Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
PLoS One ; 19(4): e0299198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635661

RESUMO

Herpesviruses have two distinct life cycle stages, latency and lytic replication. Epstein-Barr virus (EBV), a gamma-herpesvirus, establishes latency in vivo and in cultured cells. Cell lines harboring latent EBV can be induced into the lytic cycle by treatment with chemical inducing agents. In the Burkitt lymphoma cell line HH514-16 the viral lytic cycle is triggered by butyrate, a histone deacetylase (HDAC) inhibitor. Butyrate also alters expression of thousands of cellular genes. However, valproic acid (VPA), another HDAC inhibitor with global effects on cellular gene expression blocks EBV lytic gene expression in Burkitt lymphoma cell lines. Valpromide (VPM), an amide derivative of VPA, is not an HDAC inhibitor, but like VPA blocks induction of the EBV lytic cycle. VPA and VPM are the first examples of inhibitors of initial stages of lytic reactivation. We compared the effects of VPA and VPM, alone and in combination with butyrate, on host cellular gene expression using whole transcriptome analysis (RNA-seq). Gene expression was analyzed 6 h after addition of the compounds, a time before the first EBV lytic transcripts are detected. The results address two alternative, yet possibly complementary, mechanisms for regulation of EBV lytic reactivation. First, cellular genes that were up- or down-regulated by butyrate, but no longer altered in the presence of VPA or VPM, represent genes that correlated with EBV lytic reactivation. Second, genes regulated similarly by VPA and VPM in the absence and presence of butyrate are candidates for suppressors of EBV reactivation. Two genes upregulated by the lytic cycle inhibitors, CHAC1 and SLC7A11, are related to redox status and the iron-dependent cell death pathway ferroptosis. This study generates new hypotheses for control of the latency to lytic cycle switch of EBV and provides the first description of effects of the anti-convulsant drug VPM on global human cellular gene expression.


Assuntos
Linfoma de Burkitt , Infecções por Vírus Epstein-Barr , Ácido Valproico/análogos & derivados , Humanos , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/genética , Herpesvirus Humano 4/fisiologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/metabolismo , Infecções por Vírus Epstein-Barr/tratamento farmacológico , Ativação Viral , Perfilação da Expressão Gênica , Butiratos/farmacologia
2.
Viruses ; 13(12)2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34960791

RESUMO

Pseudorabies virus (PRV) infection of swine can produce Aujeszky's disease, which causes neurological, respiratory, and reproductive symptoms, leading to significant economic losses in the swine industry. Although humans are not the natural hosts of PRV, cases of human encephalitis and endophthalmitis caused by PRV infection have been reported between animals and workers. Currently, a lack of specific treatments and the emergence of new PRV strains against which existing vaccines do not protect makes the search for effective antiviral drugs essential. As an alternative to traditional nucleoside analogues such as acyclovir (ACV), we studied the antiviral effect of valpromide (VPD), a compound derived from valproic acid, against PRV infection in the PK15 swine cell line and the neuroblastoma cell line Neuro-2a. First, the cytotoxicity of ACV and VPD in cells was compared, demonstrating that neither compound was cytotoxic at a specific concentration range after 24 h exposure. Furthermore, the lack of direct virucidal effect of VPD outside of an infected cell environment was demonstrated. Finally, VPD was shown to have an antiviral effect on the viral production of two strains of pseudorabies virus (wild type NIA-3 and recombinant PRV-XGF) at the concentrations ranging from 0.5 to 1.5 mM, suggesting that VPD could be a suitable alternative to nucleoside analogues as an antiherpetic drug against Aujeszky's disease.


Assuntos
Antivirais/farmacologia , Herpesvirus Suídeo 1/efeitos dos fármacos , Pseudorraiva/tratamento farmacológico , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacologia , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Camundongos , Neuroblastoma , Pseudorraiva/virologia , Suínos , Doenças dos Suínos/tratamento farmacológico , Doenças dos Suínos/virologia
3.
J Inorg Biochem ; 222: 111508, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34116426

RESUMO

Histone deacetylase inhibitors have often been used in combination treatment of various types of cancers due to their non-genotoxic epigenetic potential. Valproic acid (VPA) is a well-known histone deacetylase inhibitor. Conjugate of VPA with a phtoactive platinum diimine complex through an ester bond has been fabricated to potentiate the photocytotoxicity of the photosensitizer. Its capability to generate singlet oxygen, behavior in the presence of esterase, and photocytotoxicity in tumor cells have also been studied. The results revealed that the novel VPA-modified platinum diimine complex could produce singlet oxygen efficiently and release VPA in the presence of porcine liver esterase. The results also suggested that incorporation of VPA moiety into the platinum diimine complex might significantly enhance the cytotoxicity of the complex.


Assuntos
Complexos de Coordenação/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacologia , Animais , Hidrolases de Éster Carboxílico/metabolismo , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/metabolismo , Complexos de Coordenação/efeitos da radiação , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/efeitos da radiação , Humanos , Luz , Fotoquimioterapia , Fármacos Fotossensibilizantes/síntese química , Fármacos Fotossensibilizantes/metabolismo , Fármacos Fotossensibilizantes/efeitos da radiação , Platina/química , Pró-Fármacos/síntese química , Pró-Fármacos/metabolismo , Pró-Fármacos/farmacologia , Pró-Fármacos/efeitos da radiação , Oxigênio Singlete/metabolismo , Suínos , Ácido Valproico/metabolismo , Ácido Valproico/efeitos da radiação
4.
Eur J Pharmacol ; 903: 174150, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33961874

RESUMO

Inhibition of the activity of extracellular signal-regulated kinases (ERK1/2) induced by the activation of the dopamine D2 receptor signalling cascade may be a promising pharmacological target. The aim of this work was to study the involvement of ERK1/2 and dopamine D2 receptor in the mechanism of the anticonvulsant action of valproic acid (VA) and a new benzoylpyridine oxime derivative (GIZH-298), which showed antiepileptic activity in different models of epilepsy. We showed that subchronic exposure to maximal electroshock seizures (MES) for 5 days reduced the density of dopamine D2 receptors in the striatum of mice. GIZH-298 counteracted the decrease in the number of dopamine D2 receptors associated with MES and increased the number of ligand binding sites of dopamine D2 receptors in mice without MES. The affinity of dopamine D2 receptors to the ligand was not changed by GIZH-298. MES caused an increase in ERK1/2 and synapsin I phosphorylation in the striatum while GIZH-298, similar to VA, reduced the levels of both phospho-ERK1/2 and phosphosynapsin I after MES, which correlated with the decrease in the intensity of seizure in mice. In addition, GIZH-298 suppressed ERK1/2 phosphorylation in SH-SY5Y human neuroblastoma cells at therapeutic concentrations, while VA inhibited ERK1/2 phosphorylation in vivo but not in vitro. The data obtained expand the understanding of the mechanisms of action of VA and GIZH-298, which involve regulating the activity of ERK1/2 kinases, probably by modulating dopamine D2 receptors in limbic structures, as well as (in the case of GIZH-298) directly inhibiting of the ERK1/2 cascade.


Assuntos
Anticonvulsivantes/farmacologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Receptores de Dopamina D2/metabolismo , Convulsões/tratamento farmacológico , Ácido Valproico/farmacologia , Animais , Anticonvulsivantes/administração & dosagem , Linhagem Celular Tumoral , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Eletrochoque/efeitos adversos , Humanos , Masculino , Camundongos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Neuroblastoma/metabolismo , Fosforilação/efeitos dos fármacos , Convulsões/etiologia , Convulsões/metabolismo , Sinapsinas/metabolismo , Ácido Valproico/administração & dosagem , Ácido Valproico/análogos & derivados
5.
Molecules ; 27(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35011339

RESUMO

Valproic acid (VPA) is a well-established anticonvulsant drug discovered serendipitously and marketed for the treatment of epilepsy, migraine, bipolar disorder and neuropathic pain. Apart from this, VPA has potential therapeutic applications in other central nervous system (CNS) disorders and in various cancer types. Since the discovery of its anticonvulsant activity, substantial efforts have been made to develop structural analogues and derivatives in an attempt to increase potency and decrease adverse side effects, the most significant being teratogenicity and hepatotoxicity. Most of these compounds have shown reduced toxicity with improved potency. The simple structure of VPA offers a great advantage to its modification. This review briefly discusses the pharmacology and molecular targets of VPA. The article then elaborates on the structural modifications in VPA including amide-derivatives, acid and cyclic analogues, urea derivatives and pro-drugs, and compares their pharmacological profile with that of the parent molecule. The current challenges for the clinical use of these derivatives are also discussed. The review is expected to provide necessary knowledgebase for the further development of VPA-derived compounds.


Assuntos
Estrutura Molecular , Ácido Valproico/química , Ácido Valproico/farmacologia , Amidas/química , Amidas/farmacologia , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/química , Anticonvulsivantes/farmacologia , Monitoramento de Medicamentos , Epilepsia/tratamento farmacológico , Humanos , Relação Estrutura-Atividade , Teratogênicos/química , Teratogênicos/farmacologia , Ureia/análogos & derivados , Ureia/química , Ureia/farmacologia , Ácido Valproico/administração & dosagem , Ácido Valproico/análogos & derivados
6.
Carcinogenesis ; 41(7): 927-939, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-31584613

RESUMO

New chemotherapeutic agents are needed for pancreatic cancer (PC). We have previously shown that phospho-valproic acid (MDC-1112) is effective in cell-line xenografts of PC. Here, we explored whether MDC-1112 is effective in additional clinically relevant animal models of PC and whether MDC-1112 enhances the anticancer effect of clinically used chemotherapeutic agents. MDC-1112 alone strongly reduced patient-derived pancreatic tumor xenograft growth, and extended survival of LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx1-Cre (KPC) mice. In both models, MDC-1112 inhibited STAT3 activation and its downstream signals, including Bcl-xL and cyclin D1. In human PC cell lines, P-V enhanced the growth inhibitory effect of gemcitabine (GEM), Abraxane and 5-FU, but not that of irinotecan. Normal human pancreatic epithelial cells were more resistant to the cytotoxic effects of MDC-1112/GEM combination. Furthermore, MDC-1112 enhanced GEM's effect on colony formation, apoptosis, cell migration, and cell invasion. In vivo, MDC-1112 and GEM, given alone, reduced patient-derived pancreatic tumor xenograft growth by 58% and 87%, respectively; whereas MDC-1112/GEM combination reduced tumor growth by 94%, inducing tumor stasis. In conclusion, MDC-1112 should be further explored as a potential agent to be used in combination with GEM for treating PC.


Assuntos
Anormalidades Múltiplas/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Ceratocone/congênito , Organofosfatos/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Ácido Valproico/análogos & derivados , Anormalidades Múltiplas/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Modelos Animais de Doenças , Humanos , Ceratocone/tratamento farmacológico , Ceratocone/patologia , Camundongos , Neoplasias Pancreáticas/patologia , Transdução de Sinais/efeitos dos fármacos , Ácido Valproico/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
7.
Antiviral Res ; 168: 91-99, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31132386

RESUMO

Herpes simplex virus type 1 (HSV-1) is a ubiquitous infectious agent that can establish latency in neurons, and in some cases, viral retrograde transport results in infection of the central nervous system (CNS). Several antivirals have been identified with the ability to inhibit HSV-1 replication in human cells to a greater or lesser degree, most of which are nucleoside analogues that unfortunately exhibit teratogenic potential, embryotoxicity, carcinogenic or antiproliferative activities and resistances in immunocompromised patients, specially. In the present study, we assessed two amidic derivatives of valproic acid (VPA) - valpromide (VPD) and valnoctamide (VCD) - which are already used in clinic treatments, as feasible HSV-1 antivirals in glial cells. Both VPD and VCD have exhibited increased efficacy in bipolar disorders and as anticonvulsant drugs compared to VPA, while being less teratogenic and hepatotoxic. Cytotoxicity assays carried out in our laboratory showed that VPD and VCD were not toxic in a human oligodendroglioma cell line (HOG), at least at the concentrations established for human treatments. Infectivity assays showed a significant inhibition of HSV-1 infection in HOG cells after VPD and VCD treatment, being more pronounced in VPD-treated cells, comparable to the effects obtained with acyclovir. Furthermore, the same antiherpetic effects of VPD were observed in other oligodendrocytic cell lines and rat primary oligodendrocytes (OPCs), confirming the results obtained in HOG cells. Altogether, our results allow us to propose VPD as a potential antiherpetic drug that is able to act directly on oligodendrocytes of the CNS.


Assuntos
Amidas/farmacologia , Antivirais/farmacologia , Herpesvirus Humano 1/efeitos dos fármacos , Oligodendroglia/virologia , Ácido Valproico/análogos & derivados , Amidas/química , Animais , Antivirais/química , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Humanos , Estrutura Molecular , Oligodendroglia/efeitos dos fármacos , Ratos , Ácido Valproico/química , Ácido Valproico/farmacologia , Proteínas Virais/genética , Internalização do Vírus/efeitos dos fármacos , Replicação Viral/efeitos dos fármacos
8.
Carcinogenesis ; 40(12): 1480-1491, 2019 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-30994173

RESUMO

New therapeutic strategies against glioblastoma multiforme (GBM) are urgently needed. Signal transducer and activator of transcription 3 (STAT3), constitutively active in many GBM tumors, plays a major role in GBM tumor growth and represents a potential therapeutic target. We have documented previously that phospho-valproic acid (MDC-1112), which inhibits STAT3 activation, possesses strong anticancer properties in multiple cancer types. In this study, we explored the anticancer efficacy of MDC-1112 in preclinical models of GBM, and evaluated its mode of action. MDC-1112 inhibited the growth of multiple human GBM cell lines in a concentration- and time-dependent manner. Normal human astrocytes were resistant to MDC-1112, indicating selectivity. In vivo, MDC-1112 reduced the growth of subcutaneous GBM xenografts in mice by up to 78.2% (P < 0.01), compared with the controls. Moreover, MDC-1112 extended survival in an intracranial xenograft model. Although all vehicle-treated mice died by 19 days of treatment, 7 of 11 MDC-1112-treated mice were alive and healthy by the end of 5 weeks, with many showing tumor regression. Mechanistically, MDC-1112 inhibited STAT3 phosphorylation at the serine 727 residue, but not at tyrosine 705, in vitro and in vivo. STAT3 overexpression rescued GBM cells from the cell growth inhibition by MDC-1112. In addition, MDC-1112 reduced STAT3 levels in the mitochondria and enhanced mitochondrial levels of reactive oxygen species, which triggered apoptosis. In conclusion, MDC-1112 displays strong efficacy in preclinical models of GBM, with the serine 727 residue of STAT3 being its key molecular target. MDC-1112 merits further evaluation as a drug candidate for GBM. New therapeutic options are needed for glioblastoma. The novel agent MDC-1112 is an effective anticancer agent in multiple animal models of glioblastoma, and its mechanism of action involves the inhibition of STAT3 phosphorylation, primarily at its Serine 727 residue.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Encefálicas/patologia , Glioblastoma/patologia , Organofosfatos/farmacologia , Fator de Transcrição STAT3/metabolismo , Ácido Valproico/análogos & derivados , Animais , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Feminino , Glioblastoma/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação/efeitos dos fármacos , Fator de Transcrição STAT3/efeitos dos fármacos , Ácido Valproico/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Birth Defects Res ; 111(14): 1013-1023, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30325584

RESUMO

OBJECTIVES: The anticonvulsant valproic acid (VPA) has a known teratogenic effect capable of inducing major congenital malformations and developmental disorders. A comparative teratogenicity study of VPA and its analog valnoctamide (VCD), which is a new generation candidate antiepileptic drug, was carried out using Swiss Vancouver (SWV) mice. METHODS: Pregnant SWV dams were treated with either a single intraperitoneal injection of VPA (1.8 and 2.7 mmol/kg), VCD (1.8 and 2.7 mmol/kg), or vehicle on E8:12 (gestational day:hour). The numbers of implantation and resorption, viable and dead fetuses, and the presence of gross fetal visceral and skeletal abnormalities were determined (E18). Real-time Polymerase chain reaction (RT-PCR) arrays were used to analyze the expression of 84 genes related to the processes of neurogenesis and neural stem cell differentiation. RESULTS: Significant decreases in pregnancy weight gain and the number of live fetuses were observed when VPA was administered at the high dose, whereas the percentage of exencephalic fetuses was significantly increased in VPA treated compared with an equivalent VCD dosage group. There was a dose-related increase in visceral defects in the VPA-exposed fetuses. Missing skull bones and fused vertebrae in fetuses occurred at the high dose of VPA. Three genes (Mtap2, Bmp8b, and Stat3) were significantly upregulated and one (Heyl) was downregulated in samples from VPA-treated dams. CONCLUSIONS: The study demonstrates that the teratogenicity of VPA was significantly greater than that of an equimolar dose of VCD. Four genes (Mtap2, Bmp8b, Stat3, and Heyl) represent candidate target genes for the underlying teratogenic mechanism responsible for VPA-induced malformations.


Assuntos
Amidas/efeitos adversos , Teratogênese/efeitos dos fármacos , Ácido Valproico/efeitos adversos , Anormalidades Induzidas por Medicamentos/etiologia , Anormalidades Induzidas por Medicamentos/fisiopatologia , Amidas/farmacologia , Animais , Anticonvulsivantes/efeitos adversos , Feminino , Morte Fetal , Feto/efeitos dos fármacos , Camundongos , Defeitos do Tubo Neural/induzido quimicamente , Gravidez , Teratogênicos/metabolismo , Teratoma/etiologia , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacologia
10.
Dalton Trans ; 47(16): 5714-5724, 2018 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-29632937

RESUMO

The [Os(η6-pcym)(dpa)(VP)]PF6 (1-VP) complex contains the histone deacetylase (HDAC) inhibitor valproate (2-propylpentanoate; VP) as a monodentate O-donor ligand and shows ca. 3-fold higher in vitro cytotoxicity against A2780 human ovarian carcinoma cells than its chlorido analogue [Os(η6-pcym)(dpa)Cl]PF6 (1-Cl); pcym = 1-methyl-4-(propan-2-yl)benzene (p-cymene), dpa = 2,2'-dipyridylamine. The complex 1-VP showed promising selectivity towards the A2780 ovarian carcinoma cell line (IC50 = 20.9 µM) over normal human hepatocytes (IC50 > 200.0 µM). Moreover, the complex 1-VP was found to be inactive against MCF-7 (breast adenocarcinoma), PANC-1 (pancreatic adenocarcinoma) and HT-29 (colon carcinoma) up to a concentration of 100 µM. Detailed flow cytometry studies indicated that treatment of A2780 cells with complex 1-VP led to induction of apoptosis, production of reactive oxygen species (ROS) and superoxide (SO) anion radicals, as well as mitochondrial membrane potential depletion and cell cycle perturbations. The microscopic assessment (standard hematoxylin/eosin staining) revealed signs of morphological changes associated with the progression of apoptosis in A2780 cells treated with the IC50 concentration of the complex 1-VP. Consistent with the intracellular production of ROS and SO, the complex 1-VP induced hydroxyl radical formation, as proved by EPR spin trapping experiments. This case study suggests that replacement of the chlorido ligand of half-sandwich Os(ii) complexes by a releasable monodentate biologically active ligand (e.g., VP used in this study) is an effective strategy for the development of novel non-platinum cytotoxic agents.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Complexos de Coordenação/química , Complexos de Coordenação/farmacologia , Osmio/química , 2,2'-Dipiridil/análogos & derivados , 2,2'-Dipiridil/química , Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Cimenos , Humanos , Concentração Inibidora 50 , Membranas Mitocondriais/efeitos dos fármacos , Monoterpenos/química , Espécies Reativas de Oxigênio/metabolismo , Superóxidos/metabolismo , Ácido Valproico/análogos & derivados , Ácido Valproico/química
11.
Int J Oncol ; 51(4): 1035-1044, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28849098

RESUMO

Pancreatic cancer (PC) is one of the most difficult cancers to treat. Since the current chemotherapy is inadequate and various biological approaches have failed, the need for agents that have a potential to treat PC is pressing. Phospho-valproic acid (P-V), a novel anticancer agent, is efficacious in xenograft models of human PC and is apparently safe. In the present study, we evaluated whether formulating P-V in nanoparticles could enhance its anticancer efficacy. In a mouse model of Kras/pancreatitis-associated PC, P-V, orally administered, inhibited the incidence of acinar-to-ductal metaplasia by 60%. To improve its efficacy, we formulated P-V in five different polymeric nanoparticles. Poly-(L)-lactic acid- poly(ethylene glycol) (PLLA-PEG) nanoparticles proved the optimal formulation. PLLA-PEG improved P-V's pharmacokinetics in mice enhancing the levels of P-V in blood. Compared to control, P-V formulated in PLLA-PEG suppressed the growth of MIA PaCa-2 xenografts by 81%, whereas P-V alone reduced it by 51% (p<0.01). Furthermore, P-V formulated in PLLA-PEG inhibited acinar-to-ductal metaplasia in mice with activated Kras, reducing it by 87% (p<0.02). In both disease models, P-V suppressed STAT3 phosphorylation at the Ser727 and Tyr705 residues; STAT3 is the pivotal molecular target of P-V. In conclusion, P-V is a promising agent against PC, and its formulation in PLLA-PEG nanoparticles enhances its efficacy by improving its pharmacokinetics.


Assuntos
Carcinoma Ductal Pancreático/tratamento farmacológico , Lactatos/administração & dosagem , Nanopartículas/administração & dosagem , Organofosfatos/administração & dosagem , Neoplasias Pancreáticas/tratamento farmacológico , Polietilenoglicóis/administração & dosagem , Ácido Valproico/análogos & derivados , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacocinética , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Lactatos/química , Lactatos/farmacocinética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Nanopartículas/química , Organofosfatos/química , Organofosfatos/farmacocinética , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Polietilenoglicóis/química , Polietilenoglicóis/farmacocinética , Distribuição Aleatória , Ácido Valproico/administração & dosagem , Ácido Valproico/química , Ácido Valproico/farmacocinética , Ensaios Antitumorais Modelo de Xenoenxerto
12.
Basic Clin Pharmacol Toxicol ; 121(2): 138-143, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28273397

RESUMO

The aim of this study was to compare genetic polymorphisms and concentrations of hepatotoxic metabolites in patients with epilepsy and liver injury and those with normal liver function receiving valproate monotherapy to identify risk factors for VPA-induced hepatotoxicity. A total of 279 Chinese patients with epilepsy were divided into an abnormal liver function (ANLFT) group (n = 79) and a normal liver function (NLFT) group (n = 200). Polymerase chain reaction-restriction fragment length polymorphism PCR-RFLP and nested PCR were applied to identify the frequency of two SNPs in candidate genes. Serum concentrations of VPA and its major metabolites were determined by Ultra-Performance Liquid Chromatography-tandem mass spectrometry UPLC-MS/MS. Significant differences were found in genotype distributions of CYP2A6 and CYP2C9 between the two groups. The values of 4-ene-VPA and 2,4-diene-VPA in the ANLFT group were significantly higher than in the NLFT group. Only CYP2A6 polymorphisms had associations with the concentrations of 4-ene-VPA and 2,4-diene-VPA. CYP2A6*1/*4 and CYP2A6*4/*4 variant carriers had higher CDR4-ene-VPA and CDR2,4-diene-VPA values than CYP2A6*1/*1 carriers. The logistic regression analysis showed that CYP2C9 and CYP2A6 were significant risk factors for hepatotoxicity by increasing the risk by 7.50 and 5.13 times, respectively. These findings provide preliminary evidence that CYP2A6 and CYP2C9 are associated with hepatotoxicity. However, only the CYP2A6 polymorphism was found to be associated with concentrations of 4-ene-VPA and 2,4-diene-VPA. Potential important risk factors include mutated genotypes of CYP2C9 and CYP2A6 and higher concentrations of VPA, 4-ene-VPA and 2,4-diene-VPA.


Assuntos
Anticonvulsivantes/farmacocinética , Doença Hepática Induzida por Substâncias e Drogas/genética , Citocromo P-450 CYP2A6/genética , Citocromo P-450 CYP2C9/genética , Predisposição Genética para Doença , Polimorfismo de Nucleotídeo Único , Ácido Valproico/farmacocinética , Adolescente , Adulto , Alelos , Anticonvulsivantes/efeitos adversos , Anticonvulsivantes/sangue , Anticonvulsivantes/uso terapêutico , Biotransformação , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/fisiopatologia , Criança , China , Citocromo P-450 CYP2A6/metabolismo , Citocromo P-450 CYP2C9/metabolismo , Epilepsia/tratamento farmacológico , Ácidos Graxos Monoinsaturados/sangue , Frequência do Gene , Estudos de Associação Genética , Hospitais Universitários , Humanos , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Ácido Valproico/efeitos adversos , Ácido Valproico/análogos & derivados , Ácido Valproico/sangue , Ácido Valproico/uso terapêutico , Adulto Jovem
13.
Anticancer Agents Med Chem ; 17(7): 927-940, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-27774878

RESUMO

BACKGROUND: Histone deacetylase 8 (HDAC8) is a plausible target for the development of novel anticancer drugs using a metal-chelating group and hydrophobic moieties as pharmacophores. It is known that valproic acid (administered as its salt, sodium valproate; VPANa+) is an HDAC8 inhibitor characterized by its hydrophobic chains. Nevertheless, VPA is hepatotoxic and VPA analogues might be explored for less hepatotoxic antiproliferative compounds. METHOD: In this work, docking and QSAR studies of 500 aryl-VPA derivatives as possible HDAC8 inhibitors were performed in order to explore and select potential anti-proliferative compounds. Docking results identified π-π, hydrogen bonds as the most important noncovalent interactions between HDAC8 (PDB: 3F07) and the ligands tested, whereas Belm4 was the best QSAR descriptor and classified as a 2D-BCUT descriptor. RESULT: Based on theoretical studies, compound DAVP042 was synthesized and evaluated in vitro for its antiproliferative activities on several cancer cell lines (A549-lung, MCF-7-breast, HCT116-colon and U937- lymphoid tissue) in comparison to VPA, as well as for its inhibitory activity on HDAC8 using in vitro models. DAVP042 demonstrated to have antiproliferative activity on all cancer cell lines employed, not only suggesting that this compound should be further studied, but also demonstrating that the methodology herein employed is appropriated to identify new therapeutic candidates.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Proteínas Repressoras/antagonistas & inibidores , Ácido Valproico/análogos & derivados , Ácido Valproico/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Histona Desacetilases/metabolismo , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Relação Quantitativa Estrutura-Atividade , Proteínas Repressoras/metabolismo
14.
J Enzyme Inhib Med Chem ; 31(sup3): 140-149, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27483122

RESUMO

Epigenetic alterations are associated with cancer and their targeting is a promising approach for treatment of this disease. Among current epigenetic drugs, histone deacetylase (HDAC) inhibitors induce changes in gene expression that can lead to cell death in tumors. Valproic acid (VPA) is a HDAC inhibitor that has antitumor activity at mM range. However, it is known that VPA is a hepatotoxic drug. Therefore, the aim of this study was to design a set of VPA derivatives adding the arylamine core of the suberoylanilide hydroxamic acid (SAHA) with different substituents at its carboxyl group. These derivatives were submitted to docking simulations to select the most promising compound. The compound 2 (N-(2-hydroxyphenyl)-2-propylpentanamide) was the best candidate to be synthesized and evaluated in vitro as an anti-cancer agent against HeLa, rhabdomyosarcoma and breast cancer cell lines. Compound 2 showed a better IC50 (µM range) than VPA (mM range) on these cancer cells. And also, 2 was particularly effective on triple negative breast cancer cells. In conclusion, 2 is an example of drugs designed in silico that show biological properties against human cancer difficult to treat as triple negative breast cancer.


Assuntos
Amidas/farmacologia , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Simulação por Computador , Desenho de Fármacos , Pentanos/farmacologia , Rabdomiossarcoma/patologia , Ácido Valproico/análogos & derivados , Amidas/síntese química , Amidas/química , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Histona Desacetilases/metabolismo , Humanos , Células MCF-7 , Modelos Moleculares , Estrutura Molecular , Pentanos/síntese química , Pentanos/química , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Células Tumorais Cultivadas
15.
mBio ; 7(2): e00113, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26933051

RESUMO

UNLABELLED: Reactivation of Epstein-Barr virus (EBV) from latency into the lytic phase of its life cycle allows the virus to spread among cells and between hosts. Valproic acid (VPA) inhibits initiation of the lytic cycle in EBV-infected B lymphoma cells. While VPA blocks viral lytic gene expression, it induces expression of many cellular genes, because it is a histone deacetylase (HDAC) inhibitor. Here we show, using derivatives of VPA, that blockade of EBV reactivation is separable from HDAC inhibition. Valpromide (VPM), an amide derivative of valproic acid that is not an HDAC inhibitor, prevented expression of two EBV genes, BZLF1 and BRLF1, that mediate lytic reactivation. VPM also inhibited expression of a viral late gene, but not early genes, when BZLF1 was exogenously expressed. Unlike VPA, VPM did not activate lytic expression of Kaposi's sarcoma-associated herpesvirus. Expression of cellular immediate-early genes, such as FOS and EGR1, is kinetically upstream of the EBV lytic cycle. VPM did not activate expression of these cellular immediate-early genes but decreased their level of expression when induced by butyrate, an HDAC inhibitor. VPM did not alter expression of several other cellular immediate-early genes, including STAT3, which were induced by the HDAC inhibitors in cells refractory to lytic induction. Therefore, VPM selectively inhibits both viral and cellular gene expression. VPA and VPM represent a new class of antiviral agents. The mechanism by which VPA and VPM block EBV reactivation may be related to their anticonvulsant activity. IMPORTANCE: Epstein-Barr virus, (EBV), a human tumor virus, establishes a life-long latent infection. Reactivation of EBV into the lytic phase of its life cycle allows the virus to spread. Previously, we showed that EBV reactivation was blocked by valproic acid (VPA), an inhibitor of cellular histone deacetylases (HDACs). VPA alters the expression of thousands of cellular genes. In this study, we demonstrate that valpromide (VPM), an amide derivative of valproic acid that is not an HDAC inhibitor, prevented initiation of the EBV lytic cycle. VPA induced lytic reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV), but VPM did not. Unlike VPA, VPM did not activate cellular immediate-early gene expression. VPM is a new type of antiviral agent. VPM will be useful in probing the mechanism of EBV lytic reactivation and may have therapeutic application.


Assuntos
Antivirais/farmacologia , Herpesvirus Humano 4/efeitos dos fármacos , Herpesvirus Humano 4/fisiologia , Ácido Valproico/análogos & derivados , Ativação Viral/efeitos dos fármacos , Linfócitos B/efeitos dos fármacos , Linfócitos B/virologia , Linhagem Celular , Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas Imediatamente Precoces/antagonistas & inibidores , Transativadores/antagonistas & inibidores , Ácido Valproico/farmacologia
16.
Anticancer Agents Med Chem ; 16(11): 1485-1490, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26845132

RESUMO

In this contribution, we focused on evaluating a novel compound developed by our group. This molecule, derived from glutamine (Gln) and valproic acid (VPA), denominated (S)- 5-amino-2-(heptan-4-ylamino)-5-oxopentanoic acid (Gln-VPA), was submitted to docking studies on histone deacetylase 8 (HDAC8) to explore its non-bonded interactions. The theoretical results were validated in HeLa cells as a cancer cell model and in human dermal fibroblasts as a normal cell model. The effects of Gln-VPA on HeLa and normal fibroblasts in terms of cell survival and the ability to inhibit HDAC activity in nude nuclear proteins and in nuclear proteins of whole cells treated for 24 h were analyzed. The HeLa cell cycle was analyzed after 24 and 48 h of treatment with Gln-VPA. The docking studies show that Gln-VPA can reach the catalytic site of HDAC8. Gln-VPA was organically synthesized with a purity greater than 97%, and its structure was validated using mass spectrometry, nuclear magnetic resonance and infrared spectroscopy. Gln-VPA showed a similar effect to VPA as an HDAC inhibitor but with less toxicity to fibroblasts. Although Gln-VPA was less efficient than VPA in reducing the survival of HeLa cells, it could be studied for use as a cancer cell sensitizer.


Assuntos
Antineoplásicos/farmacologia , Glutamina/análogos & derivados , Inibidores de Histona Desacetilases/farmacologia , Simulação de Acoplamento Molecular , Proteínas Repressoras/antagonistas & inibidores , Ácido Valproico/análogos & derivados , Antineoplásicos/síntese química , Antineoplásicos/química , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fibroblastos/efeitos dos fármacos , Glutamina/síntese química , Glutamina/química , Glutamina/farmacologia , Células HeLa , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/química , Histona Desacetilases/metabolismo , Humanos , Estrutura Molecular , Proteínas Repressoras/metabolismo , Relação Estrutura-Atividade , Ácido Valproico/síntese química , Ácido Valproico/química , Ácido Valproico/farmacologia
17.
Cephalalgia ; 36(10): 924-35, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26568161

RESUMO

BACKGROUND: Though migraine is disabling and affects 12%-15% of the population, there are few drugs that have been developed specifically for migraine prevention. Valproic acid (VPA) is a broad-spectrum antiepileptic drug (AED) that is also used for migraine prophylaxis, but its clinical use is limited by its side effect profile. sec-Butylpropylacetamide (SPD) is a novel VPA derivative, designed to be more potent and tolerable than VPA, that has shown efficacy in animal seizure and pain models. METHODS: We evaluated SPD's antimigraine potential in the cortical spreading depression (CSD) and nitroglycerin (NTG) models of migraine. To evaluate SPD's mechanism of action, we performed whole-cell recordings on cultured cortical neurons and neuroblastoma cells. RESULTS: In the CSD model, the SPD-treated group showed a significantly lower median number of CSDs compared to controls. In the NTG-induced mechanical allodynia model, SPD dose-dependently reduced mechanical sensitivity compared to controls. SPD showed both a significant potentiation of GABA-mediated currents and a smaller but significant decrease in NMDA currents in cultured cortical neurons. Kainic acid-evoked currents and voltage-dependent sodium channel currents were not changed by SPD. CONCLUSIONS: These results demonstrate SPD's potential as a promising novel antimigraine compound, and suggest a GABAergic mechanism of action.


Assuntos
Amidas/uso terapêutico , Anticonvulsivantes/uso terapêutico , Transtornos de Enxaqueca/prevenção & controle , Transtornos de Enxaqueca/fisiopatologia , Ácido Valproico/análogos & derivados , Amidas/farmacologia , Animais , Anticonvulsivantes/farmacologia , Linhagem Celular Tumoral , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Depressão Alastrante da Atividade Elétrica Cortical/efeitos dos fármacos , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico
18.
Molecules ; 20(8): 14638-55, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26287132

RESUMO

Eight novel N'-(2-oxoindolin-3-ylidene)-2-propylpentane hydrazide-hydrazone derivatives 4a-h were synthesized and fully characterized by IR, NMR ((1)H-NMR and (13)C-NMR), elemental analysis, and X-ray crystallography. The cyto-toxicity and in vitro anti-cancer evaluation of the prepared compounds have been assessed against two different human tumour cell lines including human liver (HepG2) and leukaemia (Jurkat), as well as in normal cell lines derived from human embryonic kidney (HEK293) using MTT assay. The compounds 3e, 3f, 4a, 4c, and 4e revealed promising anti-cancer activities in tested human tumour cells lines (IC50 values between 3 and 7 µM) as compared to the known anti-cancer drug 5-Fluorouracil (IC50 32-50 µM). Among the tested compounds, 4a showed specificity against leukaemia (Jurkat) cells, with an IC50 value of 3.14 µM, but this compound was inactive in liver cancer and normal cell lines.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Hidrazonas/química , Hidrazonas/farmacologia , Isatina/análogos & derivados , Ácido Valproico/análogos & derivados , Antineoplásicos/síntese química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Fluoruracila/farmacologia , Células HEK293 , Células Hep G2 , Humanos , Hidrazonas/síntese química , Isatina/síntese química , Isatina/química , Isatina/farmacologia , Células Jurkat , Ácido Valproico/síntese química , Ácido Valproico/farmacologia
19.
Birth Defects Res B Dev Reprod Toxicol ; 104(5): 177-83, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26305274

RESUMO

In utero exposure to valproic acid (VPA), an anticonvulsant and histone deacetylase inhibitor (HDACi), increases the risk of congenital malformations. Although the mechanisms leading to the teratogenicity of VPA remain unsolved, several HDAC inhibitors increase cell death in cancer cell lines and embryonic tissues. Moreover, P53, the master regulator of apoptosis, is an established HDAC target. The purpose of this study was to investigate the effects of VPA on P53 signaling and markers of apoptosis during midorganogenesis in vitro limb development. Timed-pregnant CD1 mice (gestation day 12) were euthanized; embryonic forelimbs were excised and cultured in vitro for 3, 6, 12, or 24 hr in the presence or absence of VPA or valpromide (VPD), a non-HDACi analog of VPA. Quantitative RT-PCR and Western blots were used to assess the expression of candidate genes and proteins involved in P53 signaling and apoptosis. P53 hyperacetylation and a decrease (Survivin/Birc5 and Bcl2) or an increase (p21/Cdkn1a) in the expression of p53 target genes was observed only in VPA-exposed limbs. VPA exposure also triggered an increase in markers of apoptosis and DNA damage; the concentrations of cleaved caspase 9 and caspase 3, cleaved-poly (ADP-ribose) polymerase, and γ-H2AX were increased in VPA-exposed limbs. VPD treatment caused a small but significant increase in cleaved caspase 3. Thus, in vitro exposure to an HDACi such as VPA leads to P53 hyperacetylation, enhances the expression of P53 target genes, and triggers an increase in apoptosis that may contribute to teratogenicity.


Assuntos
Apoptose/genética , Biomarcadores/metabolismo , Extremidades/embriologia , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Organogênese/genética , Proteína Supressora de Tumor p53/metabolismo , Ácido Valproico/toxicidade , Acetilação/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Caspase 9/metabolismo , Feminino , Histonas/metabolismo , Camundongos , Organogênese/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , Poli(ADP-Ribose) Polimerases/metabolismo , Ácido Valproico/análogos & derivados
20.
Dalton Trans ; 43(43): 16252-64, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25069996

RESUMO

The 18 kDa translocator protein (TSPO) is overexpressed in many types of cancers and is also abundant in activated microglial cells occurring in inflammatory neurodegenerative diseases. The TSPO-selective ligand 2-(8-(2-(bis-(pyridin-2-yl-methyl)amino)acetamido)-2-(4-chlorophenyl)H-imidazo[1,2-a]pyridin-3-yl)-N,N-dipropylacetamide (CB256), which fulfills the requirements of a bifunctional chelate approach, has been used to synthesize coordination complexes containing either Pt (1) or Re (3), or both metal ions (2). The new metal complexes showed a cellular uptake markedly greater than that of the precursor metallic compounds and were also able to induce apoptosis in C6 glioma cells. The good cytotoxicity of the free ligand CB256 towards C6, A2780, and A2780cisR tumor cell lines was attenuated after coordination of the dipicolylamine moiety to Pt while coordination of the imidazopyridine residue to Re reduces the affinity towards TSPO. The results of the present investigation are essential for the design of new imidazopyridine bifunctional chelate ligands targeted to TSPO.


Assuntos
Complexos de Coordenação/síntese química , Platina/química , Receptores de GABA/metabolismo , Rênio/química , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Complexos de Coordenação/metabolismo , Complexos de Coordenação/toxicidade , Humanos , Ligantes , Microscopia de Fluorescência , Mitocôndrias/metabolismo , Ligação Proteica , Receptores de GABA/química , Ácido Valproico/análogos & derivados , Ácido Valproico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA