Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Pharm ; 15(12): 5741-5753, 2018 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-30351956

RESUMO

Biorelevant dissolution media (BDM) methods are commonly employed to investigate the oral absorption of poorly water-soluble drugs. Despite the significant progress in this area, the effect of commonly employed pharmaceutical excipients, such as surfactants, on the solubility of drugs in BDM has not been characterized in detail. The aim of this study is to clarify the impact of surfactant-bile interactions on drug solubility by using a set of 12 surfactants, 3 model hydrophobic drugs (fenofibrate, danazol, and progesterone) and two types of BDM (porcine bile extract and sodium taurodeoxycholate). Drug precipitation and sharp nonlinear decrease in the solubility of all studied drugs is observed when drug-loaded ionic surfactant micelles are introduced in solutions of both BDM, whereas the drugs remain solubilized in the mixtures of nonionic polysorbate surfactants + BDM. One-dimensional and diffusion-ordered 1H NMR spectroscopy show that mixed bile salt + surfactant micelles with low drug solubilization capacity are formed for the ionic surfactants. On the other hand, separate surfactant-rich and bile salt-rich micelles coexist in the nonionic polysorbate surfactant + bile salt mixtures, explaining the better drug solubility in these systems. The nonionic alcohol ethoxylate surfactants show intermediate behavior. The large dependence of the drug solubility on surfactant-bile interactions (in which the drug molecules do not play a major role per se) highlights how the complex interplay between excipients and bile salts can significantly change one of the key parameters which governs the oral absorption of poorly water-soluble drugs, viz. the drug solubility in the intestinal fluids.


Assuntos
Liberação Controlada de Fármacos , Tensoativos/química , Ácido Taurodesoxicólico/química , Administração Oral , Animais , Química Farmacêutica/métodos , Danazol/administração & dosagem , Danazol/química , Danazol/farmacocinética , Fenofibrato/administração & dosagem , Fenofibrato/química , Fenofibrato/farmacocinética , Interações Hidrofóbicas e Hidrofílicas , Absorção Intestinal , Micelas , Progesterona/administração & dosagem , Progesterona/química , Progesterona/farmacocinética , Espectroscopia de Prótons por Ressonância Magnética , Solubilidade , Suínos , Água
2.
Molecules ; 22(7)2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28657593

RESUMO

The focus of the present work was to investigate the interaction of the anticancer drug mitoxantrone with two bile salts, sodium taurodeoxycholate (NaTDC) and sodium taurocholate (NaTC). Ultraviolet-visible (UV-Vis) absorption and electron paramagnetic resonance (EPR) spectroscopy were used to quantify the interaction and to obtain information on the location of mitoxantrone in bile salt micelles. The presence of submicellar concentrations of both bile salts induces mitoxantrone aggregation and the extent of drug aggregation in NaTDC is higher than in NaTC. For micellar bile salts concentrations, mitoxantrone monomers are entrapped in the micellar core. Binding constants, micelle/water partition coefficients and the corresponding thermodynamic parameters for binding and partitioning processes were estimated using the changes in monomer absorbance in the presence of bile salts. Binding interaction of mitoxantrone is stronger for NaTDC than NaTC micelles, whereas partitioning efficiency is higher for NaTC micelles for all investigated temperatures. Thermodynamic parameters indicate that both binding and partitioning processes are spontaneous and entropy controlled. The spectral behavior and thermodynamic parameters indicate distinct types of mitoxantrone interaction with NaTDC and NaTC micelles supported by the differences in nature and structure of bile salts micelles.


Assuntos
Antineoplásicos/química , Ácidos e Sais Biliares/química , Mitoxantrona/química , Ácido Taurocólico/química , Ácido Taurodesoxicólico/química , Espectroscopia de Ressonância de Spin Eletrônica , Espectrofotometria Ultravioleta
3.
J Control Release ; 238: 242-252, 2016 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-27480451

RESUMO

Achieving oral peptide delivery is an elusive challenge. Emulsion-based minispheres of salmon calcitonin (sCT) were synthesized using single multiple pill (SmPill®) technology incorporating the permeation enhancers (PEs): sodium taurodeoxycholate (NaTDC), sodium caprate (C10), or coco-glucoside (CG), or the pH acidifier, citric acid (CA). Minispheres were coated with an outer layer of Eudragit® L30 D-55 (designed for jejunal release) or Surelease®/Pectin (designed for colonic release). The process was mild and in vitro biological activity of sCT was retained upon release from minispheres stored up to 4months. In vitro release profiles suggested that sCT was released from minispheres by diffusion through coatings due to swelling of gelatin and the polymeric matrix upon contact with PBS at pH6.8. X-ray analysis confirmed that coated minispheres dissolved at the intended intestinal region of rats following oral gavage. Uncoated minispheres at a dose of ~2000I.U.sCT/kg were administered to rats by intra-jejunal (i.j.) or intra-colonic (i.c.) instillation and caused hypocalcaemia. Notable sCT absolute bioavailability (F) values were: 5.5% from minispheres containing NaTDC (i.j), 17.3% with CG (i.c.) and 18.2% with C10 (i.c.). Coated minispheres administered by oral gavage at threefold higher doses also induced hypocalcaemia. A highly competitive F value of 2.7% was obtained for orally-administered sCT-minispheres containing CG (45µmol/kg) and coated with Eudragit®. In conclusion, the SmPill® technology is a potential dosage form for several peptides when formulated with PEs and coated for regional delivery. PK data from instillations over-estimates oral bioavailability and poorly predicts rank ordering of formulations.


Assuntos
Conservadores da Densidade Óssea/administração & dosagem , Calcitonina/administração & dosagem , Absorção Intestinal , Veículos Farmacêuticos/química , Administração Oral , Animais , Disponibilidade Biológica , Conservadores da Densidade Óssea/farmacocinética , Calcitonina/farmacocinética , Linhagem Celular Tumoral , Ácido Cítrico/química , Ácidos Decanoicos/química , Emulsões/química , Glucosídeos/química , Humanos , Masculino , Ácidos Polimetacrílicos/química , Ratos , Ratos Wistar , Ácido Taurodesoxicólico/química
4.
Talanta ; 114: 297-303, 2013 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-23953474

RESUMO

This study proposes a sensitive method for the simultaneous separation and concentration of 9 pairs of amino acid enantiomers by combining poly(ethylene oxide) (PEO)-based stacking, ß-cyclodextrin (ß-CD)-mediated micellar electrokinetic chromatography (MEKC), and 9-fluoroenylmethyl chloroformate (FMOC) derivatization. The 9 pairs of FMOC-derivatized amino acid enantiomers were baseline separated using a discontinuous system, and the buffer vials contained a solution of 150 mM Tris-borate (TB), 12.5% (v/v) isopropanol (IPA), 0.5% (w/v) PEO, 35 mM sodium taurodeoxycholate (STDC), and 35 mM ß-CD, and the capillary was filled with a solution of 1.5 M TB, 12.5% (v/v) IPA, 35 mM STDC, and 35 mM ß-CD. Based on the difference in viscosity between the sample zone and PEO solution and because of the STDC sweeping, the discontinuous system effectively stacked 670 nL of the 9 pairs of FMOC-derivatized amino acid enantiomers without losing chiral resolution. Consequently, the limits of detection for the 9 pairs of FMOC-derivatized amino acid enantiomers were reduced to 40-60 nM. This method was successfully used to determine d-Tryptophan (Trp), l-Trp, d-Phenylalanine (Phe), l-Phe, d-Glutamic acid (Glu), and l-Glu in various types of beers.


Assuntos
Aminoácidos/análise , Polietilenoglicóis/química , Aminoácidos/química , Cromatografia Capilar Eletrocinética Micelar , Fluorenos/química , Naftalenos/química , Sistemas On-Line , Estereoisomerismo , Ácido Taurodesoxicólico/química , beta-Ciclodextrinas/química , o-Ftalaldeído/química
5.
Toxicol Lett ; 182(1-3): 36-41, 2008 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-18771718

RESUMO

Mechanisms by which hydrophobic bile salts cause tissue changes below their critical micellar concentration (CMC, 1-2mM) and above (4-8mM) remain poorly understood. In this study, rat colonic mucosa was exposed to different concentrations of taurodeoxycholate (TDC), t-butyl-hydroperoxide (t-BH) or glutathione ester with or without pre-incubation with 2mM TDC. Exposure to 2mM TDC was associated with 10% higher tissue levels of total glutathione (GSH, basal values: 33.7+/-3.3 nmol/mg prot). With TDC 8mM, GSH decreased to 16.4+/-2.3 nmol/mg prot (P<0.05), oxidized glutathione (GSSG) increased by 60% (P<0.05), glutathione peroxidase (GSH-Px) and reductase activities were threefold increased, protein carbonyls fourfold increased, protein sulfhydrils decreased by 78%, lactate dehydrogenase (LDH) and GSSG release in the incubation medium were sixfold higher. In 2mM TDC pre-treated tissues, the subsequent incubation with 8mM TDC induced a lower loss of tissue GSH, and a lower release of LDH and GSSG. Pre-incubation with 2mM TDC partly protected against t-BH toxicity, while glutathione ester protected against 8mM TDC toxicity. In conclusion, TDC exposure causes opposite effects depending on CMC: induction of antioxidant protective systems including glutathione system (pre-conditioning effect) was observed with TDC below CMC, oxidative damages pointing to decreased mucosal detoxification potential with above CMC.


Assuntos
Colagogos e Coleréticos/toxicidade , Enteropatias/induzido quimicamente , Precondicionamento Isquêmico , Estresse Oxidativo/efeitos dos fármacos , Ácido Taurodesoxicólico/toxicidade , Animais , Colagogos e Coleréticos/química , Glutationa/metabolismo , Enteropatias/patologia , Mucosa Intestinal/patologia , L-Lactato Desidrogenase/metabolismo , Masculino , Micelas , Oxirredução , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar , Compostos de Sulfidrila/metabolismo , Ácido Taurodesoxicólico/química
6.
Chem Res Toxicol ; 18(10): 1553-62, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16533019

RESUMO

A kind of N-nitrosobile acid conjugate, N-nitrosotaurocholic acid (NO-TCA), was incubated with calf thymus DNA, and formation of an adduct was detected by the 32P-postlabeling method under nuclease P1 conditions. To examine the nucleotides containing the adduct from NO-TCA, each of 2'-deoxyribonucleotide 3'-monophosphates (3'-dAp, 3'-dGp, 3'-dCp, or 3'-Tp) was incubated with NO-TCA. The same adduct spot was detected in the reaction of NO-TCA with 3'-dCp. The structure of this adduct was determined to be 3-ethanesulfonic acid-dC by several spectrometry techniques. Moreover, bulky adducts containing bile acid moiety were also produced from the reaction of NO-TCA with 3'-dCp and 3'-dAp. From comparison with spectral data for authentic compounds, these adducts were concluded to be N4-cholyl-dC and N6-cholyl-dA. N4-Cholyl-dC and N6-cholyl-dA were also detected in calf thymus DNA treated with NO-TCA. In addition, 3-ethanesulfonic acid-dC and N4-deoxycholyl-dC were found to be produced from N-nitrosotaurodeoxycholic acid (NO-TDCA) with dC. NO-TCA and NO-TDCA induced mutations in Salmonella typhimurium TA100 but not in TA98. Mutational spectrum analysis revealed that NO-TCA induced G to A transitions predominantly. When NO-TCA (250 mg/kg) was singly administered to male Wistar rats by gavage, both ethanesulfonic acid-dC and N4-cholyl-dC could be detected in the glandular stomach and colon. The levels of ethanesulfonic acid-dC were 0.22-0.29 per 10(6) nucleotides, but values for N4-cholyl-dC were about 500-fold lower. These observations suggest that N-nitroso bile acid conjugates, NO-TCA and NO-TDCA, may induce G to A base substitutions in genes via DNA adduct formation, producing ethanesulfonic acid- and/or (deoxy)cholic acid-DNA and, therefore, may be related to human carcinogenesis as endogenous mutagens.


Assuntos
Ácidos e Sais Biliares/química , Adutos de DNA/química , Nitrosaminas/química , Alcanossulfonatos/química , Animais , Ácidos e Sais Biliares/metabolismo , Adutos de DNA/metabolismo , Trato Gastrointestinal/metabolismo , Masculino , Mutagênicos/toxicidade , Mutação , Nitrosaminas/metabolismo , Nitrosaminas/toxicidade , Ratos , Ratos Wistar , Salmonella typhimurium/efeitos dos fármacos , Salmonella typhimurium/genética , Ácido Taurodesoxicólico/química , Ácido Taurodesoxicólico/metabolismo
7.
Free Radic Biol Med ; 25(1): 50-6, 1998 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-9655521

RESUMO

The toxic effect of hydrophobic bile acids is claimed to be in part mediated by lipid peroxidation. Conversely, antioxidant properties of tauroursodeoxycholic acid (TUDC), a hydrophilic bile acid, have been suggested as a possible mechanism by which TUDC confers its beneficial effect in a variety of diseases. We have investigated the effect of taurodeoxycholic acid (TDC), a hydrophobic bile acid and TUDC on lipid peroxidation using a pure lipid system both in the presence and absence of iron ions. Neither TDC nor TUDC showed any effect on spontaneous lipid peroxidation of phosphatidylcholine liposomes or sodium arachidonate solution. This lack of effect excludes the possibility of direct prooxidant or antioxidant properties for TDC and TUDC. Addition of ferrous ions (0.1 mM) to the lipid system brought about a linear increase in lipid peroxidation with time. The presence of TDC caused an increase in the rate and extent of iron-stimulated lipid peroxidation. The propensity of bile acids to increase iron-induced lipid peroxidation was related to hydrophobicity of the individual bile acids, with the highest effect observed with taurolithocholic acid, whereas TUDC did not have any influence. The TDC-induced increase in the iron-stimulated lipid peroxidation was concentration dependent. Addition of TUDC (10 mM) completely abolished the effect of TDC (2 mM) on iron-induced lipid peroxidation. This finding suggests that TUDC does not function as an antioxidant per se but may prevent lipid peroxidation caused by TDC. In conclusion, only in the presence of iron ions, hydrophobic bile acids may enhance lipid peroxidation. TUDC has no antioxidant activity per se but may counter the TDC-induced increase in iron-stimulated lipid peroxidation.


Assuntos
Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/farmacologia , Ferro/química , Peroxidação de Lipídeos/efeitos dos fármacos , Ácido Araquidônico/química , Compostos Férricos/química , Compostos Ferrosos/química , Ferro/fisiologia , Lipossomos/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo , Fosfatidilcolinas/química , Soluções , Ácido Tauroquenodesoxicólico/química , Ácido Tauroquenodesoxicólico/farmacologia , Ácido Taurodesoxicólico/química , Ácido Taurodesoxicólico/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA