tumor-to-kidney ratios obtained with [177Lu]Lu-6R-RedFol-1 and [177Lu]Lu-6S-RedFol-1 as compared to [177Lu]Lu-OxFol-1 indicated that 5-MTHF is the preferred FR-targeting agent for albumin-binding radioconjugates. This was, however, not the case for folate radioconjugates without an albumin binder. Thanks to the established synthesis strategy, the preparation of further folate radioconjugates will be facilitated, potentially enabling the optimization of the tissue distribution characteristics even more.


Assuntos
Ácido Fólico/química , Neoplasias/diagnóstico por imagem , Animais , Técnicas de Química Sintética , Feminino , Ácido Fólico/síntese química , Ácido Fólico/farmacocinética , Humanos , Lutécio/química , Lutécio/farmacocinética , Camundongos , Camundongos Nus , Neoplasias/terapia , Radioisótopos/química , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/farmacocinética , Tomografia Computadorizada com Tomografia Computadorizada de Emissão de Fóton Único/métodos
4.
Carbohydr Polym ; 267: 118229, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119182

RESUMO

A novel multiple environment-sensitive polymeric prodrug of gambogic acid (GA) based on chitosan graftomer was fabricated for cancer treatment. Folic acid-chitosan conjugates was complexed with thermosensitive amine terminated poly-N-isopropylacrylamide (NH2-PNIPAM) to develop FA-CSPN. Gambogic acid was conjugated with the graftomer via esterification to achieve high drug-loading capacity and controlled drug release. The resulting amphiphilic prodrug, O-(gambogic acid)-N-(folic acid)-N'-(NH2-PNIPAM) chitosan graftomer (GFCP), could self-assemble into micelles. As expected, the micelles were stable and biocompatible, featuring pH-, esterase- and temperature-dependent manner of drug release. Moreover, the anticancer effect studies of GFCP micelles were performed using a tumor-bearing mouse model and cellular assays (tumor cell uptake assay, cytotoxicity and tumor-sphere penetration). Collectively, GFCP micelles show both potential in vivo and in vitro in improving the anticancer effectiveness of GA owing to high loading capacity, targeted tumor accumulation, and multiple tumor microenvironmental responsiveness.


Assuntos
Antineoplásicos/uso terapêutico , Quitosana/análogos & derivados , Quitosana/uso terapêutico , Neoplasias/tratamento farmacológico , Pró-Fármacos/uso terapêutico , Xantonas/uso terapêutico , Resinas Acrílicas/síntese química , Resinas Acrílicas/química , Animais , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quitosana/síntese química , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Ácido Fólico/análogos & derivados , Ácido Fólico/síntese química , Humanos , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Micelas , Neoplasias/patologia , Pró-Fármacos/síntese química , Temperatura , Xantonas/síntese química
5.
Eur J Med Chem ; 212: 113152, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33453601

RESUMO

The development of new drugs for musculoskeletal regeneration purposes has attracted much attention in the last decades. In this work, we present three novel vitamin B9 (folic acid)-derivatives bearing divalent cations (ZnFO, MgFO and MnFO), providing their synthesis mechanism and physicochemical characterization. In addition, a strong emphasis has been placed on evaluating their biological properties (along with our previously reported SrFO) using human mesenchymal stem cells (hMSC). In all the cases, pure folate derivatives (MFOs) with a bidentate coordination mode between the metal and the folate anion, and a 1:1 stoichiometry, were obtained in high yields. A non-cytotoxic dose of all the MFOs (50 µg/mL) was demonstrated to modulate by their own the mRNA profiles towards osteogenic-like or fibrocartilaginous-like phenotypes in basal conditions. Moreover, ZnFO increased the alkaline phosphatase activity in basal conditions, while both ZnFO and MnFO increased the matrix mineralization degree in osteoinductive conditions. Thus, we have demonstrated the bioactivity of these novel compounds and the suitability to further studied them in vivo for musculoskeletal regeneration applications.


Assuntos
Materiais Biocompatíveis/química , Ácido Fólico/química , Células-Tronco Mesenquimais/citologia , Sistema Musculoesquelético/citologia , Engenharia Tecidual , Materiais Biocompatíveis/síntese química , Cátions/síntese química , Cátions/química , Células Cultivadas , Portadores de Fármacos/síntese química , Portadores de Fármacos/química , Ácido Fólico/síntese química , Humanos
6.
Int J Nanomedicine ; 15: 3433-3445, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32523342

RESUMO

BACKGROUND: Reconstituted lipoproteins (rLips) based on endogenous lipid nanostructures has been increasingly regarded as an excellent and promising antitumor drug delivery. However, some problems relating to the main component, apolipoprotein, for instance, rare source, unaffordable price, and low specificity of relevant receptor expression, become chief obstacles to its broad development and application. PURPOSE: The primary aim of this study is to develop biomimetic rLips by utilizing folic acid (FA)-modified bovine serum albumin (BSA) as a replacement for apolipoprotein and demonstrate its tumor targeting and antitumor efficacy. METHODS: The amino groups of BSA were covalently conjugated with FA through the amide reaction. PTX-loaded nanostructured lipid carrier (termed as P-NLC) consisting of phospholipid, cholesteryl ester, triglyceride and cholesterol was prepared by the emulsification-evaporation method and utilized as the lipid core. FA-modified BSA (FA-BSA) was characterized for the protein substitute degree and attached with NLC by incubation-insert method to form the lipoprotein-mimic nanocomplex (termed as PFB-rLips). The morphology of nanoparticles was observed under transmission electron microscopy (TEM), and the particle size and zeta potential were determined using dynamic light scattering. In vitro release behavior of PTX from PFB-rLips was investigated with the dialysis method. Hemolysis tests were conducted to evaluate the biosecurity of PFB-rLips. Cell uptake and cytotoxicity assays were performed on human hepatocytes (LO2) and human hepatoma cells (HepG2). Tumor targeting was assessed using in vivo imaging system in H22 tumor-bearing mice model. Antitumor efficacy in vivo was investigated and compared between Taxol® (paclitaxel) formulation and PTX-incorporated nanoparticles in the same tumor model. RESULTS: A fixed molar ratio 50:1 of FA to BSA was chosen as the optimal input ratio based on the balance between appropriate degree of protein substitution and amphiphilicity of FA-BSA. The morphology of FB-rLips exhibited as a homogeneous spherical structure featured by lipid cores surrounded with a cloudy protein shell observed under TEM. The particle size, zeta potential and encapsulation efficiency were 174.6±3.2 nm, -17.26±0.9 mV and 82.2±2.4%, respectively. In vitro release behavior of PTX from PFB-rLips was slow and sustained. The uptake of FB-rLips was much higher in HepG2 cells than in LO2 cells. Furthermore, the uptake of FB-rLips was significantly higher than that of rLips without FA involved (termed as B-rLips) and NLC in HepG2 cells. Hemolysis and cytotoxicity assays showed good biocompatibility of FB-rLips. The internalization mechanism of FB-rLips mainly depended on clathrin-mediated and caveolin-mediated endocytosis coupling with energy consumption, and FA receptors expressed on tumor cells played a critical role in cellular uptake process. CCK-8 studies demonstrated that PFB-rLips exhibited significantly better tumor killing ability than Taxol® (paclitaxel) formulation in vitro. Moreover, FB-rLips produced more excellent tumor-targeting properties than NLC through in vivo imaging assays. On the basis of this, PTX-loaded FB-rLips also performed more remarkable anticancer activity than other therapy groups in H22 tumor-bearing mice. CONCLUSION: FB-rLips would serve as a potential nanocarrier for improving tumor-targeting and therapeutic efficacy while reducing the side effects on normal tissues and organs.


Assuntos
Portadores de Fármacos/química , Ácido Fólico/uso terapêutico , Lipoproteínas/química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Ácido Fólico/síntese química , Ácido Fólico/química , Hemólise/efeitos dos fármacos , Humanos , Camundongos , Nanopartículas/ultraestrutura , Neoplasias/patologia , Paclitaxel/química , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Tamanho da Partícula , Coelhos , Soroalbumina Bovina/química , Eletricidade Estática
7.
Molecules ; 25(11)2020 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-32545327

RESUMO

The folate receptor (FR) is a promising cell membrane-associated target for molecular imaging and radionuclide therapy of cancer (FR-α) and potentially also inflammatory diseases (FR-ß) through use of folic acid-based radioconjugate. FR is often overexpressed by cells of epithelial tumors, including tumors of ovary, cervix, endometrium, lungs, kidneys, etc. In healthy tissues, FR can be found in small numbers by the epithelial cells, mainly in the kidneys. Extremely high undesired accumulation of the folate radioconjugates in the renal tissue is a main drawback of FR-targeting concept. In the course of this work, we aimed to reduce the undesirable accumulation of folate radioconjugates in the kidneys by introducing a histidine/glutamic acid tag into their structure. Two folic acid based compounds were synthesized: NODAGA-1,4-butanediamine-folic acid (FA-I, as control) and NODAGA-[Lys-(HE)2]-folic acid (FA-II) which contains a (His-Glu)2 fragment. In vitro studies with FR (+) cells (KB and others) showed that both compounds have specificity for FR. Introduction of (HE)2-tag does not affect FR binding ability of the conjugates. In vivo biodistribution studies with normal laboratory animals, as well as with KB tumor bearing animals, were carried out. The results showed that introduction of the (HE)2 tag into the structure of folate radioconjugates can significantly reduce the accumulation of these compounds in non-target tissues and important organs (the accumulation in the kidneys is reduced 2-4 times), leaving the accumulation in tumor at least at the same level, and even increasing it.


Assuntos
Transportadores de Ácido Fólico/metabolismo , Ácido Fólico/farmacocinética , Radioisótopos de Gálio/química , Rim/química , Neoplasias/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacocinética , Células A549 , Acetatos/química , Animais , Ácido Fólico/síntese química , Ácido Fólico/química , Células HCT116 , Células HeLa , Compostos Heterocíclicos com 1 Anel/química , Humanos , Células KB , Rim/diagnóstico por imagem , Camundongos , Neoplasias/química , Tomografia por Emissão de Pósitrons , Putrescina/química , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Ratos , Ratos Wistar , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
8.
J Biomed Mater Res A ; 108(9): 1816-1823, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32276284

RESUMO

IR808, an IR780 derivative, is capable of fluorescently imaging and photodynamic therapy in vitro and in vivo. However, its application is greatly hampered by hydrophobicity, toxicity and nonspecific delivery to the targeting tissue and that causes accumulation in the liver and kidney. In order to overcome these limitations, we prepared IR808-PEG-FA from IR808, amino-terminated poly(ethylene glycol) (NH2 -PEG-NH2 , denoted as PEG) and folate (FA). PEG, an accepted hydrophilic medicinal agent, was introduced to improve hydrophobicity, and FA was used to increase targeting ability of the conjugate. The obtained product provides a good water solubility and stronger light intensity in near infrared (NIR)-imaging, and CCK-8 test demonstrated which had no appreciable toxicity. In addition, the cell uptake results indicated that IR808-PEG-FA was specifically targeted to positive tumors cells with folate receptor (FR) compared with IR808, and thus it may be used as a novel diagnostic agent or imaging-guided agent for cancer treatment. So this article provides a way to improve hydrophobicity, optical stability and targeting ability in the field of nano-probe for fluorochromes.


Assuntos
Corantes Fluorescentes/análise , Ácido Fólico/análogos & derivados , Polietilenoglicóis/análise , Células A549 , Sobrevivência Celular/efeitos dos fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Ácido Fólico/análise , Ácido Fólico/síntese química , Ácido Fólico/toxicidade , Humanos , Células MCF-7 , Neoplasias/diagnóstico por imagem , Imagem Óptica , Fotoquimioterapia , Polietilenoglicóis/síntese química , Polietilenoglicóis/toxicidade
9.
Analyst ; 144(22): 6729-6735, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31612877

RESUMO

The conjugation of ligands to nanoparticles as drug delivery systems that target specific cells is a promising approach for the delivery of therapeutic agents to tumor cells. Herein, we prepared green-emission fluorescent carbon nanodots (CNDs) by a facile hydrothermal method with d-(+)-glucosamine hydrochloride and l-aspartic acid as the precursors, then covalently conjugated with folate (FA), polyethyleneimine (PEI) and hyaluronic acid (HA) to develop dual ligand-decorated nanocarriers (FA-PEI-HA-CNDs) for the targeted imaging of cancer cells. FA-PEI-HA-CNDs integrated the excellent fluorescence property of CNDs, and can be used for the real-time and noninvasive location tracking of cancer cells. The cellular uptake study demonstrated that FA-PEI-HA-CNDs markedly improved the internalization efficiency in A-549 cells via folate/CD44 receptor-mediated endocytosis in comparison with that of the A549 cells pretreated with excess FA, HA, and FA and HA. Therefore, these dual folate/CD44 receptor-targeted CNDs (FA-PEI-HA-CNDs) show promising potential for cancer detection, drug delivery, and individualized treatment as performance platforms.


Assuntos
Corantes Fluorescentes/química , Pontos Quânticos/química , Células A549 , Carbono/química , Carbono/toxicidade , Endocitose/efeitos dos fármacos , Corantes Fluorescentes/síntese química , Corantes Fluorescentes/toxicidade , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/análogos & derivados , Ácido Fólico/síntese química , Ácido Fólico/toxicidade , Humanos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/análogos & derivados , Ácido Hialurônico/síntese química , Ácido Hialurônico/toxicidade , Ligantes , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Polietilenoimina/análogos & derivados , Polietilenoimina/síntese química , Polietilenoimina/toxicidade , Pontos Quânticos/toxicidade
10.
Biomacromolecules ; 20(9): 3408-3424, 2019 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-31389692

RESUMO

This study describes new mechanistic insights in the sequential polyassociation of streptavidin with biotinylated poly(ethyleneimine) glycopolymers and biotinylated PEGylated folic acid components for the preparation of biohybrid structures (BHS) for controlled targeting experiments. Characterization of the BHS revealed that during the formation and postfunctionalization of BHS, reversible dissociation and reassociation processes occur. The BHS are stable over weeks after finalizing the equilibrium-driven polyassociation process. Cellular uptake studies showed that this sequential polyassociation involving biotinylated PEGylated folic acid components does not lead to enhanced cellular uptake of the resulting BHS. In contrast, polyplexes, containing small interfering RNA and bioconjugates (1:1 molar ratio between biotinylated glycopolymer and monomeric streptavidin-lectin fusion protein), enabled us to control the targeting of tumor cells as revealed by knockdown of the tumor-associated protein survivin. Overall, this study demonstrates the high potential of (networklike) streptavidin-biotin interactions with a dynamic character in the formation of complex BHS and extracellular matrix materials.


Assuntos
Ácido Fólico/química , Nanopartículas/química , Polietilenoimina/química , RNA Interferente Pequeno/química , Avidina/química , Biotina/química , Biotinilação , Ácido Fólico/síntese química , Humanos , Polietilenoimina/síntese química , Ligação Proteica/efeitos dos fármacos , RNA Interferente Pequeno/efeitos dos fármacos , Estreptavidina/química
11.
Biomed Pharmacother ; 110: 906-917, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30572195

RESUMO

The adaptability, joint with a large surface area, electronic flexibility, high intrinsic mobility, high mechanical strength and supreme thermal conductivity have condensed graphene family materials attractive as technological tools of the drug delivery system. In this present study, investigate a modified graphene oxide-methyl acrylate (GO-g-MA) nanocarrier for targeted anti-cancer drug delivery in breast cancer cells and the GO-g-MA fascinated with folic acidas a targeting ligand to target the cancer cells. Paclitaxel (PTX) was assembled through π-π stacking, hydrophophic interaction on the surface of the GO-g-MA/FA carrier. Structural modification of GO-g-MA, functionalization of targeting ligands GO-g-MA/FA and drug loaded GO-g-MA/FA-PTX was characterized and confirmed through FTIR, XRD, SEM,TEM and AFM analysis. The in-vitro drug release pattern of PTX from the GO-g-MA/FA was examined in different pH ranges. An MTT assay was performed to evaluate the cytotoxicity behaviour of the carrier and PTX loaded nanocarrier in the human breast cancer cell line (MDA-MB-231). GO-g-MA/FA-PTX carrier showed that 39% of cytotoxic effect. Furthermore, the in-vivo (DMBA induced breast cancer rats) studies were carried out and treatment with PTX- loaded GO-g-MA/FA nanocarrier attenuates the levels of mitochondrial citric acids enzymes to near normal.


Assuntos
Acrilatos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Ácido Fólico/administração & dosagem , Grafite/administração & dosagem , Nanopartículas/administração & dosagem , Paclitaxel/administração & dosagem , Acrilatos/síntese química , Acrilatos/metabolismo , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Antineoplásicos Fitogênicos/síntese química , Antineoplásicos Fitogênicos/farmacocinética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Portadores de Fármacos/síntese química , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Feminino , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/síntese química , Ácido Fólico/metabolismo , Grafite/síntese química , Grafite/metabolismo , Nanopartículas/química , Nanopartículas/metabolismo , Paclitaxel/síntese química , Paclitaxel/farmacocinética , Ratos , Ratos Sprague-Dawley
12.
J Med Chem ; 61(21): 9637-9646, 2018 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-30296376

RESUMO

Because the most reliable therapy for cancer involves quantitative resection of all diseased tissue, considerable effort has been devoted to improving a surgeon's ability to locate and remove all malignant lesions. With the aid of improved optical imaging equipment, we and others have focused on developing tumor-targeted fluorescent dyes to selectively illuminate cancer nodules during surgery. We describe here the design, synthesis, optical properties, in vitro and in vivo tumor specificity/affinity, pharmacokinetics, preclinical toxicology, and some clinical application of a folate receptor (FR)-targeted NIR dye (OTL38) that concentrates specifically in cancer tissues and clears rapidly from healthy tissues. We demonstrate that OTL38 binds FR-expressing cells with ∼1 nM affinity and eliminates from receptor negative tissues with a half-time of <30 min. We further show that OTL38 enables visualization of malignant lesions at concentrations less than 100-fold those required to elicit signs of toxicity. Since OTL38 also provides excellent tumor contrast in both murine tumor models and human cancer patients, we conclude that OTL38 constitutes an excellent NIR dye for fluorescence-guided resection of malignant lesions in cancer patients.


Assuntos
Corantes Fluorescentes/química , Corantes Fluorescentes/metabolismo , Ácido Fólico/química , Ácido Fólico/metabolismo , Raios Infravermelhos , Neoplasias/cirurgia , Cirurgia Assistida por Computador , Células A549 , Animais , Desenho de Fármacos , Fluorescência , Corantes Fluorescentes/síntese química , Receptores de Folato com Âncoras de GPI/química , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/síntese química , Humanos , Células KB , Camundongos , Simulação de Acoplamento Molecular , Neoplasias/diagnóstico por imagem , Neoplasias/metabolismo , Neoplasias/patologia , Conformação Proteica
13.
Int J Nanomedicine ; 13: 4361-4378, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30100720

RESUMO

INTRODUCTION: A reduction-sensitive CD44-positive tumor-targetable drug delivery system for doxorubicin (DOX) delivery was developed based on hyaluronic acid (HA)-grafted polymers. MATERIALS AND METHODS: HA was conjugated with folic acid (FA) via a reduction-sensitive disulfide linkage to form an amphiphilic polymer (HA-ss-FA). The chemical structure of HA-ss-FA was analyzed by ultraviolet spectroscopy, Fourier transform infrared spectroscopy, and 1H nuclear magnetic resonance (NMR) spectroscopy. The molecular weight of HA-ss-FA was determined by high-performance gel permeation chromatography. Blank HA-ss-FA micelles and DOX-loaded micelles were prepared and characterized. The reduction responsibility, cellular uptake, and in vivo biodistribution of HA-ss-FA micelles were investigated. RESULTS: DOX-loaded micelles were of high encapsulation efficiency (88.09%), high drug-loading content (22.70%), appropriate mean diameter (100-120 nm), narrow size distribution, and negative zeta potential (-6.7 to -31.5 mV). The DOX release from the micelles was significantly enhanced in reduction environment compared to normal environment. The result of in vitro cytotoxicity assay indicated that the blank micelles were of low toxicity and good biocompatibility and the cell viabilities were >100% with the concentration of HA-ss-FA from 18.75 to 600.00 µg/mL. Cellular uptake and in vivo biodistribution studies showed that DOX-loaded micelles were tumor-targetable and could significantly enhance cellular uptake by CD44 receptor-mediated endocytosis, and the cellular uptake of DOX in CD44-positve A549 cells was 1.6-fold more than that in CD44-negative L02 cells. In vivo biodistribution of HA-ss-FA micelles showed that micelles were of good in vivo tumor targetability and the fluorescence of indocyanine green (ICG)-loaded micelles was 4- to 6.6-fold stronger than free ICG within 6 h in HCCLM3 tumor-bearing nude mice. CONCLUSION: HA-ss-FA is a promising nanocarrier with excellent biocompatibility, tumor targetability, and controlled drug release capability for delivery of chemotherapy drugs in cancer therapy.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Receptores de Hialuronatos/metabolismo , Ácido Hialurônico/química , Micelas , Animais , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cistamina/química , Doxorrubicina/química , Doxorrubicina/farmacologia , Endocitose/efeitos dos fármacos , Ácido Fólico/síntese química , Ácido Fólico/química , Humanos , Ácido Hialurônico/síntese química , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Oxirredução , Tamanho da Partícula , Polímeros , Espectroscopia de Prótons por Ressonância Magnética , Espectroscopia de Infravermelho com Transformada de Fourier , Distribuição Tecidual/efeitos dos fármacos
14.
Drug Des Devel Ther ; 12: 863-872, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29713144

RESUMO

PURPOSE: B-cell lymphoma is the most frequently diagnosed lymphoid tumor. Folic acid (FA)-decorated systems were found to be preferentially internalized on the B-cell lymphoma cell line which is reported to express the folate receptor. This study was designed to develop an FA-decorated vincristine (VCR)-loaded system for targeted lymphoma treatment. METHODS: FA-decorated lipid was synthesized. VCR-loaded lipid-polymer hybrid nanoparticles (LPNs) were fabricated. In vitro cell lines and an in vivo lymphoma animal model was used to evaluate the anti B-cell lymphoma effect. RESULTS: FA-decorated, VCR-loaded LPNs (FA-VCR/LPNs) have shown a targeted effect in delivery to B-cell lymphoma cells. FA-VCR/LPNs also showed the highest anti-tumor effect in murine-bearing lymphoma xenografts. CONCLUSION: FA-VCR/LPNs can achieve targeted delivery of VCR, bring about an outstanding therapeutic effect to treat lymphoma, and also reduce the systemic toxicity. FA-VCR/LPNs could be an excellent system for lymphoma therapy.


Assuntos
Antineoplásicos/uso terapêutico , Linfoma de Burkitt/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Ácido Fólico/química , Linfoma de Células B/tratamento farmacológico , Vincristina/uso terapêutico , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ácido Fólico/síntese química , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Humanos , Lipídeos/química , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Estrutura Molecular , Nanopartículas/química , Polímeros/química , Relação Estrutura-Atividade , Vincristina/química
15.
Mol Med Rep ; 16(2): 1101-1108, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28627615

RESUMO

In addition to its vasodilatory effect, ligustrazine (LZ) improves the sensitivity of multidrug resistant cancer cells to chemotherapeutic agents. To enhance the specificity of LZ delivery to tumor cells/tissues, folate­chitosan nanoparticles (FA­CS­NPs) were synthesized by combination of folate ester with the amine group on chitosan to serve as a delivery vehicle for LZ (FA­CS­LZ­NPs). The structure of folate­chitosan and characteristics of FA­CS­LZ­NPs, including its size, encapsulation efficiency, loading capacity and release rates were analyzed. MCF­7 (folate receptor­positive) and A549 (folate receptor­negative) cells cultured with or without folate were treated with FA­CS­LZ­NPs, CS­LZ­NPs or LZ to determine cancer­targeting specificity of FA­CS­LZ­NPs. Fluorescence intensity of intracellular LZ was observed by laser scanning confocal microscopy, and concentration of intracellular LZ was detected by HPLC. The average size of FA­CS­LZ­NPs was 182.7±0.56 nm, and the encapsulation efficiency and loading capacity was 59.6±0.23 and 15.3±0.16% respectively. The cumulative release rate was about 95% at pH 5.0, which was higher than that at pH 7.4. There was higher intracellular LZ accumulation in MCF­7 than that in A549 cells and intracellular LZ concentration was not high when MCF­7 cells were cultured with folate. These results indicated that the targeting specificity of FA­CS­LZ­NPs was mediated by folate receptor. Therefore, the FA­CS­LZ­NPs may be a potential folate receptor­positive tumor cell targeting drug delivery system that could possibly overcome multidrug resistance during cancer therapy.


Assuntos
Quitosana/síntese química , Receptores de Folato com Âncoras de GPI/metabolismo , Ácido Fólico/síntese química , Nanopartículas/química , Neoplasias/tratamento farmacológico , Pirazinas/uso terapêutico , Células A549 , Quitosana/química , Liberação Controlada de Fármacos , Endocitose/efeitos dos fármacos , Ácido Fólico/química , Humanos , Concentração de Íons de Hidrogênio , Células MCF-7 , Nanopartículas/ultraestrutura , Neoplasias/patologia , Espectroscopia de Prótons por Ressonância Magnética , Pirazinas/toxicidade , Espectrofotometria Infravermelho , Fatores de Tempo
16.
Int J Mol Med ; 39(6): 1505-1515, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28487935

RESUMO

In this study, we aimed to determine an effective strategy for the synthesis of folate receptor (FR) targeted-nanoparticles (FRNPs). The nanoparticles used as ultrasound contrast agents (UCAs) were composed of a liquid core of perfluorooctyl bromide (PFOB) liposome and a targeted shell chemically conjugated with folic acid (FA) and polyethylene glycol (PEG). This was done in order to avoid recognition and clearance by the mononuclear phagocyte system [also known as the reticuloendothelial system (RES)] and enhance the targeting capability of the nanoparticles to tumors overexpressing folate receptor (FR). The FRNPs exhibited an average particle size of 301±10.8 nm and surface potential of 39.1±0.43 mV. Subsequently, in vitro, FRNPs labeled with FITC fluorescence dye were visibly uptaken into the cytoplasm of FR-overexpressing cancer cells (Bel7402 and SW620 cells), whereas the A549 cells expressing relatively low levels of FR just bound with few FRNPs. These results demonstrated that FRNPs have a high affinity to FR-overexpressing cancer cells. Additionally, in in vivo experiments, FRNPs achieved a greater enhancement of tumor ultrasound imaging and a longer enhancement time in FR-overexpressing tumors and the Cy7-labeled FRNPs exhibited a relatively high tumor-targeted distribution in FR­overexpressing tumors. Targeted ultrasound and fluorescence imaging revealed that FRNPs have the ability to target FR-overexpressing tumors and ex vivo fluorescence imaging was then used to further verify and confirm the presence of FRNPs in tumor tissues with histological analysis of the tumor slices. On the whole, our data demonstrate that the FRNPs may prove to be a promising candidate for the early diagnosis for FR-overexpressing tumors at the molecular and cellular levels.


Assuntos
Meios de Contraste/química , Fluorocarbonos/química , Receptores de Folato com Âncoras de GPI/análise , Ácido Fólico/química , Nanopartículas/química , Neoplasias/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Meios de Contraste/síntese química , Meios de Contraste/farmacocinética , Fluorocarbonos/síntese química , Fluorocarbonos/farmacocinética , Ácido Fólico/síntese química , Ácido Fólico/farmacocinética , Humanos , Hidrocarbonetos Bromados , Lipossomos/química , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/ultraestrutura , Imagem Óptica , Polietilenoglicóis/síntese química , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Ultrassonografia
17.
Bioorg Med Chem ; 25(1): 1-10, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27769669

RESUMO

Recent researches in photodynamic therapy have focused on novel techniques to enhance tumour targeting of anticancer drugs and photosensitizers. Coupling a photosensitizer with folic acid could allow more effective targeting of folate receptors which are over-expressed on the surface of many tumour cells. In this study, different folic acid-OEG-conjugated photosensitizers were synthesized, characterized and their photophysical properties were evaluated. The introduction of an OEG does not significantly improve the hydrophilicity of the FA-porphyrin. All the FA-targeted photosensitizers present good to very good photophysical properties. The best one appears to be Ce6. Molar extinction coefficient, fluorescence and singlet oxygen quantum yields were determined and were compared to the corresponding photosensitizer alone.


Assuntos
Dietilaminas/química , Ácido Fólico/análogos & derivados , Fármacos Fotossensibilizantes/química , Porfirinas/química , Técnicas de Química Sintética , Clorofilídeos , Dietilaminas/síntese química , Ácido Fólico/síntese química , Humanos , Neoplasias/tratamento farmacológico , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Porfirinas/síntese química
18.
J Colloid Interface Sci ; 480: 146-158, 2016 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-27428851

RESUMO

In this study, we modulated the anti-cancer efficacy of 5-Fluorouracil (5-FU) using a carrier system with enhanced targeting efficacy towards folate receptors (FRs) expressing malignant tissues. The 5-FU drug was loaded onto Mn-ZnS quantum dots (QDs) encapsulated with chitosan (CS) biopolymer and conjugated with folic acid (FA) based on a simple wet chemical method. The formation of 5-FU drug loaded composite was confirmed using Fourier transform infrared spectroscopy (FTIR), thermo gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Furthermore, the in vivo biodistribution and tumor targeting specificity of the 5-FU@FACS-Mn:ZnS in the tumor-bearing mice was conducted based on the Zn(2+) tissue bioaccumulation using inductively coupled plasma (ICP) spectroscopy. In addition to the characterization, the in vitro release profile of 5-FU from the conjugates investigated under diffusion controlled method demonstrated a controlled release behaviour as compared against the release behaviour of free 5-FU drug. The as-synthesized 5-FU@FACS-Mn:ZnS nanoparticle (NP) systemically induced higher level of apoptosis in breast cancer cells in vitro as compared to cells treated with free 5-FU drug following both cell cycle and annexin assays, respectively. Also, the in vivo toxicity assessment of the 5-FU@FACS-Mn:ZnS NPs as compared to the control did not cause any significant increase in the activities of the liver and kidney function biomarkers, malondialdehyde (MDA) and nitric oxide (NO) levels. However, based on the FA-FRs chemistry, the 5-FU@FACS-Mn:ZnS NPs specifically accumulated in the tumor of the tumor-bearing mice and thus contributed to the smaller tumor size and less event of metastasis was observed in the lungs when compared to the tumor-bearing mice groups treated with the free 5-FU drug. In summary, the results demonstrated that the 5-FU@FACS-Mn:ZnS QDs exhibits selective anti-tumor effect in MDA-MB231 breast cancer cells in vitro and 4TI breast cancer cells in vivo, providing a blueprint for improving the 5-FU efficacy and tumor targeting specificity with limited systemic toxicity.


Assuntos
Antineoplásicos/farmacologia , Fluoruracila/farmacologia , Ácido Fólico/farmacologia , Pontos Quânticos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Fluoruracila/química , Ácido Fólico/síntese química , Ácido Fólico/química , Humanos , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Relação Estrutura-Atividade
19.
Biochim Biophys Acta ; 1860(10): 2065-75, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27392941

RESUMO

BACKGROUND: Mesoporous silica nanoparticles (MSNs) have been promising vehicles for drug delivery. Quercetin (Q), a natural flavonoid, has been reported to have many useful effects. However, poor water solubility as well as less bioavailability has confined its use as a suitable anti-cancer drug. Therefore, profound approach is required to overcome these drawbacks. METHODS: We have synthesized folic acid (FA) armed mesoporous silica nanoparticles (MSN-FA-Q) loaded with quercetin and then characterized it by DLS, SEM, TEM and FTIR. MTT, confocal microscopy, flow cytometry, scratch assay and immunoblotting were employed to assess the cell viability, cellular uptake, cell cycle arrest, apoptosis, wound healing and the expression levels of different signalling molecules in breast adenocarcinoma cells. Nanoparticle distribution was investigated by using ex vivo optical imaging and CAM assay was employed to assess tumor regression. RESULTS: MSN-FA-Q facilitates higher cellular uptake and allows more drug bioavailability to the breast cancer cells with over-expressed folate receptors. Our experimental results suggest that the newly synthesized MSN-FA-Q nanostructure caused cell cycle arrest and apoptosis in breast cancer cells through the regulation of Akt & Bax signalling pathways. Besides, we also observed that MSN-FA-Q has a concurrent anti-migratory role as well. CONCLUSION: This uniquely engineered quercetin loaded mesoporous silica nanoparticle ensures a targeted delivery with enhanced bioavailability. GENERAL SIGNIFICANCE: Effective targeted therapeutic strategy against breast cancer cells.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Nanopartículas/administração & dosagem , Quercetina/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Sobrevivência Celular/efeitos dos fármacos , Feminino , Ácido Fólico/administração & dosagem , Ácido Fólico/síntese química , Ácido Fólico/química , Humanos , Células MCF-7 , Camundongos , Nanopartículas/química , Porosidade , Quercetina/química , Dióxido de Silício/química , Ensaios Antitumorais Modelo de Xenoenxerto
20.
J Labelled Comp Radiopharm ; 59(9): 346-53, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27320312

RESUMO

In order to develop novel (68) Ga-labeled PET tracers for folate receptor imaging, two DOTA-conjugated Pteroyl-Lys derivatives, Pteroyl-Lys-DOTA and Pteroyl-Lys-DAV-DOTA, were designed, synthesized and radiolabeled with (68) Ga. Biological evaluations of the two radiotracers were performed with FR-positive KB cell line and athymic nude mice bearing KB tumors. Both (68) Ga-DOTA-Lys-Pteroyl and (68) Ga-DOTA-DAV-Lys-Pteroyl exhibited receptor specific binding in KB cells in vitro. The tumor uptake values of (68) Ga-DOTA-Lys-Pteroyl and (68) Ga-DOTA-DAV-Lys-Pteroy were 10.06 ± 0.59%ID/g and 11.05 ± 0.60%ID/g at 2 h post-injection, respectively. Flank KB tumor was clearly visualized with (68) Ga-DOTA-DAV-Lys-Pteroyl by Micro-PET imaging at 2 h post-injection, suggesting the feasibility of using (68) Ga-labeled Pteroyl-Lys conjugates as a novel class of FR targeted probes.


Assuntos
Transportadores de Ácido Fólico/metabolismo , Ácido Fólico/síntese química , Ácido Fólico/metabolismo , Radioisótopos de Gálio , Lisina/química , Tomografia por Emissão de Pósitrons/métodos , Animais , Transporte Biológico , Técnicas de Química Sintética , Ácido Fólico/química , Ácido Fólico/farmacocinética , Compostos Heterocíclicos com 1 Anel/química , Humanos , Marcação por Isótopo , Células KB , Cinética , Camundongos , Radioquímica , Termodinâmica , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA