Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Gut Microbes ; 16(1): 2374608, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38972055

RESUMO

With the increasing of aging population and the consumption of high-fat diets (HFD), the incidence of Alzheimer's disease (AD) has skyrocketed. Natural antioxidants show promising potential in the prevention of AD, as oxidative stress and neuroinflammation are two hallmarks of AD pathogenesis. Here, we showed that quinic acid (QA), a polyphenol derived from millet, significantly decreased HFD-induced brain oxidative stress and neuroinflammation and the levels of Aß and p-Tau. Examination of gut microbiota suggested the improvement of the composition of gut microbiota in HFD mice after QA treatment. Metabolomic analysis showed significant increase of gut microbial tryptophan metabolites indole-3-acetic acid (IAA) and kynurenic acid (KYNA) by QA. In addition, IAA and KYNA showed negative correlation with pro-inflammatory factors and AD indicators. Further experiments on HFD mice proved that IAA and KYNA could reproduce the effects of QA that suppress brain oxidative stress and inflammation and decrease the levels of of Aß and p-Tau. Transcriptomics analysis of brain after IAA administration revealed the inhibition of DR3/IKK/NF-κB signaling pathway by IAA. In conclusion, this study demonstrated that QA could counteract HFD-induced brain oxidative stress and neuroinflammation by regulating inflammatory DR3/IKK/NF-κB signaling pathway via gut microbial tryptophan metabolites.


Assuntos
Encéfalo , Dieta Hiperlipídica , Microbioma Gastrointestinal , Camundongos Endogâmicos C57BL , NF-kappa B , Estresse Oxidativo , Ácido Quínico , Transdução de Sinais , Triptofano , Animais , Microbioma Gastrointestinal/efeitos dos fármacos , Triptofano/metabolismo , Dieta Hiperlipídica/efeitos adversos , Camundongos , NF-kappa B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Masculino , Estresse Oxidativo/efeitos dos fármacos , Ácido Quínico/análogos & derivados , Ácido Quínico/farmacologia , Ácido Quínico/metabolismo , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/prevenção & controle , Quinase I-kappa B/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/prevenção & controle , Ácidos Indolacéticos/metabolismo , Ácido Cinurênico/metabolismo , Inflamação/metabolismo , Inflamação/tratamento farmacológico , Inflamação/prevenção & controle
2.
Plant Physiol ; 192(4): 2902-2922, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37226859

RESUMO

Amur honeysuckle (Lonicera maackii) is a widely used medicinal plant of the Caprifoliaceae family that produces chlorogenic acid. Research on this plant mainly focuses on its ornamental value and medicinal compounds, but a reference genome sequence and molecular resources for accelerated breeding are currently lacking. Herein, nanopore sequencing and high-throughput chromosome conformation capture (Hi-C) allowed a chromosome-level genome assembly of L. maackii (2n = 18). A global view of the gene regulatory network involved in the biosynthesis of chlorogenic acid and the dynamics of fruit coloration in L. maackii was established through metabolite profiling and transcriptome analyses. Moreover, we identified the genes encoding hydroxycinnamoyl-CoA quinate transferase (LmHQT) and hydroxycinnamoyl-CoA shikimic/quinate transferase (LmHCT), which localized to the cytosol and nucleus. Heterologous overexpression of these genes in Nicotiana benthamiana leaves resulted in elevated chlorogenic acid contents. Importantly, HPLC analyses revealed that LmHCT and LmHQTs recombinant proteins modulate the accumulation of chlorogenic acid (CGA) using quinic acid and caffeoyl CoA as substrates, highlighting the importance of LmHQT and LmHCT in CGA biosynthesis. These results confirmed that LmHQTs and LmHCT catalyze the biosynthesis of CGA in vitro. The genomic data presented in this study will offer a valuable resource for the elucidation of CGA biosynthesis and facilitating selective molecular breeding.


Assuntos
Ácido Clorogênico , Lonicera , Ácido Clorogênico/metabolismo , Lonicera/genética , Lonicera/metabolismo , Ácido Quínico/metabolismo , Melhoramento Vegetal , Mapeamento Cromossômico
3.
Int J Mol Sci ; 23(18)2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36142128

RESUMO

Actinidia eriantha is a unique germplasm resource for kiwifruit breeding. Genetic diversity and nutrient content need to be evaluated prior to breeding. In this study, we looked at the metabolites of three elite A. eriantha varieties (MM-11, MM-13 and MM-16) selected from natural individuals by using a UPLC-MS/MS-based metabolomics approach and transcriptome, with a total of 417 metabolites identified. The biosynthesis and metabolism of phenolic acid, flavonoids, sugars, organic acid and AsA in A. eriantha fruit were further analyzed. The phenolic compounds accounted for 32.37% of the total metabolites, including 48 phenolic acids, 60 flavonoids, 7 tannins and 20 lignans and coumarins. Correlation analysis of metabolites and transcripts showed PAL (DTZ79_15g06470), 4CL (DTZ79_26g05660 and DTZ79_29g0271), CAD (DTZ79_06g11810), COMT (DTZ79_14g02670) and FLS (DTZ79_23g14660) correlated with polyphenols. There are twenty-three metabolites belonging to sugars, the majority being sucrose, glucose arabinose and melibiose. The starch biosynthesis-related genes (AeglgC, AeglgA and AeGEB1) were expressed at lower levels compared with metabolism-related genes (AeamyA and AeamyB) in three mature fruits of three varieties, indicating that starch was converted to soluble sugar during fruit maturation, and the expression level of SUS (DTZ79_23g00730) and TPS (DTZ79_18g05470) was correlated with trehalose 6-phosphate. The main organic acids in A. eriantha fruit are citric acid, quinic acid, succinic acid and D-xylonic acid. Correlation analysis of metabolites and transcripts showed ACO (DTZ79_17g07470) was highly correlated with citric acid, CS (DTZ79_17g00890) with oxaloacetic acid, and MDH1 (DTZ79_23g14440) with malic acid. Based on the gene expression, the metabolism of AsA acid was primarily through the L-galactose pathway, and the expression level of GMP (DTZ79_24g08440) and MDHAR (DTZ79_27g01630) highly correlated with L-Ascorbic acid. Our study provides additional evidence for the correlation between the genes and metabolites involved in phenolic acid, flavonoids, sugars, organic acid and AsA synthesis and will help to accelerate the kiwifruit molecular breeding approaches.


Assuntos
Actinidia , Lignanas , Actinidia/genética , Actinidia/metabolismo , Arabinose , Ácido Ascórbico/metabolismo , Cromatografia Líquida , Ácido Cítrico/metabolismo , Cumarínicos/metabolismo , Frutas/genética , Frutas/metabolismo , Galactose/metabolismo , Glucose/metabolismo , Humanos , Hidroxibenzoatos , Lignanas/metabolismo , Melibiose/metabolismo , Metabolômica , Oxaloacetatos/metabolismo , Fosfatos/metabolismo , Melhoramento Vegetal , Polifenóis/metabolismo , Ácido Quínico/metabolismo , Amido/metabolismo , Succinatos/metabolismo , Sacarose/metabolismo , Espectrometria de Massas em Tandem , Taninos/metabolismo , Transcriptoma , Trealose/metabolismo
4.
Chembiochem ; 23(3): e202100539, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34850523

RESUMO

The discovery of a bioactive inhibitor tool for human polypeptide N-acetylgalactosaminyl transferases (GalNAc-Ts), the initiating enzyme for mucin-type O-glycosylation, remains challenging. In the present study, we identified an array of quinic acid derivatives, including four new glycerates (1-4) from Tussilago farfara, a traditional Chinese medicinal plant, as active inhibitors of GalNAc-T2 using a combined screening approach with a cell-based T2-specific sensor and purified enzyme assay. These inhibitors dose-dependently inhibited human GalNAc-T2 but did not affect O-linked N-acetylglucosamine transferase (OGT), the other type of glycosyltransferase. Importantly, they are not cytotoxic and retain inhibitory activity in cells lacking elongated O-glycans, which are eliminated by the CRISPR/Cas9 gene editing tool. A structure-activity relationship study unveiled a novel quinic acid-caffeic acid conjugate pharmacophore that directs inhibition. Overall, these new natural product inhibitors could serve as a basis for developing an inhibitor tool for GalNAc-T2.


Assuntos
Inibidores Enzimáticos/farmacologia , N-Acetilgalactosaminiltransferases/antagonistas & inibidores , Ácido Quínico/farmacologia , Tussilago/química , Células Cultivadas , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Flores/química , Flores/metabolismo , Glicosilação , Células HEK293 , Humanos , Conformação Molecular , N-Acetilgalactosaminiltransferases/isolamento & purificação , N-Acetilgalactosaminiltransferases/metabolismo , Ácido Quínico/química , Ácido Quínico/metabolismo , Relação Estrutura-Atividade , Tussilago/metabolismo , Polipeptídeo N-Acetilgalactosaminiltransferase
5.
Food Funct ; 12(22): 11387-11398, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34672304

RESUMO

Cancer is a major threat to human health worldwide, yet the clinical therapies remain unsatisfactory. In this study, we found that a Tetrastigma hemsleyanum leaves flavone (TLF) intervention could achieve tumor inhibition. Besides, neochlorogenic acid (NA), which had the highest absorbance peak in the HPLC profile of TLF, showed superior anti-proliferation ability over TLF, and could effectively trigger apoptosis, restrain migration, and facilitate cytoskeleton collapse, suggesting its key role in TLF's anticancer property. Molecular docking analysis suggested that NA was capable of binding with mitochondrial Ca2+ uniporter (MCU), and further experiments confirmed that NA upregulated the MCU level to permit excess calcium ion influx, leading to mitochondrial calcium imbalance, dysfunction, structure alteration, and ROS elevation. Moreover, tumor-bearing mice were applied to further confirm the excellent tumor inhibition ability of NA under Ca2+-abundant conditions. Therefore, this study uncovered that NA could effectively trigger robust MCU-mediated calcium overload cancer therapy, which could be utilized in novel strategies for future cancer treatment.


Assuntos
Antineoplásicos , Canais de Cálcio , Cálcio , Ácido Clorogênico/análogos & derivados , Ácido Quínico/análogos & derivados , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Cálcio/química , Cálcio/metabolismo , Canais de Cálcio/química , Canais de Cálcio/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Ácido Clorogênico/química , Ácido Clorogênico/metabolismo , Flavonas/metabolismo , Células Hep G2 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Neoplasias Experimentais , Folhas de Planta/química , Ácido Quínico/química , Ácido Quínico/metabolismo , Vitaceae/química
6.
Food Funct ; 12(18): 8583-8593, 2021 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-34338272

RESUMO

Caffeoylquinic acids, as plant-derived polyphenols, exhibit multiple biological activities such as antioxidant, anti-inflammatory, and neuroprotective activities. However, only limited information about their effect on longevity is available. In the current study, molecular docking was employed to explore the interactions between six representative caffeoylquinic acids and the insulin-like growth factor-1 receptor (IGFR), which is an important target protein for longevity. The results indicated that all six compounds were embedded well in the active pocket of IGFR, and that 3,5-diCQA exhibited the strongest affinity to IGFR. Moreover, ASP1153, GLU1080, ASP1086, and ARG1003 were the key amino acid residues during the interaction of these 6 compounds with IGFR. Furthermore, the lifespan extension effect of caffeoylquinic acids was evaluated in a Caenorhabditis elegans (C. elegans) model. The results revealed that all the caffeoylquinic acids significantly extended the lifespan of wild-type worms, of which 3,5-diCQA was the most potent compound. Meanwhile, 3,5-diCQA enhanced the healthspan by increasing the body bending and pharyngeal pumping rates and reducing the intestinal lipofuscin level. Further studies demonstrated that 3,5-diCQA induced longevity effects by downregulating the insulin/insulin-like growth factor signaling (IIS) pathway. This study suggested that the combination of molecular docking and genetic analysis of specific worm mutants could be a promising strategy to reveal the anti-aging mechanisms of small molecule natural compounds.


Assuntos
Caenorhabditis elegans/efeitos dos fármacos , Ácido Clorogênico/farmacologia , Cinamatos/farmacologia , Longevidade/efeitos dos fármacos , Ácido Quínico/análogos & derivados , Envelhecimento/efeitos dos fármacos , Animais , Sítios de Ligação , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/química , Ácido Clorogênico/metabolismo , Cinamatos/química , Cinamatos/metabolismo , Regulação da Expressão Gênica , Insulina/metabolismo , Simulação de Acoplamento Molecular , Ácido Quínico/química , Ácido Quínico/metabolismo , Ácido Quínico/farmacologia , Receptor IGF Tipo 1/química , Receptor IGF Tipo 1/metabolismo , Receptor de Insulina/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Estresse Fisiológico/genética
7.
Food Chem ; 356: 129709, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823400

RESUMO

Biochemical characterization of polyphenol oxidase (PPO) present in purple sweet potato (PSP) is a key step in developing efficient methodologies to control oxidative damage caused by this enzyme to the valuable components of PSP, such as caffeoylquinic acid derivatives and acylated anthocyanins. Thus, this work focused on the assessment of the effects of pH, temperature, and chemical agents on the PPO activity as well as characterization of the PPO substrate specificity towards major phenolic compounds found in PSP. The optimum conditions of enzyme activity were pH 7 and a temperature range of 20-30 °C at which phenolic substrates were oxidized with 72.5-99.8% yield. Zn2+ ions remarkably reduced PPO activity while Cu2+ ions improved enzyme performance. The highest substrate preference was shown for 3,4,5-tri-caffeoylquinic and 3,5-di-caffeoylquinic acid, followed by 5-caffeoylquinic and caffeic acid, 3,4- and 4,5-di-caffeoylquinic acids, peonidin-3-caffeoyl-p-hydroxybenzoyl-sophoroside-5-glucoside. The highest Km values were found for 4,5-feruloyl-caffeoylquinic acid and catechol.


Assuntos
Antocianinas/química , Antocianinas/metabolismo , Catecol Oxidase/metabolismo , Ipomoea batatas/enzimologia , Ácido Quínico/análogos & derivados , Acilação , Ligação Proteica , Ácido Quínico/química , Ácido Quínico/metabolismo
8.
Food Funct ; 12(1): 417-425, 2021 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-33336676

RESUMO

SCOPE: Chlorogenic acid (5-caffeoylquinic acid), the most prominent polyphenolic compound in coffee, has been attributed multiple health-promoting effects such as anti-inflammatory, antidiabetic and antioxidative effects. These effects are dependent on the bioavailability of chlorogenic acid, which is determined by the pharmacokinetic properties: absorption, distribution, metabolism and excretion (ADME). In order to have a better understanding of the biological properties of chlorogenic acid and to optimize formulation and dosing of chlorogenic acid-containing food supplements, information on the absorption of chlorogenic acid and its microbial biotransformation products is of essence. METHODS AND RESULTS: In the present work, the intestinal absorption of chlorogenic acid and quinic acid, one of its most prominent intestinal biotransformation products, was studied by an in vitro permeability assay using a human Caco-2 cell line model. For both chlorogenic acid and quinic acid, the involvement of an active efflux mechanism was demonstrated, suggesting an overall low intestinal absorption. CONCLUSIONS: An overall low intestinal absorption for chlorogenic acid and quinic acid was reported given the involvement of an active efflux mechanism. These findings could aid in the development of optimal formulation and dosing strategies of chlorogenic acid in food supplements in order to obtain beneficial health effects.


Assuntos
Ácido Clorogênico/metabolismo , Absorção Intestinal/fisiologia , Ácido Quínico/metabolismo , Células CACO-2 , Humanos , Técnicas In Vitro
9.
Food Chem ; 343: 128496, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33203598

RESUMO

Throughout the apple juice and cider making process, polyphenols undergo enzymatic oxidation which generates a great variety of polyphenol oxidation products. Since 5'-O-Caffeoylquinic acid (CQA) is one of the major phenolic compounds and the preferential substrate for polyphenoloxidase in apple juice, its oxidation leads to the formation of newly formed molecules by which dehydrodimers (MW 706 Da) are included. Interactions of salivary proteins (SP) with native polyphenols is a well-known phenomenon, but their interactions with polyphenol oxidation products has not been studied yet. In this work, we decided to decipher the interactions between CQA dehydrodimers and SP (gPRPs, aPRPs, statherins/P-B peptide, and cystatins) using HPLC-UV and fluorescence. These results showed that contrary to what was expected, CQA dehydrodimers presented a low interaction with PRPs, but revealed a specific interaction with statherins/P-B peptide and cystatins. This work settles for the first time the interactions between SP and polyphenol oxidation products.


Assuntos
Cistatinas/metabolismo , Dimerização , Polifenóis/metabolismo , Ácido Quínico/análogos & derivados , Proteínas e Peptídeos Salivares/metabolismo , Catecol Oxidase/metabolismo , Sucos de Frutas e Vegetais/análise , Malus/química , Oxirredução , Ligação Proteica , Ácido Quínico/química , Ácido Quínico/metabolismo , Especificidade por Substrato
10.
Molecules ; 25(23)2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33287420

RESUMO

Phytochemical investigations of Matricaria chamomilla L. (Asteraceae) stated the presence of several compounds with an established therapeutic and antioxidant potential. The chamomile non-enzymatic antioxidant system includes low molecular mass compounds, mainly polyphenols such as cinnamic, hydroxybenzoic and chlorogenic acids, flavonoids and coumarins. The objective of this work was to evaluate the role of the non-enzymatic antioxidant system after stimulation by ethylene in tetraploid chamomile plants. Seven days of ethylene treatment significantly increased the activity of phenylalanine ammonia-lyase, which influenced the biosynthesis of protective polyphenols in the first step of their biosynthetic pathway. Subsequently, considerable enhanced levels of phenolic metabolites with a substantial antioxidant effect (syringic, vanillic and caffeic acid, 1,5-dicaffeoylquinic acid, quercetin, luteolin, daphnin, and herniarin) were determined by HPLC-DAD-MS. The minimal information on the chlorogenic acids function in chamomile led to the isolation and identification of 5-O-feruloylquinic acid. It is accumulated during normal conditions, but after the excessive effect of abiotic stress, its level significantly decreases and levels of other caffeoylquinic acids enhance. Our results suggest that ethephon may act as a stimulant of the production of pharmaceutically important non-enzymatic antioxidants in chamomile leaves and thus, lead to an overall change in phytochemical content and therapeutic effects of chamomile plants, as well.


Assuntos
Antioxidantes/metabolismo , Camomila/metabolismo , Etilenos/metabolismo , Matricaria/metabolismo , Vias Biossintéticas/fisiologia , Ácidos Cafeicos/metabolismo , Ácido Clorogênico/metabolismo , Fenóis/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Extratos Vegetais/metabolismo , Folhas de Planta/metabolismo , Polifenóis/metabolismo , Ácido Quínico/análogos & derivados , Ácido Quínico/metabolismo , Estresse Fisiológico/fisiologia
11.
Commun Biol ; 3(1): 673, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188250

RESUMO

The synthesis of 3,5-dicaffeoylquinic acid (3,5-DiCQA) has attracted the interest of many researchers for more than 30 years. Recently, enzymes belonging to the BAHD acyltransferase family were shown to mediate its synthesis, albeit with notably low efficiency. In this study, a new enzyme belonging to the GDSL lipase-like family was identified and proven to be able to transform chlorogenic acid (5-O-caffeoylquinic acid, 5-CQA, CGA) in 3,5-DiCQA with a conversion rate of more than 60%. The enzyme has been produced in different expression systems but has only been shown to be active when transiently synthesized in Nicotiana benthamiana or stably expressed in Pichia pastoris. The synthesis of the molecule could be performed in vitro but also by a bioconversion approach beginning from pure 5-CQA or from green coffee bean extract, thereby paving the road for producing it on an industrial scale.


Assuntos
Ipomoea batatas , Lipase/metabolismo , Proteínas de Plantas/metabolismo , Ácido Quínico/análogos & derivados , Proteínas Recombinantes/metabolismo , Ipomoea batatas/enzimologia , Ipomoea batatas/genética , Lipase/química , Lipase/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Ácido Quínico/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
12.
Rheumatology (Oxford) ; 58(12): 2153-2161, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31143951

RESUMO

OBJECTIVES: Biologic treatment has recently revolutionized the management of RA. Despite this success, ∼30-40% of the patients undergoing biologic treatment respond insufficiently. The aim of this study was to identify several specific reliable metabolites for predicting the response of RA patients to TNF-α inhibitors (TNFi) and abatacept (ABT), using capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS). METHODS: We collected serum from RA patients with moderate or high disease activity prior to biologic treatment, and obtained the serum metabolomic profiles of these samples using CE-TOFMS. The patients' response was determined 12 weeks after starting biologic treatment, according to the EULAR response criteria. We compared the metabolites between the response and non-response patient groups and analysed their discriminative ability. RESULTS: Among 43 total patients, 14 of 26 patients in the TNFi group and 6 of 17 patients in the ABT group responded to the biologic treatment. Of the metabolites separated by CE-TOFMS, 196 were identified as known substances. Using an orthogonal partial least-squares discriminant analysis, we identified five metabolites as potential predictors of TNFi responders and three as predictors of ABT responders. Receiver operating characteristic analyses for multiple biomarkers revealed an area under the curve (AUC) of 0.941, with a sensitivity of 85.7% and specificity of 100% for TNFi, and an AUC of 0.985, with a sensitivity of 100% and specificity of 90.9% for ABT. CONCLUSION: By metabolomic analysis, we identified serum biomarkers that have a high ability to predict the response of RA patients to TNFi or ABT treatment.


Assuntos
Abatacepte/uso terapêutico , Antirreumáticos/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Metabolômica , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Alanina/análogos & derivados , Alanina/metabolismo , Aminobutiratos/metabolismo , Área Sob a Curva , Artrite Reumatoide/metabolismo , Biomarcadores/metabolismo , Caproatos/metabolismo , Ácido Cítrico/metabolismo , Eletroforese Capilar , Feminino , Glicerofosfatos/metabolismo , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Prognóstico , Ácido Quínico/metabolismo , Taurina/metabolismo
13.
Phytochemistry ; 162: 148-156, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30897352

RESUMO

Chlorogenic acids (CGA; including 5-caffeoylquinic acid and its regio-isomers) in Taraxacum antungense Kitag. have antioxidant and anti-inflammatory properties and exert other pharmacological effects. T. antungense hydroxycinnamoyl-CoA quinate hydroxycinnamoyl transferase (TaHQT)1 and TaHQT2, which belong to the BAHD acyltransferase family, are candidates for synthesizing 5-caffeoylquinic acid and that have not been extensively characterized. In this study, we cloned the TaHQT1 and TaHQT2 genes and analysed the properties of the expressed enzymes both in vitro and in vivo. Quantitative reverse transcription PCR analysis revealed that TaHQT1 was highly expressed in the root, whereas the strongest TaHQT2 expression was observed in T. antungense leaves. In Nicotiana benthamiana leaf cells, TaHQT1 and TaHQT2 were localized at the cell periphery as well as in the cytoplasm and nucleus. The 5-caffeoylquinic acid concentrations in T. antungense calli were reduced by TaHQT1 and TaHQT2 knockdown relative to the control. Conversely, inoculation of T. antungense plants tissues with recombinant TaHQT1 and TaHQT2 increased 5-caffeoylquinic acid levels in situ. These in vitro and in vivo findings demonstrate that both HQTs are involved in regulating 5-caffeoylquinic acid biosynthesis in T. antungense, which can be exploited to increase 5-caffeoylquinic acid production in plants for medicinal or other beneficial purposes.


Assuntos
Aciltransferases/genética , Aciltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Ácido Quínico/análogos & derivados , Taraxacum/genética , Taraxacum/metabolismo , Aciltransferases/química , Sequência de Aminoácidos , Espaço Intracelular/metabolismo , Cinética , Folhas de Planta/metabolismo , Transporte Proteico , Ácido Quínico/metabolismo , Taraxacum/citologia , Taraxacum/enzimologia
14.
Plant Physiol Biochem ; 136: 222-229, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30703634

RESUMO

The present study aimed to investigate the reciprocal effects of Phoradendron perrottetii (mistletoe) and T. guianensis (host plant) regarding their polyphenol composition. Taking into account that tannins are important molecules in plant defense and their biosynthesis tends to be enhanced when a species is exposed to stress, we address the following questions: (1) Are the tannins found in our model species important in the interaction between host and mistletoe? (2) Does the presence of mistletoe induce changes in the content of tannins and other polyphenols in the host plant? (3) Do we find differences between the tannin sub-groups in the responses of the host plant to mistletoe? (4) Could the observed differences reflect the relative importance of one tannin group over another as chemical defense against the mistletoe? Using a polyphenol and tannin group-specific MRM methods we quantified four different tannin sub-groups together with flavonoid and quinic acid derivatives by ultra-performance liquid chromatography tandem mass spectrometry together with the oxidative and protein precipitation activities of leaves and branches of Tapirira guianensis and Phoradendron perrottetii. We selected leaves and branches of six non-parasitized trees of T. guianensis. Leaves and branches of nine individuals of T. guianensis parasitized by P. perrottetii were also sampled. For each parasitized tree, we sampled an infested branch and its leaves, as well as a non-infested branch and its leaves. Infested branches were divided into three groups: gall (the host-parasite interface), proximal, and distal region. Both proanthocyanidins and ellagitanins seem to be important for plant-plant parasitism interaction: host infested tissues (gall and surrounding regions) have clearly less tannin contents than healthy tissues. Mistletoe showed high levels of quinic acid derivatives and flavonoids that could be important during hastorium formation and intrusion on host tissues, suggesting a defense mechanism that could promote oxidative stress together with an inhibition of mistletoe seed germination, consequently avoiding secondary infestations. Polyphenol detected in T. guianensis-P. perrottetii interaction could play different role as plant-mistletoe strategies of survival.


Assuntos
Anacardiaceae/parasitologia , Interações Hospedeiro-Parasita , Phoradendron/metabolismo , Polifenóis/metabolismo , Anacardiaceae/metabolismo , Flavonoides/metabolismo , Interações Hospedeiro-Parasita/fisiologia , Taninos Hidrolisáveis/metabolismo , Proantocianidinas/metabolismo , Ácido Quínico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Taninos/metabolismo
15.
Mol Biotechnol ; 60(1): 74-82, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29196986

RESUMO

This study examines the production of five phenolic acids (chlorogenic acid, neochlorogenic acid, ferulic acid, caffeic acid and p-coumaric acid) following over-expression of AtPAP1 transcription factor by four transgenic root clones of Leonurus sibiricus after Agrobacterium rhizogenes transformation. The AtPAP1 expression level was estimated by quantitative real-time PCR. High levels of phenolic acids were found in the transgenic roots of L. sibiricus and were determined by high-performance liquid chromatography-mass spectrometry analysis. Additionally, transgenic roots showed antimicrobial potential and cytotoxic activity on glioma cells in IV grade. Our results suggest that L. sibiricus transformed roots with AtPAP1 gene over-expression may represent a potential source of phenolic acids.


Assuntos
Anti-Infecciosos/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Proteínas de Arabidopsis/genética , Leonurus/genética , Leonurus/metabolismo , Fatores de Transcrição/genética , Agrobacterium/genética , Proteínas de Arabidopsis/metabolismo , Ácidos Cafeicos/metabolismo , Linhagem Celular Tumoral , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/metabolismo , Ácidos Cumáricos/metabolismo , Regulação da Expressão Gênica de Plantas , Glioma/tratamento farmacológico , Humanos , Engenharia Metabólica/métodos , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Propionatos/metabolismo , Ácido Quínico/análogos & derivados , Ácido Quínico/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Fatores de Transcrição/metabolismo
16.
Food Res Int ; 99(Pt 1): 385-392, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28784496

RESUMO

The commercial importance of plant tissue culture has grown in recent years, reflecting its application to vegetative propagation, disease elimination, plant improvement and the production of polyphenols. The level of polyphenols present in plant tissue is influenced by crop genotype, the growing environment, the crop management regime and the post-harvest processing practice. Globe artichoke is a significant component of the Mediterranean Basin agricultural economy, and is rich in polyphenols (phenolic acids and flavones). Most commercially grown plants are derived via vegetative propagation, with its attendant risk of pathogen build-up. Here, a comparison was drawn between the polyphenol profiles of conventionally propagated and micropropagated/mycorrhized globe artichoke plants. Micropropagation/mycorrhization appeared to deliver a higher content of caffeoylquinic acids. The accumulation of these compounds, along with luteolin and its derivatives, was not season-dependent. Luteolin aglycone was accumulated preferentially in the conventionally propagated plants. Overall, it appeared that micropropagation/mycorrhization enhanced the accumulation of polyphenols.


Assuntos
Antioxidantes/metabolismo , Produtos Agrícolas/metabolismo , Técnicas de Cultura , Cynara scolymus/metabolismo , Flores/metabolismo , Micorrizas/metabolismo , Polifenóis/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Cynara scolymus/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Micorrizas/crescimento & desenvolvimento , Ácido Quínico/análogos & derivados , Ácido Quínico/metabolismo , Estações do Ano , Fatores de Tempo , Regulação para Cima
17.
Artigo em Inglês | MEDLINE | ID: mdl-28342427

RESUMO

Transferrin (Tf) is an important protein responsible for circulating and transporting iron into cytoplasm. Tf can be taken into cells through endocytosis mediated by Tf receptor, which usually overexpresses in cancer cells. The Tf-Tf receptor pathway opens a possible avenue for novel targeted cancer therapy by utilizing Tf-binding active compounds. Among which, anti-cancer active caffeoylquinic acids (CQAs) were recently found to be promising Tf-binders by our group. For better understanding the anti-cancer activities of CQAs, it is important to unveil the binding mechanisms between CQAs and Tf. In this study, the fluorescence quenching, surface plasmon resonance (SPR), circular dichroism (CD) and molecular docking were used to investigate the interactions between CQA and Tf. The results showed that the calculated apparent association constants of interactions between 1-, 3-, 4- and 5-CQA and Tf at 298K were 7.97×105M-1, 4.36×107M-1, 6.58×105M-1 and 4.42×106M-1, respectively. The thermodynamic parameters indicated that the interaction between 1-, 3-, 5-CQA and Tf is due to H-bonding, and electrostatic interactions were likely involved in the binding of 4-CQA and Tf. The CD results indicated that bindings of 1-CQA, 4-CQA and 5-CQA with Tf resulted in more stretched ß-turn and random coil translated from ß-sheet. In contrast, 3-CQA led to more stable a-helix conformation. Molecular docking studies of CQAs with Tf further displayed that CQAs were able to interact with residues near Fe3+ binding site. The spectroscopic studies revealed the action mechanisms, thermodynamics and interacting forces between CQAs and Tf, and thus are helpful for future design and discovery of Tf-binders for targeted cancer therapy applying Tf-Tf receptor pathway.


Assuntos
Ácido Quínico/análogos & derivados , Transferrina/química , Transferrina/metabolismo , Dicroísmo Circular , Humanos , Modelos Lineares , Simulação de Acoplamento Molecular , Ácido Quínico/química , Ácido Quínico/metabolismo , Espectrometria de Fluorescência , Ressonância de Plasmônio de Superfície , Termodinâmica
18.
Am J Clin Dermatol ; 17(2): 113-23, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26547919

RESUMO

BACKGROUND: Laboratory and animals studies have suggested a possible protective effect of coffee consumption on the development of melanoma. However, the results of epidemiological studies investigating this association have been inconclusive. OBJECTIVE: A systematic review and meta-analysis of published studies was conducted to evaluate any association between coffee consumption and melanoma. METHODS: Observational studies were searched for in MEDLINE, EMBASE, and the Cochrane Central Register from inception to September 1, 2015. The Meta-analysis Of Observational Studies in Epidemiology (MOOSE) guidelines were followed in conducting this study. RESULTS: We identified nine observational studies with a total of 927,173 study participants, of which 3787 had melanoma. With random-effects modeling, the pooled relative risks (RR) for melanoma among regular coffee drinkers was 0.75 (95 % confidence interval [CI] 0.63-0.89, p = 0.001) compared with controls. Visual inspection of a funnel plot suggested publication bias, although Egger's test (p = 0.981) delineated no small-study effects. The pooled relative risks for melanoma among decaffeinated coffee drinkers was, however, not statistically significant at 0.92 (95 % CI 0.82-1.05, p = 0.215). CONCLUSION: There is some evidence for the beneficial effects of regular coffee consumption on melanoma. More prospective cohort studies with systematic quantification of coffee consumption would be necessary to further elucidate this association.


Assuntos
Cafeína/metabolismo , Café/química , Melanoma/epidemiologia , Melanoma/prevenção & controle , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/prevenção & controle , Quimioprevenção , Ácido Clorogênico/análogos & derivados , Ácido Clorogênico/metabolismo , Diterpenos/metabolismo , Humanos , Masculino , Estudos Observacionais como Assunto , Viés de Publicação , Ácido Quínico/análogos & derivados , Ácido Quínico/metabolismo , Fatores de Risco , Pele/efeitos da radiação , Raios Ultravioleta/efeitos adversos
19.
J Agric Food Chem ; 63(50): 10791-802, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26586022

RESUMO

Chicory has a major geographical presence in Europe and Asia. Cichorium glandulosum Boiss. et Huet, a genus Cichorium, is used for medicinal and food purposes in Asia. In this study, a dicaffeoylquinic acid-enriched fraction of C. glandulosum seeds n-BuOH fraction (CGSB) could ameliorate type 1 diabetes mellitus (T1DM) in streptozotocin (STZ)-induced diabetic mice with continuous administration for 2 weeks. CGSB treatment showed significantly higher plasma insulin levels but lower free fatty acids in adipose tissue and liver. Moreover, CGSB improved pancreatic islet mass. In vitro, different fractions of C. glandulosum seed (CGS) induced the differentiation of 3T3-L1 preadipocytes. The mRNA level for peroxisome proliferator-activated receptor alpha increased in high glucose treatment group in HepG2 cells, while CGSB significantly down-regulated the mRNA expression. The main compound of CGSB, 3,5-dicaffeoylquinic acid, was isolated and identified, which exhibited α-glucosidase inhibitory activity. These findings demonstrated that CGSB attenuated experimental T1DM via multipathway protection.


Assuntos
Cichorium intybus/química , Diabetes Mellitus Experimental/prevenção & controle , Diabetes Mellitus Tipo 1/prevenção & controle , Extratos Vegetais/administração & dosagem , Ácido Quínico/análogos & derivados , Sementes/química , Células 3T3-L1 , Tecido Adiposo/química , Animais , Diferenciação Celular/efeitos dos fármacos , Diabetes Mellitus Experimental/metabolismo , Ácidos Graxos não Esterificados/análise , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Glicosídeo Hidrolases , Células Hep G2 , Humanos , Hipoglicemiantes , Insulina/sangue , Fígado/química , Masculino , Camundongos , PPAR alfa/genética , Ácido Quínico/administração & dosagem , Ácido Quínico/análise , Ácido Quínico/metabolismo , RNA Mensageiro/análise , alfa-Glucosidases
20.
Zhongguo Zhong Yao Za Zhi ; 40(21): 4149-54, 2015 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-27071247

RESUMO

Based on the transcriptome data, we cloned the open reading frame of IiHCT gene from Isatis indigotica, and then performed bioinformatic analysis of the sequence. Further, we detected expression pattern in specific organs and hairy roots treated methyl jasmonate( MeJA) by RT-PCR. The IiHCT gene contains a 1 290 bp open reading frame( ORF) encoding a polypeptide of 430 amino acids. The predicted isoelectric point( pI) was 5.7, a calculated molecular weight was about 47.68 kDa. IiHCT was mainly expressed in stem and undetectable in young root, leaf and flower bud. After the treatment of MeJA, the relative expression level of IiHCT increased rapidly. The expression level of IiHCT was the highest at 4 h and maintained two fold to control during 24 h. In this study, cloning of IiHCT laid the foundation for illustrating the biosynthesis mechanism of phenylpropanoids in I. indigotica.


Assuntos
Aciltransferases/genética , Clonagem Molecular , Isatis/enzimologia , Proteínas de Plantas/genética , Aciltransferases/química , Aciltransferases/metabolismo , Sequência de Aminoácidos , Regulação da Expressão Gênica de Plantas , Isatis/química , Isatis/classificação , Isatis/genética , Modelos Moleculares , Dados de Sequência Molecular , Fases de Leitura Aberta , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Ácido Quínico/metabolismo , Alinhamento de Sequência , Ácido Chiquímico/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA