Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proteins ; 91(9): 1261-1275, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37226637

RESUMO

Phosphoenolpyruvate carboxykinases (PEPCK) are a well-studied family of enzymes responsible for the regulation of TCA cycle flux, where they catalyze the interconversion of oxaloacetic acid (OAA) and phosphoenolpyruvate (PEP) using a phosphoryl donor/acceptor. These enzymes have typically been divided into two nucleotide-dependent classes, those that use ATP and those that use GTP. In the 1960's and early 1970's, a group of papers detailed biochemical properties of an enzyme named phosphoenolpyruvate carboxytransphosphorylase (later identified as a third PEPCK) from Propionibacterium freudenreichii (PPi -PfPEPCK), which instead of using a nucleotide, utilized PPi to catalyze the same interconversion of OAA and PEP. The presented work expands upon the initial biochemical experiments for PPi -PfPEPCK and interprets these data considering both the current understanding of nucleotide-dependent PEPCKs and is supplemented with a new crystal structure of PPi -PfPEPCK in complex with malate at a putative allosteric site. Most interesting, the data are consistent with PPi -PfPEPCK being a Fe2+ activated enzyme in contrast with the Mn2+ activated nucleotide-dependent enzymes which in part results in some unique kinetic properties for the enzyme when compared to the more widely distributed GTP- and ATP-dependent enzymes.


Assuntos
Propionibacterium freudenreichii , Fosfoenolpiruvato , Propionibacterium freudenreichii/metabolismo , Fosfoenolpiruvato Carboxiquinase (ATP)/química , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Ácido Oxaloacético/química , Guanosina Trifosfato , Nucleotídeos , Trifosfato de Adenosina , Cinética
2.
Biomolecules ; 12(9)2022 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-36139014

RESUMO

Malate dehydrogenase (MDH), which catalyzes a reversible conversion of L-malate to oxaloacetate, plays essential roles in common metabolic processes, such as the tricarboxylic acid cycle, the oxaloacetate-malate shuttle, and the glyoxylate cycle. MDH2 has lately been recognized as a promising anticancer target; however, the structural information for the human homologue with natural ligands is very limited. In this study, various complex structures of hMDH2, with its substrates and/or cofactors, were solved by X-ray crystallography, which could offer knowledge about the molecular and enzymatic mechanism of this enzyme and be utilized to design novel inhibitors. The structural comparison suggests that phosphate binds to the substrate binding site and brings the conformational change of the active loop to a closed state, which can secure the substate and cofactor to facilitate enzymatic activity.


Assuntos
Malato Desidrogenase , Malatos , Sítios de Ligação , Catálise , Cristalografia por Raios X , Glioxilatos , Humanos , Ligantes , Malato Desidrogenase/química , Malatos/química , NAD/metabolismo , Ácido Oxaloacético/química , Ácido Oxaloacético/metabolismo , Fosfatos
3.
Mini Rev Med Chem ; 20(10): 818-830, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31902356

RESUMO

Pyrrole is a very important pharmacophoric moiety. It has been widely incorporated into the skeleton of antitumor, anti-inflammatory, antibacterial, antioxidant and antifungal active substances. Access to this key heterocycle by diverse routes is particularly attractive in terms of chemistry, and also from the environmental point of view. The present minireview summarizes the reported methods for the preparation of highly substituted pyrrole derivatives based on the one-pot multicomponent reaction of aldehydes, primary amines, and oxalacetate analogues as well as their biology.


Assuntos
Aldeídos/química , Aldeídos/farmacologia , Aminas/química , Aminas/farmacologia , Ácido Oxaloacético/química , Ácido Oxaloacético/farmacologia , Pirróis/química , Descoberta de Drogas
4.
Protein Expr Purif ; 168: 105565, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31887428

RESUMO

The present study recombinantly expressed a citrate synthase from cyanobacteria Anabaena sp. PCC7120 (AnCS) in Escherichia coli and characterized its enzymatic activity. The molecular mass of native AnCS was 88,533.1 Da containing two 44,162.7 Da subunits. Recombinant AnCS revealed the highest activity at pH 9.0 and 25 °C. AnCS displayed high thermal stability with a half-life time (t1/2) of approximately 6.5 h at 60 °C, which was more thermostable than most CS from general organisms, but less than those from hyperthermophilic bacteria. The Km values of oxaloacetate and acetyl-CoA were 138.50 and 18.15 µM respectively, suggesting a higher affinity to acetyl-CoA than oxaloacetate. Our inhibition assays showed that AnCS activity was not severely affected by most metal ions, but was strongly inhibited by Cu2+ and Zn2+. Treatments with ATP, ADP, AMP, NADH, and DTT depressed the AnCS activity. Overall, our results provide information on the enzymatic properties of AnCS, which contributes to the basic knowledge on CS selection for industrial utilizations.


Assuntos
Acetilcoenzima A/química , Anabaena/química , Anabaena/enzimologia , Proteínas de Bactérias/metabolismo , Citrato (si)-Sintase/metabolismo , Ácido Oxaloacético/química , Subunidades Proteicas/metabolismo , Acetilcoenzima A/metabolismo , Difosfato de Adenosina/química , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/química , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Citrato (si)-Sintase/genética , Clonagem Molecular , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Concentração de Íons de Hidrogênio , Cinética , Peso Molecular , NAD/química , NAD/metabolismo , Ácido Oxaloacético/metabolismo , Estabilidade Proteica , Subunidades Proteicas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos
5.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 10): 610-616, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30279311

RESUMO

Three high-resolution X-ray crystal structures of malate dehydrogenase (MDH; EC 1.1.1.37) from the methylotroph Methylobacterium extorquens AM1 are presented. By comparing the structures of apo MDH, a binary complex of MDH and NAD+, and a ternary complex of MDH and oxaloacetate with ADP-ribose occupying the pyridine nucleotide-binding site, conformational changes associated with the formation of the catalytic complex were characterized. While the substrate-binding site is accessible in the enzyme resting state or NAD+-bound forms, the substrate-bound form exhibits a closed conformation. This conformational change involves the transition of an α-helix to a 310-helix, which causes the adjacent loop to close the active site following coenzyme and substrate binding. In the ternary complex, His284 forms a hydrogen bond to the C2 carbonyl of oxaloacetate, placing it in a position to donate a proton in the formation of (2S)-malate.


Assuntos
Adenosina Difosfato Ribose/química , Proteínas de Bactérias/química , Malato Desidrogenase/química , Malatos/química , Methylobacterium extorquens/química , NAD/química , Ácido Oxaloacético/química , Adenosina Difosfato Ribose/metabolismo , Sequência de Aminoácidos , Apoenzimas/química , Apoenzimas/genética , Apoenzimas/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Ligação de Hidrogênio , Cinética , Malato Desidrogenase/genética , Malato Desidrogenase/metabolismo , Malatos/metabolismo , Methylobacterium extorquens/enzimologia , Modelos Moleculares , NAD/metabolismo , Ácido Oxaloacético/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Prótons , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
6.
IUBMB Life ; 69(6): 373-381, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28470848

RESUMO

Iron-sulphur proteins are ancient and drive fundamental processes in cells, notably electron transfer and CO2 fixation. Iron-sulphur minerals with equivalent structures could have played a key role in the origin of life. However, the 'iron-sulphur world' hypothesis has had a mixed reception, with questions raised especially about the feasibility of a pyrites-pulled reverse Krebs cycle. Phylogenetics suggests that the earliest cells drove carbon and energy metabolism via the acetyl CoA pathway, which is also replete in Fe(Ni)S proteins. Deep differences between bacteria and archaea in this pathway obscure the ancestral state. These differences make sense if early cells depended on natural proton gradients in alkaline hydrothermal vents. If so, the acetyl CoA pathway diverged with the origins of active ion pumping, and ancestral CO2 fixation might have been equivalent to methanogens, which depend on a membrane-bound NiFe hydrogenase, energy converting hydrogenase. This uses the proton-motive force to reduce ferredoxin, thence CO2 . The mechanism suggests that pH could modulate reduction potential at the active site of the enzyme, facilitating the difficult reduction of CO2 by H2 . This mechanism could be generalised under abiotic conditions so that steep pH differences across semi-conducting Fe(Ni)S barriers drives not just the first steps of CO2 fixation to C1 and C2 organics such as CO, CH3 SH and CH3 COSH, but a series of similar carbonylation and hydrogenation reactions to form longer chain carboxylic acids such as pyruvate, oxaloacetate and α-ketoglutarate, as in the incomplete reverse Krebs cycle found in methanogens. We suggest that the closure of a complete reverse Krebs cycle, by regenerating acetyl CoA directly, displaced the acetyl CoA pathway from many modern groups. A later reliance on acetyl CoA and ATP eliminated the need for the proton-motive force to drive most steps of the reverse Krebs cycle. © 2017 IUBMB Life, 69(6):373-381, 2017.


Assuntos
Acetilcoenzima A/química , Ferredoxinas/química , Proteínas Ferro-Enxofre/química , Ferro/química , Origem da Vida , Acetilcoenzima A/metabolismo , Archaea/química , Archaea/metabolismo , Bactérias/química , Bactérias/metabolismo , Ciclo do Carbono , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Catálise , Ciclo do Ácido Cítrico , Ferredoxinas/metabolismo , Concentração de Íons de Hidrogênio , Fontes Hidrotermais , Ferro/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Ácido Oxaloacético/química , Ácido Oxaloacético/metabolismo , Prótons , Ácido Pirúvico/química , Ácido Pirúvico/metabolismo
7.
Biosens Bioelectron ; 86: 1038-1046, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27501341

RESUMO

Citrate synthase (CS) is one of the key metabolic enzymes in the Krebs tricarboxylic acid (TCA) cycle. It regulates energy generation in mitochondrial respiration by catalysing the reaction between oxaloacetic acid (OAA) and acetyl coenzyme A (Ac-CoA) to generate citrate and coenzyme A (CoA). CS has been shown to be a biomarker of neurological diseases and various kinds of cancers. Here, a label-free fluorescent assay has been developed for homogeneously detecting CS and its inhibitor based on the in situ generation of CoA-Au(I) co-ordination polymer (CP) and the fluorescence signal-on by SYBR Green II-stained CoA-Au(I) CP. Because of the unique property of the CoA-Au(I) CP, this CS activity assay method could achieve excellent selectivity and sensitivity, with a linear range from 0.0033 U/µL to 0.264 U/µL and a limit of detection to be 0.00165 U/µL. Meanwhile, this assay method has advantages of being facile and cost effective with quick detection. Moreover, based on this method, a biomimetic logic system was established by rationally exploiting the cascade enzymatic interactions in TCA cycle for chemical information processing. In the TCA cycle-derived logic system, an AND-AND-AND-cascaded gate was rigorously operated step by step in one pot, and is outputted by a label-free fluorescent signal with visualized readout.


Assuntos
Acetilcoenzima A/química , Citrato (si)-Sintase/análise , Complexos Multienzimáticos/análise , Complexos Multienzimáticos/química , Ácido Oxaloacético/química , Espectrometria de Fluorescência/métodos , Citrato (si)-Sintase/química , Ativação Enzimática , Corantes Fluorescentes/síntese química , Processamento de Sinais Assistido por Computador , Coloração e Rotulagem
8.
J Biol Chem ; 291(12): 6036-58, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26774271

RESUMO

The D or L form of 2-hydroxyglutarate (2HG) accumulates in certain rare neurometabolic disorders, and high D-2-hydroxyglutarate (D-2HG) levels are also found in several types of cancer. Although 2HG has been detected in Saccharomyces cerevisiae, its metabolism in yeast has remained largely unexplored. Here, we show that S. cerevisiae actively forms the D enantiomer of 2HG. Accordingly, the S. cerevisiae genome encodes two homologs of the human D-2HG dehydrogenase: Dld2, which, as its human homolog, is a mitochondrial protein, and the cytosolic protein Dld3. Intriguingly, we found that a dld3Δ knock-out strain accumulates millimolar levels of D-2HG, whereas a dld2Δ knock-out strain displayed only very moderate increases in D-2HG. Recombinant Dld2 and Dld3, both currently annotated as D-lactate dehydrogenases, efficiently oxidized D-2HG to α-ketoglutarate. Depletion of D-lactate levels in the dld3Δ, but not in the dld2Δ mutant, led to the discovery of a new type of enzymatic activity, carried by Dld3, to convert D-2HG to α-ketoglutarate, namely an FAD-dependent transhydrogenase activity using pyruvate as a hydrogen acceptor. We also provide evidence that Ser3 and Ser33, which are primarily known for oxidizing 3-phosphoglycerate in the main serine biosynthesis pathway, in addition reduce α-ketoglutarate to D-2HG using NADH and represent major intracellular sources of D-2HG in yeast. Based on our observations, we propose that D-2HG is mainly formed and degraded in the cytosol of S. cerevisiae cells in a process that couples D-2HG metabolism to the shuttling of reducing equivalents from cytosolic NADH to the mitochondrial respiratory chain via the D-lactate dehydrogenase Dld1.


Assuntos
Oxirredutases do Álcool/metabolismo , Glutaratos/metabolismo , L-Lactato Desidrogenase (Citocromo)/metabolismo , Ácido Láctico/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Oxirredutases do Álcool/química , Oxirredutases do Álcool/genética , Metabolismo dos Carboidratos , Expressão Gênica , Complexo Cetoglutarato Desidrogenase/metabolismo , Cinética , L-Lactato Desidrogenase (Citocromo)/química , L-Lactato Desidrogenase (Citocromo)/genética , Ácido Láctico/química , Ácido Oxaloacético/química , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Ácido Pirúvico/química , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Serina/metabolismo , Especificidade por Substrato
9.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 8): 1470-81, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23897470

RESUMO

The Nit (nitrilase-like) protein subfamily constitutes branch 10 of the nitrilase superfamily. Nit proteins are widely distributed in nature. Mammals possess two members of the Nit subfamily, namely Nit1 and Nit2. Based on sequence similarity, yeast Nit2 (yNit2) is a homologue of mouse Nit1, a tumour-suppressor protein whose substrate specificity is not yet known. Previous studies have shown that mammalian Nit2 (also a putative tumour suppressor) is identical to ω-amidase, an enzyme that catalyzes the hydrolysis of α-ketoglutaramate (α-KGM) and α-ketosuccinamate (α-KSM) to α-ketoglutarate (α-KG) and oxaloacetate (OA), respectively. In the present study, crystal structures of wild-type (WT) yNit2 and of WT yNit2 in complex with α-KG and with OA were determined. In addition, the crystal structure of the C169S mutant of yNit2 (yNit2-C169S) in complex with an endogenous molecule of unknown structure was also solved. Analysis of the structures revealed that α-KG and OA are covalently bound to Cys169 by the formation of a thioester bond between the sulfhydryl group of the cysteine residue and the γ-carboxyl group of α-KG or the ß-carboxyl group of OA, reflecting the presumed reaction intermediates. However, an enzymatic assay suggests that α-KGM is a relatively poor substrate of yNit2. Finally, a ligand was found in the active site of yNit2-C169S that may be a natural substrate of yNit2 or an endogenous regulator of enzyme activity. These crystallographic analyses provide information on the mode of substrate/ligand binding at the active site of yNit2 and insights into the catalytic mechanism. These findings suggest that yNit2 may have broad biological roles in yeast, especially in regard to nitrogen homeostasis, and provide a framework for the elucidation of the substrate specificity and biological role of mammalian Nit1.


Assuntos
Amidoidrolases/química , Amidoidrolases/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Animais , Domínio Catalítico , Cristalografia por Raios X , Cisteína/química , Ácidos Cetoglutáricos/química , Ácidos Cetoglutáricos/metabolismo , Mamíferos , Modelos Moleculares , Mutação , Ácido Oxaloacético/química , Ácido Oxaloacético/metabolismo , Conformação Proteica , Multimerização Proteica , Proteínas de Saccharomyces cerevisiae/genética , Especificidade por Substrato
10.
J Mol Biol ; 368(3): 639-51, 2007 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-17367808

RESUMO

The thiamine-dependent E1o component (EC 1.2.4.2) of the 2-oxoglutarate dehydrogenase complex catalyses a rate-limiting step of the tricarboxylic acid cycle (TCA) of aerobically respiring organisms. We describe the crystal structure of Escherichia coli E1o in its apo and holo forms at 2.6 A and 3.5 A resolution, respectively. The structures reveal the characteristic fold that binds thiamine diphosphate and resemble closely the alpha(2)beta(2) hetero-tetrameric E1 components of other 2-oxo acid dehydrogenase complexes, except that in E1o, the alpha and beta subunits are fused as a single polypeptide. The extended segment that links the alpha-like and beta-like domains forms a pocket occupied by AMP, which is recognised specifically. Also distinctive to E1o are N-terminal extensions to the core fold, and which may mediate interactions with other components of the 2-oxoglutarate dehydrogenase multienzyme complex. The active site pocket contains a group of three histidine residues and one serine that appear to confer substrate specificity and the capacity to accommodate the TCA metabolite oxaloacetate. Oxaloacetate inhibits E1o activity at physiological concentrations, and we suggest that the inhibition may allow coordinated activity within the TCA cycle. We discuss the implications for metabolic control in facultative anaerobes, and for energy homeostasis of the mammalian brain.


Assuntos
Proteínas de Escherichia coli/química , Complexo Cetoglutarato Desidrogenase/química , Modelos Moleculares , Monofosfato de Adenosina/química , Sítios de Ligação , Ciclo do Ácido Cítrico , Proteínas de Escherichia coli/genética , Complexo Cetoglutarato Desidrogenase/genética , Mutação , Ácido Oxaloacético/química , Dobramento de Proteína , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Tiamina Pirofosfato/química
11.
Chembiochem ; 5(9): 1196-1203, 2004 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-15368570

RESUMO

Fragments of polyketide synthase (PKS) genes were amplified from complementary DNA (cDNA) of the fusarin C producing filamentous fungi Fusarium moniliforme and Fusarium venenatum by using degenerate oligonucleotides designed to select for fungal PKS C-methyltransferase (CMeT) domains. The PCR products, which were highly homologous to fragments of known fungal PKS CMeT domains, were used to probe cDNA and genomic DNA (gDNA) libraries of F. moniliforme and F. venenatum. A 4.0 kb cDNA clone from F. venenatum was isolated and used to prepare a hygromycin-resistance knockout cassette, which was used to produce a fusarin-deficient strain of F. venenatum (kb = 1000 bp). Similarly, a 26 kb genomic fragment, isolated on two overlapping clones from F. moniliforme, encoded a complete iterative Type I PKS fused to an unusual nonribosomal peptide synthase module. Once again, targeted gene disruption produced a fusarin-deficient strain, thereby proving that this synthase is responsible for the first steps of fusarin biosynthesis.


Assuntos
Fusarium/metabolismo , Mutagênicos/metabolismo , Polienos/metabolismo , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Southern Blotting , Cromatografia Líquida , Ciclo do Ácido Cítrico/fisiologia , Primers do DNA , DNA Complementar/biossíntese , DNA Complementar/genética , Fusarium/crescimento & desenvolvimento , Biblioteca Gênica , Espectrometria de Massas , Ácido Oxaloacético/química , Ácido Oxaloacético/metabolismo , Plasmídeos , Polienos/química , Polietilenoglicóis/farmacologia , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , S-Adenosilmetionina/química , S-Adenosilmetionina/metabolismo , Transformação Genética/efeitos dos fármacos
12.
IUBMB Life ; 56(10): 575-83, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15814455

RESUMO

The enzyme transcarboxylase (TC) catalyzes an unusual reaction; TC transfers a carboxylate group from methylmalonyl-CoA to pyruvate to form oxaloacetate and propionyl-CoA. Remarkably, to perform this task in Propionii bacteria Nature has created a large assembly made up of 30 polypeptides that totals 1.2 million daltons. In this nanomachine the catalytic machinery is repeated 6-12 times over using ordered arrays of replicated subunits. The latter are sites of the half reactions. On the so-called 12S subunit a biotin cofactor accepts carboxylate, - CO2- , from methylmalonyl-CoA. The carboxylated-biotin then translocates to a second subunit, the 5S, to deliver the carboxylate to pyruvate. We have not yet characterized the intact nanomachine, however, using a battery of biophysical techniques, we have been able to derive novel,and sometimes unexpected, structural and mechanistic insights into the 12S and 5S subunits. Similar insights have been obtained for the small 1.3S subunit that acts as the biotin carrier linking the 12S and 5S forms. Interestingly, some of these insights gained for the 12S and 5S subunits carry over to related mammalian enzymes such as human propionyl-CoA carboxylase and human pyruvate carboxylase, respectively, to provide a rationale for their malfunction in disease-related mutations.


Assuntos
Biofísica/métodos , Carboxil e Carbamoil Transferases/fisiologia , Acil Coenzima A/química , Bactérias/enzimologia , Proteínas de Bactérias/química , Carboxil e Carbamoil Transferases/metabolismo , Catálise , Cristalografia por Raios X , Humanos , Espectroscopia de Ressonância Magnética , Metilmalonil-CoA Descarboxilase/química , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Mutação , Nanotecnologia , Ácido Oxaloacético/química , Peptídeos/química , Piruvato Carboxilase/química , Ácido Pirúvico/química , Análise Espectral Raman
13.
Chembiochem ; 4(4): 306-18, 2003 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-12672110

RESUMO

In our search for a catalyst for the transamination reaction of aspartic acid to form oxaloacetate, twenty-five forty-two-residue sequences were designed to fold into helix-loop-helix dimers and form binding sites for the key intermediate along the reaction pathway, the aldimine. This intermediate is formed from aspartic acid and the cofactor pyridoxal phosphate. The design of the binding sites followed a strategy in which exclusively noncovalent forces were used for binding the aldimine. Histidine residues were incorporated to catalyse the rate-limiting 1,3 proton transfer reaction that converts the aldimine into the ketimine, an intermediate that is subsequently hydrolysed to form oxaloacetate and pyridoxamine phosphate. The two most efficient catalysts, T-4 and T-16, selected from the pool of sequences by a simple screening procedure, were shown by CD and NMR spectroscopies to bind the aldimine intermediate with dissociation constants in the millimolar range. The mean residue ellipticity of T-4 in aqueous solution at pH 7.4 and a concentration of 0.75 mM was -18500 deg x cm(2) dmol(-1). Upon addition of 6 mm l-aspartic acid and 1.5 mM pyridoxal phosphate to form the aldimine, the mean residue ellipticity changed to -19900 deg x cm(2) dmol(-1). The corresponding mean residue ellipticities of T-16 were -21200 deg x cm(2) dmol(-1) and -24000 deg x cm(2) dmol(-1). These results show that the helical content increased in the presence of the aldimine, and that the folded polypeptides bound the aldimine. The (1)H NMR relaxation time of the imine CH proton of the aldimine was affected by the presence of T-4 as was the (31)P NMR resonance linewidth. The catalytic efficiencies of T-4 and T-16 were compared to that of imidazole and found to be more than three orders of magnitude larger. The designed binding sites were thus shown to be capable of binding the aldimine in close proximity to His residues, by noncovalent forces, into conformations that proved to be catalytically active. The results show for the first time the design of well-defined catalytic sites that bind a reaction intermediate with enzyme-like affinities under equilibrium conditions and represent an important advance in de novo catalyst design.


Assuntos
Ácido Aspártico/química , Sequências Hélice-Alça-Hélice , Iminas/química , Ácido Oxaloacético/química , Fosfato de Piridoxal/química , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Dicroísmo Circular , Enzimas , Cinética , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Peptídeos/síntese química , Peptídeos/química , Espectrofotometria Ultravioleta
14.
Chemistry ; 8(11): 2549-60, 2002 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-12180334

RESUMO

Fourteen 42-residue polypeptides have been designed to identify reactive sites for the catalysis of the decarboxylation of oxaloacetate, a chemical transformation that proceeds through the formation of an imine intermediate. The sequences fold into helix-loop-helix motifs and dimerize to four-helix bundles. The catalytically active lysine residues were incorporated in several surface exposed positions, but also in positions characterised by hydrophobic properties to reduce their pKa values. The molecular environments of the Lys residues were systematically varied, to find which residues were able to stabilise and bind the imine intermediate in the decarboxylation reaction. A two-residue Arg-Lys site formed the main component of the reactive site of the helix-loop-helix dimer Decarb-K34_R33, which obeyed saturation kinetics in catalysing the reaction with a kcat/KM of 0.59 M-1S-1. The rate constant measured was nearly three orders of magnitude larger than the second-order rate constant of the butylamine-catalysed reaction (0.0011 M-1S-1), and four orders of magnitude larger than the pseudo first-order rate constant of the uncatalyzed reaction (1.3 x 10(-5) s(-1)). The sequence of Decarb-K34_R33 contained only a single lysine residue. It was flanked by an arginine in the preceding position in the sequence. A flanking Arg residue provided more efficient catalysis than a flanking Lys or Gln residue. Arginines in flanking positions in the helix, in positions four residues before or after the Lys in the sequence, are not as important in catalysis as the Arg of the Arg-Lys pair. The effect of pKa on the catalytic efficiency of the Lys residue in the decarboxylation reaction is well known. The identification of the role of the flanking Arg residue in catalysing decarboxylation, its optimal position, and the importance of conformational stability reported here sets the stage for developing a number of catalytic systems that depend on the formation of imine intermediates, but that lead to different reaction products.


Assuntos
Enzimas/síntese química , Ácido Oxaloacético/metabolismo , Engenharia de Proteínas , Sequência de Aminoácidos , Arginina , Catálise , Domínio Catalítico , Descarboxilação , Enzimas/química , Enzimas/metabolismo , Iminas/metabolismo , Cinética , Lisina , Modelos Moleculares , Dados de Sequência Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Oligopeptídeos/metabolismo , Ácido Oxaloacético/química , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA