Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 490
Filtrar
1.
Int J Biol Sci ; 20(12): 4635-4653, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39309439

RESUMO

Darolutamide, an androgen receptor inhibitor, has been approved by the Food and Drug Administration (FDA) for the treatment of prostate cancer (PCa), especially for patients with androgen receptor mutations. Owing to the unique lipidomic profile of PCa and the effect of darolutamide, the relationship between darolutamide and ferroptosis remains unclear. The present study showed that darolutamide significantly induces ferroptosis in AR+ PCa cells. Mechanistically, darolutamide promotes ferroptosis by downregulating SREBP1, which then inhibits the transcription of FASN. FASN knockdown modulates phospholipid remodeling by disrupting the balance between polyunsaturated fatty acids (PUFAs) and saturated fatty acids (SFAs), which induces ferroptosis. Clinically, SREBP1 and FASN are significantly overexpressed in PCa tissues and are related to poor prognosis. Moreover, the synergistic antitumor effect of combination therapy with darolutamide and ferroptosis inducers (FINs) was confirmed in PCa organoids and a mouse xenografts model. Overall, these findings revealed a novel mechanism of darolutamide mediated ferroptosis in PCa, laying the foundation for the combination of darolutamide and FINs as a new therapeutic strategy for PCa patients.


Assuntos
Ácido Graxo Sintase Tipo I , Ferroptose , Neoplasias da Próstata , Proteína de Ligação a Elemento Regulador de Esterol 1 , Ferroptose/efeitos dos fármacos , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/patologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Animais , Camundongos , Linhagem Celular Tumoral , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Fosfolipídeos/metabolismo , Pirazóis/farmacologia , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell Rep ; 43(9): 114681, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39180751

RESUMO

Regulatory T cells (Tregs) suppress pro-inflammatory conventional T cell (Tconv) responses. As lipids impact cell signaling and function, we compare the lipid composition of CD4+ thymus-derived (t)Tregs and Tconvs. Lipidomics reveal constitutive enrichment of neutral lipids in Tconvs and phospholipids in tTregs. TNFR2-co-stimulated effector tTregs and Tconvs are both glycolytic, but only in tTregs are glycolysis and the tricarboxylic acid (TCA) cycle linked to a boost in fatty acid (FA) synthesis (FAS), supported by relevant gene expression. FA chains in tTregs are longer and more unsaturated than in Tconvs. In contrast to Tconvs, tTregs effectively use either lactate or glucose for FAS and rely on this process for proliferation. FASN and SCD1, enzymes responsible for FAS and FA desaturation, prove essential for the ability of tTregs to suppress Tconvs. These data illuminate how effector tTregs can thrive in inflamed or cancerous tissues with limiting glucose but abundant lactate levels.


Assuntos
Ácidos Graxos , Glucose , Ácido Láctico , Estearoil-CoA Dessaturase , Linfócitos T Reguladores , Humanos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Glucose/metabolismo , Ácidos Graxos/metabolismo , Ácido Láctico/metabolismo , Ácido Láctico/biossíntese , Estearoil-CoA Dessaturase/metabolismo , Glicólise , Timo/metabolismo , Timo/imunologia , Ácido Graxo Sintase Tipo I/metabolismo , Receptores Tipo II do Fator de Necrose Tumoral/metabolismo , Ciclo do Ácido Cítrico
3.
Pathol Res Pract ; 260: 155465, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39018927

RESUMO

Fatty acid synthase (FASN) is a critical enzyme essential for the production of fats in the body. The abnormal expression of FASN is associated with different types of malignancies, including ovarian cancer. FASN plays a crucial role in cell growth and survival as a metabolic oncogene, although the specific processes that cause its dysregulation are still unknown. FASN interacts with signaling pathways linked to the progression of cancer. Pharmacologically inhibiting or inactivating the FASN gene has shown potential in causing the death of cancer cells, offering a possible treatment approach. This review examines the function of FASN in ovarian cancer, namely its level of expression, influence on the advancement of the disease, and its potential as a target for therapeutic interventions.


Assuntos
Ácido Graxo Sintases , Neoplasias Ovarianas , Humanos , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/enzimologia , Feminino , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/antagonistas & inibidores , Metástase Neoplásica , Transdução de Sinais , Animais , Terapia de Alvo Molecular , Ácido Graxo Sintase Tipo I
4.
Cell Death Dis ; 15(7): 537, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-39075049

RESUMO

It has been shown that the formation of filopodia is a key step in tumor cell metastasis, but there is limited research regarding its mechanism. In this study, we demonstrated that fatty acid synthase (FASN) promoted filopodia formation in liver cancer cells by regulating fascin actin-bundling protein 1 (FSCN1), a marker protein for filopodia. Mechanistically, on the one hand, the accumulation of FASN is caused by the enhanced deubiquitination of FASN mediated by UCHL5 (ubiquitin c-terminal hydrolase L5). In this pathway, low expression of SIAH1 (Seven in absentia homolog 1) can decrease the ubiquitination and degradation of ADRM1 (adhesion regulating molecule 1) thereby increasing its protein level, which will recruit and activate the deubiquitination enzyme UCHL5, leading to FASN undergo deubiquitination and escape from proteasomal degradation. On the other hand, the accumulation of FASN is related to its weakened ubiquitination, where SIAH1 directly acts as a ubiquitin ligase toward FASN, and low expression of SIAH1 reduces the ubiquitination and degradation of FASN. Both the two pathways are involved in the regulation of FASN in liver cancer. Our results reveal a novel mechanism for FASN accumulation due to the low expression of SIAH1 in human liver cancer and suggest an important role of FASN in filopodia formation in liver cancer cells.


Assuntos
Neoplasias Hepáticas , Proteínas dos Microfilamentos , Proteínas Nucleares , Pseudópodes , Ubiquitina-Proteína Ligases , Ubiquitinação , Humanos , Pseudópodes/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Animais , Linhagem Celular Tumoral , Camundongos Nus , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Células Hep G2 , Camundongos
5.
Nat Cell Biol ; 26(9): 1470-1481, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009641

RESUMO

Therapy resistance and metastasis, the most fatal steps in cancer, are often triggered by a (partial) activation of the epithelial-mesenchymal transition (EMT) programme. A mesenchymal phenotype predisposes to ferroptosis, a cell death pathway exerted by an iron and oxygen-radical-mediated peroxidation of phospholipids containing polyunsaturated fatty acids. We here show that various forms of EMT activation, including TGFß stimulation and acquired therapy resistance, increase ferroptosis susceptibility in cancer cells, which depends on the EMT transcription factor Zeb1. We demonstrate that Zeb1 increases the ratio of phospholipids containing pro-ferroptotic polyunsaturated fatty acids over cyto-protective monounsaturated fatty acids by modulating the differential expression of the underlying crucial enzymes stearoyl-Co-A desaturase 1 (SCD), fatty acid synthase (FASN), fatty acid desaturase 2 (FADS2), elongation of very long-chain fatty acid 5 (ELOVL5) and long-chain acyl-CoA synthetase 4 (ACSL4). Pharmacological inhibition of selected lipogenic enzymes (SCD and FADS2) allows the manipulation of ferroptosis sensitivity preferentially in high-Zeb1-expressing cancer cells. Our data are of potential translational relevance and suggest a combination of ferroptosis activators and SCD inhibitors for the treatment of aggressive cancers expressing high Zeb1.


Assuntos
Transição Epitelial-Mesenquimal , Ferroptose , Fosfolipídeos , Estearoil-CoA Dessaturase , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Humanos , Linhagem Celular Tumoral , Fosfolipídeos/metabolismo , Estearoil-CoA Dessaturase/metabolismo , Estearoil-CoA Dessaturase/genética , Lipogênese , Regulação Neoplásica da Expressão Gênica , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Animais , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Coenzima A Ligases/metabolismo , Coenzima A Ligases/genética , Fator de Crescimento Transformador beta/metabolismo , Dessaturase de Ácido Graxo Delta-5 , Resistencia a Medicamentos Antineoplásicos , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética
6.
Medicina (Kaunas) ; 60(7)2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39064589

RESUMO

Background and Objectives: Aberrant upregulation of fatty acid synthase (FASN), catalyzing de novo synthesis of fatty acids, occurs in various tumor types, including human hepatocellular carcinoma (HCC). Although FASN oncogenic activity seems to reside in its pro-lipogenic function, cumulating evidence suggests that FASN's tumor-supporting role might also be metabolic-independent. Materials and Methods: In the present study, we show that FASN inactivation by specific small interfering RNA (siRNA) promoted the downregulation of the S-phase kinase associated-protein kinase 2 (SKP2) and the consequent induction of p27KIP1 in HCC cell lines. Results: Expression levels of FASN and SKP2 directly correlated in human HCC specimens and predicted a dismal outcome. In addition, forced overexpression of SKP2 rendered HCC cells resistant to the treatment with the FASN inhibitor C75. Furthermore, FASN deletion was paralleled by SKP2 downregulation and p27KIP1 induction in the AKT-driven HCC preclinical mouse model. Moreover, forced overexpression of an SKP2 dominant negative form or a p27KIP1 non-phosphorylatable (p27KIP1-T187A) construct completely abolished AKT-dependent hepatocarcinogenesis in vitro and in vivo. Conclusions: In conclusion, the present data indicate that SKP2 is a critical downstream effector of FASN and AKT-dependent hepatocarcinogenesis in liver cancer, envisaging the possibility of effectively targeting FASN-positive liver tumors with SKP2 inhibitors or p27KIP1 activators.


Assuntos
Carcinoma Hepatocelular , Inibidor de Quinase Dependente de Ciclina p27 , Neoplasias Hepáticas , Proteínas Quinases Associadas a Fase S , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Proteínas Quinases Associadas a Fase S/metabolismo , Proteínas Quinases Associadas a Fase S/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Inibidor de Quinase Dependente de Ciclina p27/metabolismo , Humanos , Animais , Camundongos , Linhagem Celular Tumoral , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Regulação para Baixo , Masculino
7.
Cell Rep ; 43(8): 114516, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39024103

RESUMO

Despite its significance, the role of lipid metabolism in NLRP3 inflammasome remains elusive. Here, we reveal a critical role for fatty acid synthase (FASN) in NLRP3 inflammasome activation. We demonstrate that pharmacological or genetic depletion of FASN dampens NLRP3 activation in primary mouse and human macrophages and in mice. This disruption in NLRP3 activation is contingent upon FASN activity. Accordingly, abolishing cellular palmitoylation, a post-translational modification in which the FASN product palmitate is reversibly conjugated to cysteine residues of target proteins, blunts inflammasome signaling. Correspondingly, an acyl-biotin exchange assay corroborated NLRP3 palmitoylation. Mechanistically, Toll-like receptor (TLR) ligation introduces palmitoylation at NLRP3 Cys898, permitting NLRP3 translocation to dispersed trans-Golgi network (dTGN) vesicles, the site of inflammasome assembly, upon NLRP3 activation. Accordingly, the NLRP3 Cys898 mutant exhibits reduced palmitoylation, limited translocation to the dTGN compartment, and diminished inflammasome activation. These results underscore mechanistic insights through which lipid metabolism licenses NLRP3 inflammasome assembly and activation.


Assuntos
Inflamassomos , Lipoilação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Animais , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Ácidos Graxos/metabolismo , Macrófagos/metabolismo , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Rede trans-Golgi/metabolismo , Transporte Proteico/efeitos dos fármacos
8.
J Transl Med ; 22(1): 676, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39044184

RESUMO

BACKGROUND: Breast cancer manifests as a heterogeneous pathology marked by complex metabolic reprogramming essential to satisfy its energy demands. Oncogenic signals boost the metabolism, modifying fatty acid synthesis and glucose use from the onset to progression and therapy resistant-forms. However, the exact contribution of metabolic dependencies during tumor evolution remains unclear. METHODS: In this study, we elucidate the connection between FASN and LDHA, pivotal metabolic genes, and their correlation with tumor grade and therapy response using datasets from public repositories. Subsequently, we evaluated the metabolic and proliferative functions upon FASN and LDHA inhibition in breast cancer models. Lastly, we integrated metabolomic and lipidomic analysis to define the contributions of metabolites, lipids, and precursors to the metabolic phenotypes. RESULTS: Collectively, our findings indicate metabolic shifts during breast cancer progression, unvealling two distinct functional energy phenotypes associated with aggressiveness and therapy response. Specifically, FASN exhibits reduced expression in advance-grade tumors and therapy-resistant forms, whereas LDHA demonstrates higher expression. Additionally, the biological and metabolic impact of blocking the enzymatic activity of FASN and LDHA was correlated with resistant conditions. CONCLUSIONS: These observations emphasize the intrinsic metabolic heterogeneity within breast cancer, thereby highlighting the relevance of metabolic interventions in the field of precision medicine.


Assuntos
Neoplasias da Mama , Ácido Graxo Sintase Tipo I , Humanos , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/enzimologia , Feminino , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Lipidômica , Metabolômica , L-Lactato Desidrogenase
9.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167299, 2024 10.
Artigo em Inglês | MEDLINE | ID: mdl-38878833

RESUMO

STING (stimulator of interferon genes) is a critical immunoregulatory protein in sepsis and is regulated by various mechanisms, especially palmitoylation. FASN (fatty acid synthase) is the rate-limiting enzyme to generate cellular palmitic acid (PA) via acetyl-CoA and malonyl-CoA and participates in protein palmitoylation. However, the mechanisms underlying the interaction between STING and FASN have not been completely understood. In this study, STING-knockout mice were used to confirm the pivotal role of STING in sepsis-induced liver injury. Metabolomics confirmed the dyslipidemia in septic mice and patients. The compounds library was screened, revealing that FASN inhibitors exerted a significant inhibitory effect on the STING pathway. Mechanically, the regulatory effect of FASN on the STING pathway was dependent on palmitoylation. Further experiments indicated that the upstream of FASN, malonyl-CoA inhibited STING pathway possibly due to C91 (palmitoylated residue) of STING. Overall, this study reveals a novel paradigm of STING regulation and provides a new perspective on immunity and metabolism.


Assuntos
Ácido Graxo Sintase Tipo I , Lipoilação , Macrófagos , Malonil Coenzima A , Proteínas de Membrana , Sepse , Animais , Humanos , Masculino , Camundongos , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Fígado/metabolismo , Fígado/patologia , Macrófagos/metabolismo , Malonil Coenzima A/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Ácido Palmítico/farmacologia , Sepse/metabolismo , Sepse/complicações , Sepse/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos
10.
J Agric Food Chem ; 72(26): 14620-14629, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38885170

RESUMO

Milk fat content is a critical indicator of milk quality. Exploring the key regulatory genes involved in milk fat synthesis is essential for enhancing milk fat content. STF-62247 (STF), a thiazolamide compound, has the potential to bind with ALG5 and upregulate lipid droplets in fat synthesis. However, the effect of STF on the process of milk fat synthesis and whether it acts through ALG5 remains unknown. In this study, the impact of ALG5 on milk fat synthesis and its underlying mechanism were investigated using bovine mammary epithelial cells (BMECs) and mouse models through real-time PCR, western blotting, Oil Red O staining, and triglyceride analysis. Experimental findings revealed a positive correlation between STF and ALG5 with the ability to synthesize milk fat. Silencing ALG5 led to decreased expression of FASN, SREBP1, and PPARγ in BMECs, as well as reduced phosphorylation levels in the PI3K/AKT/mTOR signaling pathway. Moreover, the phosphorylation levels of the PI3K/AKT/mTOR signaling pathway were restored when ALG5 silencing was followed by the addition of STF. These results suggest that STF regulates fatty acid synthesis in BMECs by affecting the PI3K/AKT/mTOR signaling pathway through ALG5. ALG5 is possibly a new factor in milk fat synthesis.


Assuntos
Células Epiteliais , Glândulas Mamárias Animais , Leite , Transdução de Sinais , Proteína de Ligação a Elemento Regulador de Esterol 1 , Serina-Treonina Quinases TOR , Animais , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/genética , Leite/química , Leite/metabolismo , Camundongos , Bovinos , Feminino , Células Epiteliais/metabolismo , Glândulas Mamárias Animais/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Gorduras/metabolismo , PPAR gama/metabolismo , PPAR gama/genética , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/genética , Ácidos Graxos/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Triglicerídeos/metabolismo
11.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732103

RESUMO

Fatty acid synthesis has been extensively investigated as a therapeutic target in cancers, including colorectal cancer (CRC). Fatty acid synthase (FASN), a key enzyme of de novo lipid synthesis, is significantly upregulated in CRC, and therapeutic approaches of targeting this enzyme are currently being tested in multiple clinical trials. However, the mechanisms behind the pro-oncogenic action of FASN are still not completely understood. Here, for the first time, we show that overexpression of FASN increases the expression of glutamine-fructose-6-phosphate transaminase 1 (GFPT1) and O-linked N-acetylglucosamine transferase (OGT), enzymes involved in hexosamine metabolism, and the level of O-GlcNAcylation in vitro and in vivo. Consistently, expression of FASN significantly correlates with expression of GFPT1 and OGT in human CRC tissues. shRNA-mediated downregulation of GFPT1 and OGT inhibits cellular proliferation and the level of protein O-GlcNAcylation in vitro, and knockdown of GFPT1 leads to a significant decrease in tumor growth and metastasis in vivo. Pharmacological inhibition of GFPT1 and OGT leads to significant inhibition of cellular proliferation and colony formation in CRC cells. In summary, our results show that overexpression of FASN increases the expression of GFPT1 and OGT as well as the level of protein O-GlcNAcylation to promote progression of CRC; targeting the hexosamine biosynthesis pathway could be a therapeutic approach for this disease.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante) , N-Acetilglucosaminiltransferases , Humanos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , N-Acetilglucosaminiltransferases/metabolismo , N-Acetilglucosaminiltransferases/genética , Glicosilação , Animais , Camundongos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Regulação para Cima , Camundongos Nus , Ácido Graxo Sintase Tipo I
12.
Adv Healthc Mater ; 13(20): e2400171, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38657207

RESUMO

Strategies incorporating mesenchymal stromal cells (MSC), hydrogels and osteoinductive signals offer promise for bone repair. Osteoinductive signals such as growth factors face challenges in clinical translation due to their high cost, low stability and immunogenicity leading to interest in microRNAs as a simple, inexpensive and powerful alternative. The selection of appropriate miRNA candidates and their efficient delivery must be optimised to make this a reality. This study evaluated pro-osteogenic miRNAs and used porous silicon nanoparticles modified with polyamidoamine dendrimers (PAMAM-pSiNP) to deliver these to MSC encapsulated within gelatin-PEG hydrogels. miR-29b-3p, miR-101-3p and miR-125b-5p are strongly pro-osteogenic and are shown to target FASN and ELOVL4 in the fatty acid biosynthesis pathway to modulate MSC osteogenesis. Hydrogel delivery of miRNA:PAMAM-pSiNP complexes enhanced transfection compared to 2D. The osteogenic potential of hBMSC in hydrogels with miR125b:PAMAM-pSiNP complexes is evaluated. Importantly, a dual-effect on osteogenesis occurred, with miRNAs increasing expression of alkaline phosphatase (ALP) and Runt-related transcription factor 2 (RUNX2) whilst the pSiNPs enhanced mineralisation, likely via degradation into silicic acid. Overall, this work presents insights into the role of miRNAs and fatty acid signalling in osteogenesis, providing future targets to improve bone formation and a promising system to enhance bone tissue engineering.


Assuntos
Ácidos Graxos , Hidrogéis , Células-Tronco Mesenquimais , MicroRNAs , Nanopartículas , Osteogênese , Silício , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Silício/química , Hidrogéis/química , Humanos , Nanopartículas/química , Porosidade , Ácidos Graxos/química , Dendrímeros/química , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Transdução de Sinais/efeitos dos fármacos
13.
Cancer Lett ; 591: 216877, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615930

RESUMO

Mantle cell lymphoma (MCL) is an incurable and aggressive subtype of non-Hodgkin B-cell lymphoma. Increased lipid uptake, storage, and lipogenesis occur in a variety of cancers and contribute to rapid tumor growth. However, no data has been explored for the roles of lipid metabolism reprogramming in MCL. Here, we identified aberrant lipid metabolism reprogramming and PRMT5 as a key regulator of cholesterol and fatty acid metabolism reprogramming in MCL patients. High PRMT5 expression predicts adverse outcome prognosis in 105 patients with MCL and GEO database (GSE93291). PRMT5 deficiency resulted in proliferation defects and cell death by CRISPR/Cas9 editing. Moreover, PRMT5 inhibitors including SH3765 and EPZ015666 worked through blocking SREBP1/2 and FASN expression in MCL. Furthermore, PRMT5 was significantly associated with MYC expression in 105 MCL samples and the GEO database (GSE93291). CRISPR MYC knockout indicated PRMT5 can promote MCL outgrowth by inducing SREBP1/2 and FASN expression through the MYC pathway.


Assuntos
Proliferação de Células , Ácido Graxo Sintase Tipo I , Metabolismo dos Lipídeos , Linfoma de Célula do Manto , Proteína-Arginina N-Metiltransferases , Proteínas Proto-Oncogênicas c-myc , Linfoma de Célula do Manto/genética , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Humanos , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Linhagem Celular Tumoral , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Proteína de Ligação a Elemento Regulador de Esterol 2/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 2/genética , Regulação Neoplásica da Expressão Gênica , Animais , Camundongos , Masculino , Prognóstico , Feminino , Colesterol/metabolismo , Sistemas CRISPR-Cas , Reprogramação Metabólica
14.
Acta Biochim Biophys Sin (Shanghai) ; 56(5): 805-818, 2024 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-38655619

RESUMO

DPP3, a dipeptidyl peptidase, participates in a variety of pathophysiological processes. DPP3 is upregulated in cancer and might serve as a key factor in the tumorigenesis and progression of various malignancies. However, its specific role and molecular mechanism are still unknown. In this study, the expression of DPP3 in breast cancer tissues is analyzed using TCGA database. Kaplan-Meier survival analysis is performed to estimate the effect of DPP3 on the survival outcomes. To explore the biological function and mechanisms of DPP3 in breast cancer, biochemical and cell biology assays are conducted in vitro. DPP3 expresses at a higher level in breast cancer tissues than that in adjacent tissues in both TCGA database and clinical samples. Patients with high expression of DPP3 have poor survival outcomes. The proliferation and migration abilities of tumor cells with stable DPP3 knockout in breast cancer cell lines are significantly inhibited, and apoptosis is increased in vitro. GSEA analysis shows that DPP3 can affect lipid metabolism and fatty acid synthesis in tumors. Subsequent experiments show that DPP3 could stabilize FASN expression and thus promote fatty acid synthesis in tumor cells. The results of the metabolomic analysis also confirm that DPP3 can affect the content of free fatty acids. This study demonstrates that DPP3 plays a role in the reprogramming of fatty acid metabolism in tumors and is associated with poor prognosis in breast cancer patients. These findings will provide a new therapeutic target for the treatment of breast cancer.


Assuntos
Neoplasias da Mama , Carcinogênese , Proliferação de Células , Ácido Graxo Sintase Tipo I , Humanos , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Feminino , Ácido Graxo Sintase Tipo I/metabolismo , Ácido Graxo Sintase Tipo I/genética , Carcinogênese/genética , Carcinogênese/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Apoptose/genética , Metabolismo dos Lipídeos/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Células MCF-7
15.
J Hepatol ; 81(2): 265-277, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38508240

RESUMO

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver cancer and is highly lethal. Clonorchis sinensis (C. sinensis) infection is an important risk factor for iCCA. Here we investigated the clinical impact and underlying molecular characteristics of C. sinensis infection-related iCCA. METHODS: We performed single-cell RNA sequencing, whole-exome sequencing, RNA sequencing, metabolomics and spatial transcriptomics in 251 patients with iCCA from three medical centers. Alterations in metabolism and the immune microenvironment of C. sinensis-related iCCAs were validated through an in vitro co-culture system and in a mouse model of iCCA. RESULTS: We revealed that C. sinensis infection was significantly associated with iCCA patients' overall survival and response to immunotherapy. Fatty acid biosynthesis and the expression of fatty acid synthase (FASN), a key enzyme catalyzing long-chain fatty acid synthesis, were significantly enriched in C. sinensis-related iCCAs. iCCA cell lines treated with excretory/secretory products of C. sinensis displayed elevated FASN and free fatty acids. The metabolic alteration of tumor cells was closely correlated with the enrichment of tumor-associated macrophage (TAM)-like macrophages and the impaired function of T cells, which led to formation of an immunosuppressive microenvironment and tumor progression. Spatial transcriptomics analysis revealed that malignant cells were in closer juxtaposition with TAM-like macrophages in C. sinensis-related iCCAs than non-C. sinensis-related iCCAs. Importantly, treatment with a FASN inhibitor significantly reversed the immunosuppressive microenvironment and enhanced anti-PD-1 efficacy in iCCA mouse models treated with excretory/secretory products from C. sinensis. CONCLUSIONS: We provide novel insights into metabolic alterations and the immune microenvironment in C. sinensis infection-related iCCAs. We also demonstrate that the combination of a FASN inhibitor with immunotherapy could be a promising strategy for the treatment of C. sinensis-related iCCAs. IMPACT AND IMPLICATIONS: Clonorchis sinensis (C. sinensis)-infected patients with intrahepatic cholangiocarcinoma (iCCA) have a worse prognosis and response to immunotherapy than non-C. sinensis-infected patients with iCCA. The underlying molecular characteristics of C. sinensis infection-related iCCAs remain unclear. Herein, we demonstrate that upregulation of FASN (fatty acid synthase) and free fatty acids in C. sinensis-related iCCAs leads to formation of an immunosuppressive microenvironment and tumor progression. Thus, administration of FASN inhibitors could significantly reverse the immunosuppressive microenvironment and further enhance the efficacy of anti-PD-1 against C. sinensis-related iCCAs.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Clonorquíase , Clonorchis sinensis , Ácidos Graxos , Microambiente Tumoral , Colangiocarcinoma/imunologia , Colangiocarcinoma/parasitologia , Animais , Clonorchis sinensis/imunologia , Clonorchis sinensis/fisiologia , Clonorquíase/imunologia , Neoplasias dos Ductos Biliares/imunologia , Neoplasias dos Ductos Biliares/parasitologia , Camundongos , Microambiente Tumoral/imunologia , Humanos , Ácidos Graxos/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Ácido Graxo Sintase Tipo I/metabolismo , Masculino , Feminino , Linhagem Celular Tumoral , Modelos Animais de Doenças , Macrófagos Associados a Tumor/imunologia , Macrófagos Associados a Tumor/metabolismo
16.
J Lipid Res ; 65(4): 100529, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467328

RESUMO

FASN, the sole cytosolic enzyme responsible for de novo palmitate synthesis in mammalian cells, has been associated with poor prognosis in cancer and shown to cause drug and radiation resistance by upregulating DNA damage repair via suppression of p65 expression. Targeting FASN by repurposing proton pump inhibitors has generated impressive outcomes in triple-negative breast cancer patients. While p65 regulation of DNA damage repair was thought to be due to its suppression of poly(ADP-ribose) polymerase 1 gene transcription, the mechanism of FASN regulation of p65 expression was unknown. In this study, we show that FASN regulates p65 stability by controlling its phosphorylation at Thr254, which recruits the peptidyl-prolyl cis/trans isomerase Pin1 that is known to stabilize many proteins in the nucleus. This regulation is mediated by palmitate, the FASN catalytic product, not by FASN protein per se. This finding of FASN regulation of p65 stability via phosphorylation of Thr254 and isomerization by Pin1 implicates that FASN and its catalytic product palmitate may play an important role in regulating protein stability in general and p65 more specifically.


Assuntos
Ácido Graxo Sintase Tipo I , Peptidilprolil Isomerase de Interação com NIMA , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/genética , Humanos , Fosforilação , Estabilidade Proteica , Fator de Transcrição RelA/metabolismo , Isomerismo
17.
Mol Cancer ; 23(1): 55, 2024 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-38491348

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) have emerged as key players in tumorigenesis and tumour progression. However, the biological functions and potential mechanisms of lncRNAs in colorectal cancer (CRC) are unclear. METHODS: The novel lncRNA POU6F2-AS1 was identified through bioinformatics analysis, and its expression in CRC patients was verified via qRT-PCR and FISH. In vitro and in vivo experiments, such as BODIPY staining, Oil Red O staining, triglyceride (TAG) assays, and liquid chromatography mass spectrometry (LC-MS) were subsequently performed with CRC specimens and cells to determine the clinical significance, and functional roles of POU6F2-AS1. Biotinylated RNA pull-down, RIP, Me-RIP, ChIP, and patient-derived organoid (PDO) culture assays were performed to confirm the underlying mechanism of POU6F2-AS1. RESULTS: The lncRNA POU6F2-AS1 is markedly upregulated in CRC and associated with adverse clinicopathological features and poor overall survival in CRC patients. Functionally, POU6F2-AS1 promotes the growth and lipogenesis of CRC cells both in vitro and in vivo. Mechanistically, METTL3-induced m6A modification is involved in the upregulation of POU6F2-AS1. Furthermore, upregulated POU6F2-AS1 could tether YBX1 to the FASN promoter to induce transcriptional activation, thus facilitating the growth and lipogenesis of CRC cells. CONCLUSIONS: Our data revealed that the upregulation of POU6F2-AS1 plays a critical role in CRC fatty acid metabolism and might provide a novel promising biomarker and therapeutic target for CRC.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação para Cima , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , Neoplasias Colorretais/patologia , Ácidos Graxos , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Fatores do Domínio POU/genética , Fatores do Domínio POU/metabolismo , Metiltransferases/metabolismo , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo
18.
Cancer Res ; 84(6): 855-871, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38486485

RESUMO

Immune checkpoint inhibitors (ICI) transformed the treatment landscape of hepatocellular carcinoma (HCC). Unfortunately, patients with attenuated MHC-I expression remain refractory to ICIs, and druggable targets for upregulating MHC-I are limited. Here, we found that genetic or pharmacologic inhibition of fatty acid synthase (FASN) increased MHC-I levels in HCC cells, promoting antigen presentation and stimulating antigen-specific CD8+ T-cell cytotoxicity. Mechanistically, FASN inhibition reduced palmitoylation of MHC-I that led to its lysosomal degradation. The palmitoyltransferase DHHC3 directly bound MHC-I and negatively regulated MHC-I protein levels. In an orthotopic HCC mouse model, Fasn deficiency enhanced MHC-I levels and promoted cancer cell killing by tumor-infiltrating CD8+ T cells. Moreover, the combination of two different FASN inhibitors, orlistat and TVB-2640, with anti-PD-L1 antibody robustly suppressed tumor growth in vivo. Multiplex IHC of human HCC samples and bioinformatic analysis of The Cancer Genome Atlas data further illustrated that lower expression of FASN was correlated with a higher percentage of cytotoxic CD8+ T cells. The identification of FASN as a negative regulator of MHC-I provides the rationale for combining FASN inhibitors and immunotherapy for treating HCC. SIGNIFICANCE: Inhibition of FASN increases MHC-I protein levels by suppressing its palmitoylation and lysosomal degradation, which stimulates immune activity against hepatocellular carcinoma and enhances the efficacy of immune checkpoint inhibition.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Camundongos , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/genética , Linhagem Celular , Ácido Graxo Sintase Tipo I , Neoplasias Hepáticas/genética , Proteínas
19.
J Transl Med ; 22(1): 117, 2024 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-38291470

RESUMO

BACKGROUND: Radioresistance is a primary factor contributing to the failure of rectal cancer treatment. Immune suppression plays a significant role in the development of radioresistance. We have investigated the potential role of phosphatidylinositol transfer protein cytoplasmic 1 (PITPNC1) in regulating immune suppression associated with radioresistance. METHODS: To elucidate the mechanisms by which PITPNC1 influences radioresistance, we established HT29, SW480, and MC38 radioresistant cell lines. The relationship between radioresistance and changes in the proportion of immune cells was verified through subcutaneous tumor models and flow cytometry. Changes in the expression levels of PITPNC1, FASN, and CD155 were determined using immunohistochemistry and western blotting techniques. The interplay between these proteins was investigated using immunofluorescence co-localization and immunoprecipitation assays. Additionally, siRNA and lentivirus-mediated gene knockdown or overexpression, as well as co-culture of tumor cells with PBMCs or CD8+ T cells and establishment of stable transgenic cell lines in vivo, were employed to validate the impact of the PITPNC1/FASN/CD155 pathway on CD8+ T cell immune function. RESULTS: Under irradiation, the apoptosis rate and expression of apoptosis-related proteins in radioresistant colorectal cancer cell lines were significantly decreased, while the cell proliferation rate increased. In radioresistant tumor-bearing mice, the proportion of CD8+ T cells and IFN-γ production within immune cells decreased. Immunohistochemical analysis of human and animal tissue specimens resistant to radiotherapy showed a significant increase in the expression levels of PITPNC1, FASN, and CD155. Gene knockdown and rescue experiments demonstrated that PITPNC1 can regulate the expression of CD155 on the surface of tumor cells through FASN. In addition, co-culture experiments and in vivo tumor-bearing experiments have shown that silencing PITPNC1 can inhibit FASN/CD155, enhance CD8+ T cell immune function, promote colorectal cancer cell death, and ultimately reduce radioresistance in tumor-bearing models. CONCLUSIONS: PITPNC1 regulates the expression of CD155 through FASN, inhibits CD8+ T cell immune function, and promotes radioresistance in rectal cancer.


Assuntos
Neoplasias Colorretais , Neoplasias Retais , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Linhagem Celular Tumoral , Técnicas de Cocultura , Neoplasias Colorretais/genética , Ácido Graxo Sintase Tipo I/metabolismo , Imunidade , Neoplasias Retais/radioterapia
20.
Theranostics ; 14(1): 75-95, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164137

RESUMO

Background and objective: Epithelial ovarian cancer (EOC) is associated with latent onset and poor prognosis, with drug resistance being a main concern in improving the prognosis of these patients. The resistance of cancer cells to most chemotherapeutic agents can be related to autophagy mechanisms. This study aimed to assess the therapeutic effect of MK8722, a small-molecule compound that activates AMP-activated protein kinase (AMPK), on EOC cells and to propose a novel strategy for the treatment of EOC. Purpose: To explore the therapeutic effects of MK8722 on EOC cells, and to elucidate the underlying mechanism. Methods and results: It was found that MK8722 effectively inhibited the malignant biological behaviors of EOC cells. In vitro experiments showed that MK8722 targeted and decreased the lipid metabolic pathway-related fatty acid synthase (FASN) expression levels, causing the accumulation of lipid droplets. In addition, transmission electron microscopy revealed the presence of autophagosome-affected mitochondria. Western blotting confirmed that MK8722 plays a role in activating autophagy upstream (PI3K/AKT/mTOR) and inhibiting autophagy downstream via FASN-dependent reprogramming of lipid metabolism. Plasmid transient transfection demonstrated that MK8722 suppressed late-stage autophagy by blocking autophagosome-lysosome fusion. Immunofluorescence and gene silencing revealed that this effect was achieved by inhibiting the interaction of FASN with the SNARE complexes STX17-SNP29-VAMP8. Furthermore, the antitumor effect of MK8722 was verified using a subcutaneous xenograft mouse model. Conclusion: The findings suggest that using MK8722 may be a new strategy for treating EOC, as it has the potential to be a new autophagy/mitophagy inhibitor. Its target of action, FASN, is a molecular crosstalk between lipid metabolism and autophagy, and exploration of the underlying mechanism of FASN may provide a new research direction.


Assuntos
Metabolismo dos Lipídeos , Neoplasias Ovarianas , Humanos , Feminino , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Autofagia , Ácido Graxo Sintases/metabolismo , Ácido Graxo Sintases/farmacologia , Carcinoma Epitelial do Ovário , Ácido Graxo Sintase Tipo I/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA