Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 456
Filtrar
1.
Waste Manag ; 181: 168-175, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38615500

RESUMO

The recovery of valuable metals from used lithium batteries is essential from an environmental and resource management standpoint. However, the most widely used acid leaching method causes significant ecological harm. Here, we proposed a method of recovering Li and Fe selectively from used lithium iron phosphate batteries by using low-concentration organic acid and completing the closed-loop regeneration. Low-concentration oxalic acid is used to carry out PO43-, which is significantly less soluble in aqueous solution than Li, two-stage selective leaching Li, where the leaching rate of Li reaches 99 %, and the leaching rate of Fe is only 2.4 %. The leach solution is then decontaminated. The solubility of Li3PO4 in aqueous solution is much smaller than that of Li2C2O4, which was required to recover Li to change the pH and Li can be recovered as Li3PO4; Fe can be retrieved as FeC2O4·2H2O, and re-prepared into lithium iron phosphate.


Assuntos
Compostos Férricos , Lítio , Ácido Oxálico , Fosfatos , Reciclagem , Ácido Oxálico/química , Fosfatos/química , Lítio/química , Reciclagem/métodos , Ferro/química , Fontes de Energia Elétrica
2.
Ecotoxicol Environ Saf ; 266: 115593, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37856985

RESUMO

Vermicompost is a promising amendment for immobilization of cadmium (Cd) in soils; however, its effectiveness can be influenced by rhizosphere environment conditions, such as pH and the presence of low-molecular-weight organic acids (LMWOAs). In this study, a batch experiment was conducted to examine the characteristics of Cd adsorption by vermicompost at different pH (pH = 3, 5, and 7) and after the addition of different LMWOAs (oxalic acid; citric acid; malic acid). Furthermore, a series of morphology and structural analyses were conducted to elucidate the mechanisms of observed effects. The results showed that the adsorption capacity of vermicompost for Cd increased as pH increased, and chemisorption dominated the adsorption process. Changes in pH altered adsorption performance by affecting the -OH groups of alcohol/phenol and the -CH2 groups of aliphatics. Further, the addition of oxalic acid promoted Cd adsorption, and the effect was concentration dependent. Modifying the verimicompost surface with more adsorption sites might be the main reason. Conversely, citric acid and malic acid showed the ability to inhibit Cd adsorption by vermicompost. Citric acid caused a blocking effect by covering flocculent substances on the vermicompost surface while reducing surface adsorption sites by dissolving mineral components such as iron oxides. However, the action of malic acid did not appear to be related to changes in morphology or the structure of vermicompost. Overall, the results of this study partially explain the limited effectiveness of Cd immobilization within the rhizosphere by vermicompost, and provide theoretical support for regulating rhizosphere environments to improve the effectiveness of vermicompost immobilization of Cd.


Assuntos
Cádmio , Poluentes do Solo , Cádmio/análise , Adsorção , Rizosfera , Solo/química , Compostos Orgânicos , Ácido Oxálico/química , Ácido Cítrico/química , Concentração de Íons de Hidrogênio , Poluentes do Solo/análise
3.
J Sep Sci ; 46(17): e2300280, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37400375

RESUMO

In this study, different polyanilines were synthesized and evaluated for the determination of three hormones, including 17-ß-estradiol, 17-α-ethinylestradiol, and estrone, in urine using a novel methodology based on thin film solid-phase microextraction technique, employing the sampling well plate system. The extractor phases, designated as polyaniline doped with hydrochloric acid, polyaniline doped with oxalic acid, polyaniline-silica doped with hydrochloric acid, and polyaniline-silica doped with oxalic acid, were characterized by electrical conductivity measurements, scanning electron microscopy, and Fourier transform infrared spectroscopy. The optimized extraction conditions were composed of 1.5 mL of urine and pH adjusted to 10, with no need to dilute sample and the desorption step, 300 µL of acetonitrile was used. The calibration curves were performed in the sample matrix, with detection and quantification limits ranged from 0.30 to 3.03 µg L-1 and from 1.0 to 10.0 µg L-1 , respectively, with r ≥ 0.9969. The relative recoveries ranged from 71% to 115%, and intraday precision showed values ≤12% and interday ≤20%. The applicability of the method was successfully evaluated, and six urine samples from female volunteers were analyzed. The analytes were not detected or were below the limits of quantification in these samples.


Assuntos
Ácido Oxálico , Dióxido de Silício , Feminino , Humanos , Ácido Clorídrico , Estradiol , Etinilestradiol , Cromatografia Líquida de Alta Pressão/métodos
4.
Environ Pollut ; 329: 121682, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37094734

RESUMO

Anthropogenic cadmium (Cd) in arable soils is becoming a global concern due to its harmful effects on crop yield and quality. The current study examined the role of exogenously applied low molecular weight organic acids (LMWOAs) including oxalic acid (OxA), tartaric acid (TA) and high molecular weight organic acids (HMWOAs) like citric acid (CA) and humic acid (HA) for the bioavailability of Cd in wheat-rice cropping system. Maximum increase in root dry-weight, shoot dry-weight, and grain/paddy yields was recorded with HA for both crops. The HA significantly decreased AB-DTPA Cd in contaminated soils which remained 41% for wheat and 48% for rice compared with their respective controls. The minimum concentration of Cd in roots, shoots and grain/paddy was observed in HA treatment in both crops. The organic acids significantly increased the growth parameters, photosynthetic activity, and relative leaf moisture contents for both wheat and rice crops compared to that with the contaminated control. Application of OxA and TA increased the bioavailability of Cd in soils and plant tissues while CA and HA decreased the bioavailability of Cd in soils and plants. The highest decrease in Cd uptake, bioaccumulation, translocation factor, immobilization, translocation, harvest, and health risk indices were observed with HA while maximum increase was recorded with OxA for both wheat and rice. The results concluded that use of HMWOAs is effective in soil Cd immobilization being maximum with HA. While LMWOAs can be used for the phytoextraction of Cd in contaminated soils having maximum potential with OxA.


Assuntos
Oryza , Poluentes do Solo , Solo , Cádmio/análise , Triticum , Peso Molecular , Produtos Agrícolas , Grão Comestível/química , Ácido Oxálico , Poluentes do Solo/análise
5.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901947

RESUMO

Secretion and efflux of oxalic acid from roots is an important aluminum detoxification mechanism for various plants; however, how this process is completed remains unclear. In this study, the candidate oxalate transporter gene AtOT, encoding 287 amino acids, was cloned and identified from Arabidopsis thaliana. AtOT was upregulated in response to aluminum stress at the transcriptional level, which was closely related to aluminum treatment concentration and time. The root growth of Arabidopsis was inhibited after knocking out AtOT, and this effect was amplified by aluminum stress. Yeast cells expressing AtOT enhanced oxalic acid resistance and aluminum tolerance, which was closely correlated with the secretion of oxalic acid by membrane vesicle transport. Collectively, these results underline an external exclusion mechanism of oxalate involving AtOT to enhance oxalic acid resistance and aluminum tolerance.


Assuntos
Arabidopsis , Arabidopsis/genética , Alumínio/metabolismo , Transporte Biológico , Proteínas de Membrana Transportadoras/metabolismo , Ácido Oxálico/metabolismo , Raízes de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Plantas Geneticamente Modificadas/metabolismo
6.
Chemosphere ; 313: 137557, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36535500

RESUMO

Carbonaceous materials have a potential to mediated oxalic acid (OA) for Cr(VI) reduction, but the rational modification is needed for boosting the mediation of electron transfer. Herein, we utilized polyvinyl alcohol to envelop schwertmannite synthesized by Acidithiobacillus ferrooxidans biomineralization, and pyrolyzed them to obtain the carbon encapsulated iron oxides (C-2.0-Sch-PVA). SEM and TEM results demonstrated that a moderate calcination temperature would yield a neural network-like carbon encapsulated structure. C-2.0-Sch-PVA efficiently mediated OA to reduce Cr(VI), 98.4% of Cr(VI) (40 mg L-1) was reduced with 0.75 g L-1 C-2.0-Sch-PVA and 4 mM OA in 60 min. It still performed excellent results in a wide pH range, multiple anions and different water matrixes. The carbon encapsulated structure as electron shuttle mediated the electron transfer, and the O-moieties on its surface were a premise for initiating the Cr(VI) reduction process. The electron transfer from the inner iron oxides to the conjugated structure of the outer carbon shells facilitated Cr(VI) reduction as well. Moreover, OA raised the persistent free radicals' level in C-2.0-Sch-PVA as another important pathway for Cr(VI) reduction. Overall, C-2.0-Sch-PVA provides an excellent demonstration in the carbonaceous materials modification for mediating OA to reduce Cr(VI) in aqueous.


Assuntos
Carbono , Poluentes Químicos da Água , Ácido Oxálico , Oxirredução , Elétrons , Cromo/química , Ferro , Água , Óxidos , Poluentes Químicos da Água/química
7.
Environ Res ; 217: 114938, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36436556

RESUMO

To obtain a versatile formaldehyde oxidation material, simultaneously increasing the oxidative ability, recyclability and deactivation repellence (e.g., enduring the interference from moisture and aromatic compound omnipresent in indoor air) is of great significance. Herein, the above properties of α-MnO2 were synchronously updated via one step treatment in oxalic acid (H2C2O4), and an in-depth understanding of the surface properties-performance relationship was provided by systematic characterizations and designed experiments. Compared with the pristine sample, XPS, ESR, O2-TPD, CO-TPR and pyridine-IR reveal that H2C2O4 created substantial Mn3+ species on surface, exposing a higher coverage of oxygen vacancies that actively participated in the dissociative activation of gas-phase O2 into reactive chemically adsorbed oxygen (OC), and the abundant Lewis acid sites further enabled the effective O2 activation process. The large amount of oxygen OC promoted the HCHO-to-CO2 conversion and inhibited the accumulation of formate that required a high temperature of 170 °C to be eliminated, thus conspicuously improving the α-MnO2's thermal recovery. The combined H2O-TPD, H2O-preadsorbed CO-TPR, C6H6-TPD and C6H6-preadsorbed CO-TPR investigations shed light on the H2C2O4-induced water and benzene resistance. The notably weakened water and benzene binding strength with the H2C2O4-modified surface together with the unrestrained oxygen OC accounted for the outstanding anti-deactivation performance.


Assuntos
Óxidos , Água , Óxidos/química , Ácido Oxálico , Temperatura , Compostos de Manganês/química , Benzeno , Oxigênio/química , Catálise , Formaldeído/química , Estresse Oxidativo
8.
Environ Pollut ; 316(Pt 1): 120590, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36336187

RESUMO

The stockpiling of vanadium-containing tailings allows vanadium to migrate into the surrounding area, resulting in toxic metal contamination. By using the vanadium-bearing iron/manganese (Fe/Mn) oxide agglomerates as the simulated tailings, the feasibility of photo-induced reduction of vanadium by oxalic acid was investigated. Batch effects of the available light and the reducing agents on agglomerates were investigated. Results showed that oxalic acid (5 mmol L-1) can convert V(V) to V(IV) and convert Fe(III) released from the Fe/Mn oxide agglomerates to Fe(II) under both light and dark conditions. After 45 d of reaction in the dark, oxalic acid converted 33.54% Fe(III) and 100% V(V) in the leachate into Fe(II) and V(IV). The Fenton reaction occurred by light irradiation significantly increased the redox potential in the solution, and also caused V(IV) to be oxidized. Overall, oxalic acid can rapidly reduce V(V) to V(IV), but sunlight may have an inhibitory effect on the reduction reaction. Present study can deepen the understanding of the mechanism for valence transformation of elements in minerals by sunlight, and can help in implementing tailings treatment and environmental remediation by using oxalic acid and avoiding light.


Assuntos
Ferro , Vanádio , Manganês , Compostos Férricos , Ácido Oxálico , Óxidos , Oxirredução , Compostos Ferrosos
9.
Cells ; 11(22)2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36429064

RESUMO

Sparassis latifolia, a highly valued edible fungus, is a crucial medicinal and food resource owing to its rich active ingredients and pharmacological effects. Excessive oxalic acid secreted on a pine-sawdust-dominated substrate inhibits its mycelial growth, and severely restricts the wider development of its cultivation. However, the mechanism underlying the relationship between oxalic acid and slow mycelial growth remains unclear. The present study reported the transcriptome-based response of S. latifolia induced by different oxalic acid concentrations. In total, 9206 differentially expressed genes were identified through comparisons of three groups; 4587 genes were down-regulated and 5109 were up-regulated. Transcriptome analysis revealed that excessive oxalic acid mainly down-regulates the expression of genes related to carbohydrate utilization pathways, energy metabolism, amino acid metabolism, protein synthesis metabolism, glycan biosynthesis, and signal transduction pathways. Moreover, genes encoding for wood-degrading enzymes were predominantly down-regulated in the mycelia treated with excessive oxalic acid. Taken together, the study results provide a speculative mechanism underlying the inhibition of saprophytic growth by excessive oxalic acid and a foundation for further research on the growth of S. latifolia mycelia.


Assuntos
Ácido Oxálico , Polyporales , Polyporales/genética , Perfilação da Expressão Gênica , Transcriptoma/genética
10.
Comput Math Methods Med ; 2022: 8211389, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36213585

RESUMO

Objective: A case-control study was conducted to determine the effectiveness of laparoscopic surgery and traditional open surgery on stone clearance, laboratory indexes, and life quality in patients with renal calculi. Methods: During March 2017 to March 2022, 272 patients with complex renal calculi (CRC) cured in our hospital were assigned into control group (n = 136) and research group (n = 136) arbitrarily. The former accepted traditional open surgery, while the latter accepted laparoscopic surgery. The operation time, intraoperative blood loss, hospital stay, and time of getting out of bed were compared. The degree of postoperative incision pain was assessed by visual analogue scale (VAS). The life quality was assessed by the Comprehensive Assessment Questionnaire-74 (GQOL-74). The indexes of renal function and urine metabolism were measured. Then, the postoperative stone clearance rate and complications were calculated. Results: Operation time, blood loss intraoperatively, time out of bed, and hospitalization were all remarkably reduced in the research group, and the difference was statistically significant (P < 0.05). The complete stone clearance rates in study and control cohorts were 75.73% and 63.24%, respectively. The VAS scores were lessened after the operation. Compared with the two groups, the VAS scores of the research group were remarkably lower at 1 to 2 weeks and 1 and 3 months after the operation, and the difference was statistically significant (P < 0.05). One week after operation, the levels of ß 2-microglobulin (ß 2-MG), N-acetyl-ß-glucosaminidase (NAG), and renal injury molecule-1 (kidney injury molecule-1, Kim-1) in the research group were remarkably lower. The levels of urinary ß 2-MG, NAG, and KIM-1 in the research group were remarkably lower, and the difference was statistically significant (P < 0.05). One week after operation, the levels of urinary oxalic acid, uric acid, and urinary calcium lessened averagely. The levels of urinary oxalic acid, uric acid, and urinary calcium in the research group were lower, and the difference was statistically significant (P < 0.05). The quality-of-life scores were compared. One week after the operation, the scores of physical function, psychological function, social function, and material function were all augmented, and the difference was statistically significant (P < 0.05). The incidence of complications was 9.56% and 2.21%, respectively. The incidence of complications in the research group was lower, and the difference was statistically significant (P < 0.05). Conclusion: Laparoscopic surgery is successful when treating CRC, which is superior to invasive surgery in postoperative complications, stone clearance rate, improvement of postoperative renal function, and life quality. It is one of the ideal treatment methods for CRC. However, the role of open surgery when treating CRC cannot be ignored. This needs to be further confirmed by large samples of randomized controlled trials.


Assuntos
Cálculos Renais , Laparoscopia , Cálcio , Estudos de Casos e Controles , Hexosaminidases , Humanos , Cálculos Renais/cirurgia , Laparoscopia/efeitos adversos , Ácido Oxálico , Qualidade de Vida , Estudos Retrospectivos , Resultado do Tratamento , Ácido Úrico , Microglobulina beta-2
11.
Cells ; 11(15)2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35954267

RESUMO

Sparassis latifolia is an edible and medicinal mushroom in Asia commercially cultivated on substrates containing pine sawdust. Its slow mycelial growth rate greatly increases the cultivation cycle. In this study, we mainly studied the role of oxalic acid (OA) secreted by S. latifolia in its saprophytic process. Our results show that crystals observed on the mycelial surface contained calcium oxalate monohydrate (COM) and calcium oxalate dihydrate (COD) according to X-ray diffraction (XRD). Vegetative mycelia secreted large amounts of OA during extended culture periods. However, high concentrations of OA decreased the mycelial growth rate significantly. Moreover, the degradation of lignocellulose was significantly inhibited under high concentrations of OA. These changes could be attributed to the significantly decreased activities of lignocellulose-degrading enzymes. In conclusion, by establishing a link between OA secretion by the mycelium and the slow growth rate of its saprophytic process, this work provides fundamental information for shortening the cultivation cycle of S. latifolia.


Assuntos
Ácido Oxálico , Polyporales , Oxalato de Cálcio , Micélio
12.
Chemosphere ; 307(Pt 4): 136041, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35981623

RESUMO

The final sinkers of polyaromatic hydrocarbons are water sources, where they undergo bioaccumulation and biomagnification, leading to adverse mutagenic, carcinogenic, and teratogenic effects on exposure in flora, fauna, and humans. Two indigenous strains, Pseudomonas sp. WDE11 and Pseudomonas sp. WD23, isolated from refinery effluent, degraded over 97.5% of benzo(a)fluorene (10 mg/L) in 7 days. On growth at concentration dependent amounts (50 mg/L and 100 mg/L), the degradation reduced to approximately 90% and 80% respectively in 56 days. Degradation kinetics was concentration dependent, as degradation followed first-order and second-order kinetics for 50 mg/L and 100 mg/L respectively. The half-life for degradation of benzo(a)fluorene ranged between 11.64 - 12.26 days and 13.11-14.5 days for strains WDE11 and WD23 respectively. The values of Andrew-Haldane kinetic parameters i.e. µmax, Ks, and Ki were 0.306 day-1, 11.11 mg/L, and 120.41 mg/L for strain WDE11 respectively, while for strain WD23, the respective values were 0.312 day-1, 9.97 mg/L, and 152 mg/L. Degradation metabolites were identified by their MS patterns as 3,4-dihydroxy fluorene, 2-(1-oxo-2,3-dihydro-1H-inden-2-yl) acetic acid, 3,4-dihydrocoumarin, salicylic acid, catechol, and oxalic acid. Metabolic pathway of degradation constructed, revealed that benzo(a)fluorene was metabolized via the formation of fluorene, further metabolized by salicylate pathway forming catechol. The catechol formed was degraded into simpler metabolites by meta-cleavage pathway, which was validated by catechol 2,3 dioxygenase enzyme activity.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Pseudomonas , Biodegradação Ambiental , Catecol 2,3-Dioxigenase/metabolismo , Catecóis/metabolismo , Fluorenos/metabolismo , Humanos , Cinética , Ácido Oxálico/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pseudomonas/metabolismo , Ácido Salicílico/metabolismo
13.
Sci Rep ; 12(1): 11410, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35794170

RESUMO

Cadmium (Cd) pollution poses potential safety risks for Panax notoginseng cultivation, a medicinal plant in Yunnan. Under exogenous Cd stress, field experiments were conducted to understand the effects of lime (0, 750, 2250 and 3750 kg hm-2) applied and oxalic acid (0, 0.1 and 0.2 mol L-1) leaves sprayed on Cd accumulation, antioxidant system and medicinal components of P. notoginseng. The results showed that Lime and foliar spray of oxalic acid were able to elevate Ca2+ and alleviate Cd2+ toxicity in P. notoginseng under Cd stress. The addition of lime and oxalic acid increased the activities of antioxidant enzymes and alters osmoregulator metabolism. The most significant increase in CAT activities increased by 2.77 folds. And the highest increase of SOD activities was 1.78 folds under the application of oxalic acid. While MDA content decreased by 58.38%. There were very significant correlation with soluble sugar, free amino acid, proline and soluble protein. Lime and oxalic acid were able to increase calcium ions (Ca2+), decrease Cd content and improve the stress resistance of P. notoginseng, while increasing the production of total saponins and flavonoids. Cd content were the lowest, 68.57% lower than controls, and met the standard value (Cd ≤ 0.5 mg kg-1, GB/T 19086-2008). The proportion of SPN was 7.73%, which reached the highest level of all treatments, the flavonoids content increased significantly by 21.74%, which reached the medicinal standard value and optimal yield.


Assuntos
Ácido Oxálico , Panax notoginseng , Antioxidantes , Cádmio/toxicidade , Compostos de Cálcio , China , Flavonoides , Óxidos
14.
Mar Drugs ; 20(6)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35736184

RESUMO

Urolithiasis is a common urological disease characterized by the presence of a stone anywhere along the urinary tract. The major component of such stones is calcium oxalate, and reactive oxygen species act as an essential mediator of calcium oxalate crystallization. Previous studies have demonstrated the antioxidant and antiurolithiatic activities of sulfated polysaccharides. In this study, native sulfated galactans (N-SGs) with a molecular weight of 217.4 kDa from Gracilaria fisheri were modified to obtain lower molecular weight SG (L-SG) and also subjected to sulfation SG (S-SG). The in vitro antioxidant and antiurolithiatic activities of the modified substances and their ability to protect against sodium oxalate-induced renal tubular (HK-2) cell death were investigated. The results revealed that S-SG showed more pronounced antioxidant activities (DPPH and O2- scavenging activities) than those of other compounds. S-SG exhibited the highest antiurolithiatic activity in terms of nucleation and aggregation, as well as crystal morphology and size. Moreover, S-SG showed improved cell survival and increased anti-apoptotic BCL-2 protein in HK-2 cells treated with sodium oxalate. Our findings highlight the potential application of S-SG in the functional food and pharmaceutical industries.


Assuntos
Galactanos , Gracilaria , Antioxidantes/farmacologia , Oxalato de Cálcio , Morte Celular , Galactanos/química , Gracilaria/química , Ácido Oxálico , Sulfatos/metabolismo , Sulfatos/farmacologia
15.
Environ Res ; 205: 112456, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843729

RESUMO

In order to remove high toxic Cr(VI) from the water with low cost and high efficiency, iron-loaded Loofah (Loofah-Fe) was prepared from agriculture waste Loofah and was applied in the Cr(VI) photoreduction remvoal by oxalic acid (Ox). The Cr(VI) removal of Loofah-Fe/Ox/UV system were investigated by the effect of initial Cr(VI) concentration, Ox concentration and Loofah-Fe dosage. The Cr(VI) removal mechanism in Loofah-Fe/Ox/UV system were discussed through the study of initial pH, the change (pH, Ox concentration, Fe(II) and Fe(III) concentration) in solution during the reaction, and the free radicals scavenging test. The role of Loofah-Fe in Loofah-Fe/Ox/UV system was further deduced by the analysis of XPS, EIS and Mott-Schottky. The results showed that Loofah-Fe remarkably enhanced the Cr(VI) photoreduction by Ox, 1 mM of Cr(VI) in aqueous solution was completely removed in 30 min by Loofah-Fe/Ox/UV system at pH = 3.0. The loaded Fe(III) and the contained SiO2 on Loofah-Fe played an important synergized photocatalytic role for Cr(VI) removal in Loofah-Fe/Ox/UV system. Fe(II) and CO2·-, which was continuously generated by photoactive Fe(III)-(C2O4)3 formed between Ox and Fe(III) dissolved from Loofah-Fe, reduced a large amounts of Cr(VI) in solution. The separated electron (e-) and the produced CO2·-, generated from the oxidized Ox by the hole (h+) through photoactive SiO2 on Loofah-Fe, also reduced part of Cr(VI).


Assuntos
Luffa , Poluentes Químicos da Água , Cromo/análise , Ferro/análise , Ácido Oxálico , Oxirredução , Dióxido de Silício , Poluentes Químicos da Água/análise
16.
Molecules ; 26(22)2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34834048

RESUMO

Psammosilene tunicoides is a unique perennial medicinal plant species native to the Southwestern regions of China. Its wild population is rare and endangered due to over-excessive collection and extended growth (4-5 years). This research shows that H+-ATPase activity was a key factor for oxalate-inducing programmed cell death (PCD) of P. tunicoides suspension cells. Oxalic acid (OA) is an effective abiotic elicitor that enhances a plant cell's resistance to environmental stress. However, the role of OA in this process remains to be mechanistically unveiled. The present study evaluated the role of OA-induced cell death using an inverted fluorescence microscope after staining with Evans blue, FDA, PI, and Rd123. OA-stimulated changes in K+ and Ca2+ trans-membrane flows using a patch-clamp method, together with OA modulation of H+-ATPase activity, were further examined. OA treatment increased cell death rate in a dosage-and duration-dependent manner. OA significantly decreased the mitochondria activity and damaged its electron transport chain. The OA treatment also decreased intracellular pH, while the FC increased the pH value. Simultaneously, NH4Cl caused intracellular acidification. The OA treatment independently resulted in 90% and the FC led to 25% cell death rates. Consistently, the combined treatments caused a 31% cell death rate. Furthermore, treatment with EGTA caused a similar change in intracellular pH value to the La3+ and OA application. Combined results suggest that OA-caused cell death could be attributed to intracellular acidification and the involvement of OA in the influx of extracellular Ca2+, thereby leading to membrane depolarization. Here we explore the resistance mechanism of P. tunicoides cells against various stresses endowed by OA treatment.


Assuntos
Caryophyllaceae/metabolismo , Ácido Oxálico/metabolismo , Proteínas de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Apoptose , Caryophyllaceae/citologia , Mitocôndrias/metabolismo , Plantas Medicinais/citologia , Plantas Medicinais/metabolismo
17.
J Oleo Sci ; 70(10): 1481-1494, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34497174

RESUMO

In the past decade, natural deep eutectic solvents (NADESs) as green and sustainable extraction solvents with great potential for the efficient extraction of bioactive compounds from the plants are emerging. In this study, a microwave-assisted technology is used to prepare natural deep eutectic solvents. And natural deep eutectic solvents as pretreatment solvents coupled with microwave-assisted hydrodistillation (MAHD) for isolating essential oil (EO) derived from turmeric (Curcuma longa L.) is investigated. To improve the essential oil yield of turmeric (Curcuma longa L.) as a target, various factors affecting extraction efficiency including the type and amount of natural deep eutectic solvents, pretreatment time, pretreatment temperature and hydrodistillation (HD) time are discussed and optimized through central composite design (CCD) of the response surface methodology (RSM). The optimal conditions are as follows: natural deep eutectic solvent composed of choline chloride and oxalic acid (molar ratio with 1:1) as a pretreatment solvent, an amount of 60 g, a pretreatment time of 5 min, a pretreatment temperature of 84 ºC, a hydrodistillation time of 76 min. Under the optimum conditions, the highest essential oil yield of 0.85% is achieved. Additionally, the essential oil is analyzed by using gas chromatography-mass spectrometry (GC-MS), with a total of 49 compounds being identified. Through combining natural deep eutectic solvents with a microwave-assisted hydrodistillation technique, this work provides an eco-friendly extraction way of isolating essential oil, which boosts development in the monitoring other spice quality field.


Assuntos
Curcuma/química , Solventes Eutéticos Profundos/química , Destilação/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Extração Líquido-Líquido/métodos , Micro-Ondas , Óleos Voláteis/análise , Colina/química , Óleos Voláteis/isolamento & purificação , Ácido Oxálico/química , Temperatura , Fatores de Tempo
18.
J Anim Sci ; 99(10)2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34549281

RESUMO

High oxalate consumption has been recognized as a risk factor for renal calcium oxalate stones in companion animals (dogs and cats). However, the cellular signaling involved in oxalate-induced dysfunction in renal tubular epithelial cells remains not fully elucidated. In this study, Mardin-Darby canine kidney (MDCK) cells, an epithelial cell line derived from canine kidney tubule, were tested for cell proliferation activity and barrier function after being exposed to sodium oxalate (NaOx). Further, the involvement of Wnt/ß-catenin in NaOx-induced renal epithelial barrier dysfunction was evaluated. MDCK cells treated with NaOx exhibited reduction in cell proliferation and migration. Besides, NaOx exposure led to a decrease in transepithelial electrical resistance and an increase in paracellular permeability. The deleterious effects of NaOx on epithelial barrier function were related to the suppressed abundance of tight junction proteins including zonula occludens, occludin, and claudin-1. Of note, protein levels of ß-catenin and phosphorylated (p)-ß-catenin (Ser552) in MDCK cells were repressed by NaOx, indicating inhibitory effects on Wnt/ß-catenin signaling. An inhibition of glycogen synthase kinase-3ß (GSK-3ß) by SB216763 enhanced the abundance of ß-catenin and p-ß-catenin (Ser552), and protected against epithelial barrier dysfunction in NaOx-treated MDCK cells. The results revealed a critical role of Wnt/ß-catenin signaling in the epithelial barrier function of MDCK cells. Activation of Wnt/ß-catenin signaling might be a potential therapeutic target for the treatment of oxalate-linked renal stones.


Assuntos
Doenças do Gato , Doenças do Cão , Animais , Gatos , Doenças do Cão/induzido quimicamente , Cães , Células Epiteliais , Glicogênio Sintase Quinase 3 beta , Células Madin Darby de Rim Canino , Ácido Oxálico , Via de Sinalização Wnt , beta Catenina
19.
Sci Rep ; 11(1): 17326, 2021 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-34462479

RESUMO

Polyporus umbellatus is a precious medicinal fungus. Oxalic acid was observed to affect sclerotial formation and sclerotia possessed more medicinal compounds than mycelia. In this study, the transcriptome of P. umbellatus was analysed after the fungus was exposed to various concentrations of oxalic acid. The differentially expressed genes (DEGs) encoding a series of oxidases were upregulated, and reductases were downregulated, in the low-oxalic-acid (Low OA) group compared to the control (No OA) group, while the opposite phenomenon was observed in the high-oxalic-acid (High OA) group. The detection of reactive oxygen species (ROS) in P. umbellatus mycelia was performed visually, and Ca2+ and H2O2 fluxes were measured using non-invasive micro-test technology (NMT). The sclerotial biomass in the Low OA group increased by 66%, however, no sclerotia formed in the High OA group. The ROS fluorescence intensity increased significantly in the Low OA group but decreased considerably in the High OA group. Ca2+ and H2O2 influx significantly increased in the Low OA group, while H2O2 exhibited efflux in the High OA group. A higher level of oxidative stress formed in the Low OA group. Different concentrations of oxalic acid were determined to affect P. umbellatus sclerotial formation in different ways.


Assuntos
Sinalização do Cálcio , Ácido Oxálico/metabolismo , Polyporus/genética , Polyporus/metabolismo , Transcriptoma , Biomassa , Biotecnologia , Cálcio/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Peróxido de Hidrogênio , Estresse Oxidativo , Espécies Reativas de Oxigênio
20.
Chemosphere ; 285: 131420, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34256202

RESUMO

Exogenous application of plant-growth promoting substances in combination with chelators is a common way to enhance the phytoextraction of heavy metals. A pot experiment was used to explore the influences of indole-3-acetic acid (IAA)/gibberellin (GA3) alone or together with oxalic acid (OA) on the growth, physiological response, and nutrient contents of hyperaccumulator Sedum alfredii Hance, and cadmium (Cd) and lead (Pb) phytoextraction efficiency. The results showed that a foliar spray of IAA/GA3 alone or together with OA increased plant growth. The largest shoot biomass with increase by 29.7% was produced by the 50 µmol L-1 IAA combined with 2.5 mmol kg-1 OA (50I+2.5OA) treatment as compared with the control treatment (CK). The presence of IAA and GA3 enhanced the chlorophyll a, carotenoid, and potassium contents in leaves and decreased the malondialdehyde content. The Cd content in leaf and the translocation factor (TFshoot) value from 50I+2.5OA treatment was increased by 4.29% and 21.4%, and the Pb content in stem and shoot, and the TFshoot of Pb after applying 50 µmol L-1 GA3 combined with 2.5 mmol kg-1 OA was enhanced by 32.5%, 13.4%, and 57.6%, compared with CK, respectively. The optimal Cd and Pb phytoextraction efficiency occurred from 50I+2.5OA treatment with increase by 82.4% and 79.3% as compared with CK, respectively. Therefore, the results showed that a combined application of 50 µmol L-1 IAA and 2.5 mmol kg-1 OA could effectively enhance S. alfredii Hance phytoremediation of Cd and Pb co-contaminated soil.


Assuntos
Sedum , Poluentes do Solo , Biodegradação Ambiental , Cádmio/análise , Clorofila A , Giberelinas , Ácidos Indolacéticos , Chumbo , Ácido Oxálico , Raízes de Plantas/química , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA