Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 129
Filtrar
1.
Nature ; 599(7885): 471-476, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34732892

RESUMO

Small, soluble metabolites not only are essential intermediates in intracellular biochemical processes, but can also influence neighbouring cells when released into the extracellular milieu1-3. Here we identify the metabolite and neurotransmitter GABA as a candidate signalling molecule synthesized and secreted by activated B cells and plasma cells. We show that B cell-derived GABA promotes monocyte differentiation into anti-inflammatory macrophages that secrete interleukin-10 and inhibit CD8+ T cell killer function. In mice, B cell deficiency or B cell-specific inactivation of the GABA-generating enzyme GAD67 enhances anti-tumour responses. Our study reveals that, in addition to cytokines and membrane proteins, small metabolites derived from B-lineage cells have immunoregulatory functions, which may be pharmaceutical targets allowing fine-tuning of immune responses.


Assuntos
Linfócitos B/metabolismo , Interleucina-10/imunologia , Macrófagos/metabolismo , Neoplasias/imunologia , Ácido gama-Aminobutírico/metabolismo , Animais , Linfócitos B/imunologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Proliferação de Células , Feminino , Deleção de Genes , Glutamato Descarboxilase/deficiência , Glutamato Descarboxilase/genética , Humanos , Inflamação/imunologia , Inflamação/prevenção & controle , Macrófagos/imunologia , Masculino , Camundongos , Neoplasias/patologia , Linfócitos T Citotóxicos/imunologia , Linfócitos T Citotóxicos/metabolismo , Ácido gama-Aminobutírico/biossíntese
2.
Int J Mol Sci ; 22(16)2021 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-34445736

RESUMO

The second messenger 2'3'-cyclic-GMP-AMP (cGAMP) is thought to be transmitted from brain carcinomas to astrocytes via gap junctions, which functions to promote metastasis in the brain parenchyma. In the current study, we established a method to introduce cGAMP into astrocytes, which simulates the state of astrocytes that have been invaded by cGAMP around tumors. Astrocytes incorporating cGAMP were analyzed by metabolomics, which demonstrated that cGAMP increased glutamate production and astrocyte secretion. The same trend was observed for γ-aminobutyric acid (GABA). Conversely, glutamine production and secretion were decreased by cGAMP treatment. Due to the fundamental role of astrocytes in regulation of the glutamine-glutamate cycle, such metabolic changes may represent a potential mechanism and therapeutic target for alteration of the central nervous system (CNS) environment and the malignant transformation of brain carcinomas.


Assuntos
Astrócitos/metabolismo , Neoplasias Encefálicas/metabolismo , Nucleotídeos Cíclicos/metabolismo , Animais , Glucose/metabolismo , Metástase Neoplásica , Cultura Primária de Células , Ratos Wistar , Ácido gama-Aminobutírico/biossíntese
3.
Plant Signal Behav ; 16(5): 1899672, 2021 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-33704006

RESUMO

When synchronized with the light/dark cycle the circadian rhythm is termed a diurnal rhythm and this organizes an organism's daily life cycle in relation to the metabolic shifts during the day/night cycles. This is a complex task, particularly under stress conditions. Accurate maintenance of the diurnal rhythm becomes an issue under environmental extremes, such as drought due to the impairment of metabolism, redox balance, and structural integrity. In plants, the non-proteinogenic amino acid GABA accumulates to high levels in response to several stress factors but this is not always dependent on the activation of its biosynthesis. Here we propose a regulatory role to GABA during the diurnal rhythm in plants which is similar to its function in animals where it adjusts the circadian rhythm. Here we investigated whether GABA-biosynthesis was affected by drought stress during the diurnal cycle. For this, we took samples from leaves of N. tabacum plants subjected to PEG-mediated drought stress (-0.73 MPa) during the day and night cycle during a 24 hour period. Glutamate, GABA, and proline contents, along with GDH, GAD enzyme activities and transcript profiles were analyzed. Overall, we conclude that the oscillations in GABA biosynthesis during day and night cycle have an impact on drought stress responses which needs to be elucidated by further analysis.


Assuntos
Ritmo Circadiano/fisiologia , Secas , Nicotiana/fisiologia , Ácido gama-Aminobutírico/biossíntese , Glutamato Descarboxilase/metabolismo , Glutamato Desidrogenase/metabolismo , Ácido Glutâmico/metabolismo , Prolina/metabolismo , Nicotiana/crescimento & desenvolvimento
4.
J Endocrinol Invest ; 44(8): 1727-1737, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33387350

RESUMO

PURPOSE: Polycystic ovary syndrome (PCOS) is a common heterogeneous endocrine disorder companied with neuroendocrine and metabolic disorders. Gut microbiota has been implicated to play a key role in metabolic diseases and the production of neurotransmitters. Previous studies have reported the alterations in the gut microbiota of PCOS patients and animal models, however, most of the articles did not take the effect of age or diet on gut microbiota into account. The aim of this study was to identify the differential gut microbial species in PCOS patients compared with age and BMI-matched healthy control women. METHODS: We performed physical examinations and dietary survey in 20 women with PCOS (lean PCOS, PL, n = 10; overweight PCOS, PO, n = 10) and 20 healthy control women (lean control, CL, n = 10; overweight control, CO, n = 10), and collected the blood on the days 1-3 of the menstrual cycle for the measurement of endocrine and metabolic profiles, and inflammatory factors; and collected the feces in non-menstrual period to investigate the composition of gut microbiota by sequencing the V4 region of the 16S rDNA gene in fecal samples. The correlations between clinical parameters and the differential species were evaluated. RESULTS: Dietary analysis showed that the intake of dietary fiber, vitamin D were significantly decreased in PCOS. For the first time, our study found an increase of gamma-aminobutyric acid (GABA)-producing species in PCOS, including Parabacteroides distasonis, Bacteroides fragilis and Escherichia coli, which significantly positively correlated with serum LH levels and LH:FSH ratios. CONCLUSIONS: GABA-producing bacteria that were increased in PCOS, including Parabacteroides distasonis, Bacteroides fragilis and Escherichia coli, showed positive relationship with serum LH levels and LH:FSH ratios. In conclusion, gut microbial dysbiosis in women with PCOS is associated with neuroendocrine changes, revealing a potential gut-brain axis in PCOS.


Assuntos
Bactérias , Eixo Encéfalo-Intestino/fisiologia , Disbiose , Microbioma Gastrointestinal/fisiologia , Sobrepeso , Síndrome do Ovário Policístico , Adulto , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Disbiose/diagnóstico , Disbiose/etiologia , Disbiose/microbiologia , Fezes/microbiologia , Feminino , Hormônio Foliculoestimulante/sangue , Humanos , Hormônio Luteinizante/sangue , Sistemas Neurossecretores/fisiopatologia , Inquéritos Nutricionais/métodos , Inquéritos Nutricionais/estatística & dados numéricos , Sobrepeso/diagnóstico , Sobrepeso/etiologia , Síndrome do Ovário Policístico/complicações , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/fisiopatologia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/isolamento & purificação , Ácido gama-Aminobutírico/biossíntese
5.
Proc Natl Acad Sci U S A ; 117(52): 33235-33245, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318193

RESUMO

The antimalarial artemisinins have also been implicated in the regulation of various cellular pathways including immunomodulation of cancers and regulation of pancreatic cell signaling in mammals. Despite their widespread application, the cellular specificities and molecular mechanisms of target recognition by artemisinins remain poorly characterized. We recently demonstrated how these drugs modulate inhibitory postsynaptic signaling by direct binding to the postsynaptic scaffolding protein gephyrin. Here, we report the crystal structure of the central metabolic enzyme pyridoxal kinase (PDXK), which catalyzes the production of the active form of vitamin B6 (also known as pyridoxal 5'-phosphate [PLP]), in complex with artesunate at 2.4-Šresolution. Partially overlapping binding of artemisinins with the substrate pyridoxal inhibits PLP biosynthesis as demonstrated by kinetic measurements. Electrophysiological recordings from hippocampal slices and activity measurements of glutamic acid decarboxylase (GAD), a PLP-dependent enzyme synthesizing the neurotransmitter γ-aminobutyric acid (GABA), define how artemisinins also interfere presynaptically with GABAergic signaling. Our data provide a comprehensive picture of artemisinin-induced effects on inhibitory signaling in the brain.


Assuntos
Artemisininas/farmacologia , Regulação para Baixo , Inibição Neural/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Piridoxal Quinase/antagonistas & inibidores , Transmissão Sináptica/efeitos dos fármacos , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Artemisininas/química , Sítios de Ligação , Regulação para Baixo/efeitos dos fármacos , Fenômenos Eletrofisiológicos/efeitos dos fármacos , Feminino , Neurônios GABAérgicos/efeitos dos fármacos , Neurônios GABAérgicos/metabolismo , Glutamato Descarboxilase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Modelos Biológicos , Modelos Moleculares , Inibidores de Proteínas Quinases/química , Piridoxal Quinase/química , Piridoxal Quinase/metabolismo , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ácido gama-Aminobutírico/biossíntese
6.
Food Chem ; 289: 635-644, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-30955658

RESUMO

Polyphenols and γ-aminobutyric acid (GABA) accumulate during seed germination, but the mechanisms involved are poorly understood. The objective of this study was to elucidate the accumulation of these bioactive compounds in Chinese wild rice during germination. The greatest differences in the phenolic content were at 36-h (G36) and 120-h germination (G120) stages. An iTRAQ-based proteomic analysis revealed 7031 proteins, and a comparison of the G120 and G36 stages revealed 956 upregulated and 188 downregulated proteins. The KEGG analysis revealed significant protein enrichment in the "metabolic pathways", "biosynthesis of secondary metabolites" and "phenylpropanoid biosynthesis". Four phenylalanine ammonia-lyases, one 4-coumarate-CoA ligase, one cinnamoyl-CoA reductase, two cinnamyl alcohol dehydrogenases, and four glutamate decarboxylases exhibited higher expression at the G120 than at the G36 stage and promoted phenolics and GABA accumulation. This study revealed bioactive compound accumulation in germinating Chinese wild rice, and the finding may help develop functional foods derived from this cereal.


Assuntos
Germinação , Oryza/química , Proteômica , Aminoácidos/metabolismo , Regulação da Expressão Gênica de Plantas , Fenóis/análise , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido gama-Aminobutírico/biossíntese
7.
Science ; 360(6393)2018 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-29599193

RESUMO

Pulmonary neuroendocrine cells (PNECs) are rare airway epithelial cells whose function is poorly understood. Here we show that Ascl1-mutant mice that have no PNECs exhibit severely blunted mucosal type 2 response in models of allergic asthma. PNECs reside in close proximity to group 2 innate lymphoid cells (ILC2s) near airway branch points. PNECs act through calcitonin gene-related peptide (CGRP) to stimulate ILC2s and elicit downstream immune responses. In addition, PNECs act through the neurotransmitter γ-aminobutyric acid (GABA) to induce goblet cell hyperplasia. The instillation of a mixture of CGRP and GABA in Ascl1-mutant airways restores both immune and goblet cell responses. In accordance, lungs from human asthmatics show increased PNECs. These findings demonstrate that the PNEC-ILC2 neuroimmunological modules function at airway branch points to amplify allergic asthma responses.


Assuntos
Asma/imunologia , Asma/patologia , Pulmão/patologia , Células Neuroendócrinas/imunologia , Células Neuroendócrinas/patologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Citocinas/biossíntese , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/patologia , Feminino , Células Caliciformes/patologia , Humanos , Hiperplasia , Camundongos , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/metabolismo
8.
J Food Drug Anal ; 26(1): 74-81, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29389591

RESUMO

γ-Aminobutyric acid (GABA), a nonprotein amino acid, is widely distributed in nature and fulfills several physiological functions. In this study, various lactic acid strains commonly used to produce fermented milk products were inoculated into adzuki bean milk for producing GABA. The high GABA producing strain was selected in further experiment to improve the GABA production utilizing culture medium optimization. The results demonstrated that adzuki bean milk inoculated with Lactobacillus rhamnosus GG increased GABA content from 0.05 mg/mL to 0.44 mg/mL after 36 hours of fermentation, which showed the greatest elevation in this study. Furthermore, the optimal cultural condition to adzuki bean milk inoculated with L. rhamnosus GG to improve the GABA content was performed using response surface methodology. The results showed that GABA content was dependent on the addition of galactose, monosodium glutamate, and pyridoxine with which the increasing ratios of GABA were 23-38%, 24-68%, and 8-36%, respectively. The optimal culture condition for GABA production of adzuki bean milk was found at the content of 1.44% galactose, 2.27% monosodium glutamate, and 0.20% pyridoxine. Under the optimal cultural condition, the amount of GABA produced in the fermented adzuki bean milk was 1.12 mg/mL, which was 22.4-fold higher than that of the unfermented adzuki bean milk (0.05 mg/100 mL). The results suggested that the optimized cultural condition of adzuki bean milk inoculated with L. rhamnosus GG can increase GABA content for consumers as a daily supplement as suggested.


Assuntos
Fermentação , Vigna/metabolismo , Ácido gama-Aminobutírico/biossíntese , Análise de Variância , Carbono/metabolismo , Meios de Cultura , Microbiologia de Alimentos , Concentração de Íons de Hidrogênio , Cinética , Nitrogênio/metabolismo
9.
Cereb Cortex ; 28(11): 3797-3815, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29028947

RESUMO

The postnatal functions of the Dlx1&2 transcription factors in cortical interneurons (CINs) are unknown. Here, using conditional Dlx1, Dlx2, and Dlx1&2 knockouts (CKOs), we defined their roles in specific CINs. The CKOs had dendritic, synaptic, and survival defects, affecting even PV+ CINs. We provide evidence that DLX2 directly drives Gad1, Gad2, and Vgat expression, and show that mutants had reduced mIPSC amplitude. In addition, the mutants formed fewer GABAergic synapses on excitatory neurons and had reduced mIPSC frequency. Furthermore, Dlx1/2 CKO had hypoplastic dendrites, fewer excitatory synapses, and reduced excitatory input. We provide evidence that some of these phenotypes were due to reduced expression of GRIN2B (a subunit of the NMDA receptor), a high confidence Autism gene. Thus, Dlx1&2 coordinate key components of CIN postnatal development by promoting their excitability, inhibitory output, and survival.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Neurônios GABAérgicos/fisiologia , Proteínas de Homeodomínio/fisiologia , Interneurônios/fisiologia , Sinapses/fisiologia , Fatores de Transcrição/fisiologia , Ácido gama-Aminobutírico/biossíntese , Animais , Córtex Cerebral/citologia , Feminino , Neurônios GABAérgicos/citologia , Regulação da Expressão Gênica no Desenvolvimento , Glutamato Descarboxilase/metabolismo , Proteínas de Homeodomínio/genética , Interneurônios/citologia , Masculino , Camundongos Knockout , Potenciais Pós-Sinápticos em Miniatura , Fatores de Transcrição/genética , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/metabolismo
10.
Electron. j. biotechnol ; Electron. j. biotechnol;27: 8-13, May. 2017. ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1010145

RESUMO

Background: GABA (γ-aminobutyric acid) is a four-carbon nonprotein amino acid that has hypotensive, diuretic, and tranquilizing properties. Glutamate decarboxylase (GAD) is the key enzyme to generate GABA. A simple and economical method of preparing and immobilizing GAD would be helpful for GABA production. In this study, the GAD from Lactobacillus fermentum YS2 was expressed under the control of a stress-inducible promoter and was purified and immobilized in a fusion form, and its reusability was investigated. Results: The fusion protein CBM-GAD was expressed in Escherichia coli DH5α carrying pCROCB-gadB, which contained promoter PrpoS, cbm3 (family 3 carbohydrate-binding module from Clostridium thermocellum) coding sequence, the gadB gene from L. fermentum YS2 coding for GAD, and the T7 terminator. After a one-step purification of CBM-GAD using regenerated amorphous cellulose (RAC) as an adsorbent, SDS-PAGE analysis revealed a clear band of 71 kDa; the specific activity of the purified fusion protein CBM-GAD reached 83.6 ± 0.7 U·mg-1. After adsorption onto RAC, the immobilized GAD with CBM3 tag was repeatedly used for GABA synthesis. The protein-binding capacity of RAC was 174 ± 8 mg·g-1. The immobilized CBM-GAD could repeatedly catalyze GABA synthesis, and 8% of the initial activities was retained after 10 uses. We tested the conversion of monosodium glutamate to GABA by the immobilized enzyme; the yield reached 5.15 g/L and the productivity reached 3.09 g/L·h. Conclusions: RAC could be used as an adsorbent in one-step purification and immobilization of CBM-GAD, and the immobilized enzyme could be repeatedly used to catalyze the conversion of glutamate to GABA.


Assuntos
Limosilactobacillus fermentum/enzimologia , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Temperatura , Proteínas Recombinantes de Fusão , Celulose , Clonagem Molecular , Adsorção , Enzimas Imobilizadas , Escherichia coli , Ácido gama-Aminobutírico/biossíntese , Concentração de Íons de Hidrogênio
11.
Ecotoxicol Environ Saf ; 140: 131-140, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28254723

RESUMO

Semicarbazide (SMC) is a carcinogenic and genotoxic substance that has been found in aquatic systems. SMC may also cause thyroid follicular epithelial cell injury in rats, but the thyroid-disrupting properties of SMC and its potential mechanisms remain unclear. In this study, we exposed fertilized eggs of Japanese flounder (Paralichthys olivaceus) to 1, 10, 100, and 1000µg/L SMC for 55 d to assess the impact of SMC exposure on the thyroid system. The number of larvae in each metamorphic stage was counted, the concentrations of whole-body thyroid hormones (THs) 3,5,3'-triiodothyronine (T3) and thyroxine (T4) were measured, and the transcription levels of genes involved in the hypothalamic-pituitary-thyroid (HPT) axis and gamma-aminobutyric acid (GABA) synthesis were quantified. The results showed that 10µg/L SMC significantly increased whole-body T3 levels, and 100 and 1000µg/L SMC markedly enhanced whole-body T4 and T3 levels. Furthermore, 100µg/L SMC exposure shortened the time it took for flounder larvae to complete metamorphosis by 2 d as compared to the control group. Thus, this study demonstrated that SMC exerted thyroid-disrupting effects on Japanese flounder. SMC-mediated stimulation of TH levels was primarily related to transcriptional alterations of pituitary-derived thyroid stimulating hormone ß-subunit (tshß) and hepatic deiodinase (id). In the 10 and 100µg/L SMC exposure groups, the increased TH levels may have resulted from inhibition of TH metabolism caused by down-regulation of id3 mRNA expression, while at 1000µg/L SMC-exposed group, up-regulation of tshß and id1 transcripts was expected to enhance the synthesis of T4 and the conversion of T4 to T3 and, consequently, result in higher T4 and T3 levels. In addition, 1000µg/L SMC-induced down-regulation in glutamic acid decarboxylase gad65 and gad67 transcription may have also contributed to the increased TH levels. The thyroid-disrupting effects of 10 and 100µg/L SMC indicated that environmentally relevant concentrations of SMC posed potential environmental risks to aquatic organisms. Overall, our results demonstrated for the first time that SMC exhibited thyroid-disrupting properties by affecting the HPT axis and GABA synthesis, providing theoretical support for environmental risk assessment.


Assuntos
Disruptores Endócrinos/toxicidade , Linguado/metabolismo , Semicarbazidas/toxicidade , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Regulação para Baixo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Iodeto Peroxidase/genética , Iodeto Peroxidase/metabolismo , Larva/metabolismo , Fígado/efeitos dos fármacos , Fígado/enzimologia , Metamorfose Biológica/efeitos dos fármacos , Glândula Tireoide/metabolismo , Hormônios Tireóideos/genética , Regulação para Cima , Ácido gama-Aminobutírico/biossíntese
12.
J Neurochem ; 138(6): 918-28, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27331785

RESUMO

The divalent metal transporter 1 (DMT1) is a major iron transporter required for iron absorption and erythropoiesis. Loss of DMT1 function results in microcytic anemia. While iron plays an important role in neural function, the behavioral consequences of DMT1 deficiency are largely unexplored. The goal of this study was to define the neurobehavioral and neurochemical phenotypes of homozygous Belgrade (b/b) rats that carry DMT1 mutation and explore potential mechanisms of these phenotypes. The b/b rats (11-12 weeks old) and their healthy littermate heterozygous (+/b) Belgrade rats were subject to elevated plus maze tasks. The b/b rats spent more time in open arms, entered open arms more frequently and traveled more distance in the maze than +/b controls, suggesting increased impulsivity. Impaired emotional behavior was associated with down-regulation of GABA in the hippocampus in b/b rats. Also, b/b rats showed increased GABAA receptor α1 and GABA transporter, indicating altered GABAergic function. Furthermore, metal analysis revealed that b/b rats have decreased total iron, but normal non-heme iron, in the brain. Interestingly, b/b rats exhibited unusually high copper levels in most brain regions, including striatum and hippocampus. Quantitative PCR analysis showed that both copper importer copper transporter 1 and exporter copper-transporting ATPase 1 were up-regulated in the hippocampus from b/b rats. Finally, b/b rats exhibited increased 8-isoprostane levels and decreased glutathione/glutathione disulfide ratio in the hippocampus, reflecting elevated oxidative stress. Combined, our results suggest that copper loading in DMT1 deficiency could induce oxidative stress and impair GABA metabolism, which promote impulsivity-like behavior. Iron-copper model: Mutations in the divalent metal transporter 1 (DMT1) decrease body iron status and up-regulate copper absorption, which leads to copper loading in the brain and consequently increases metal-induced oxidative stress. This event disrupts GABAergic neurotransmission and promotes impulsivity-like behavior. Our model provides better understanding of physiological risks associated with imbalanced metal metabolism in mental function and, more specifically, the interactions with GABA and redox control in the treatment of emotional disorders.


Assuntos
Química Encefálica/genética , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/fisiologia , Cobre/metabolismo , Comportamento Impulsivo , Adenosina Trifosfatases/metabolismo , Animais , Ansiedade/genética , Ansiedade/psicologia , Comportamento Animal , Proteínas de Transporte de Cátions/metabolismo , Transportador de Cobre 1 , Regulação para Baixo , Emoções/fisiologia , Proteínas da Membrana Plasmática de Transporte de GABA/metabolismo , Hipocampo/metabolismo , Ferro/metabolismo , Masculino , Metionina/análogos & derivados , Mutação/genética , Ferroproteínas não Heme/metabolismo , Ratos , Ratos Endogâmicos F344 , Receptores de GABA-A/genética , Ácido gama-Aminobutírico/biossíntese
13.
Circ Res ; 119(5): 621-34, 2016 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-27354210

RESUMO

RATIONALE: Gamma aminobutyric acid (GABA), a neurotransmitter of the central nervous system, is found in the systemic circulation of humans at a concentration between 0.5 and 3 µmol/L. However, the potential source of circulating GABA and its significance on the vascular system remains unknown. We hypothesized that endothelial cells (ECs) may synthesize and release GABA to modulate some functions in the EC and after its release into the circulation. OBJECTIVE: To assess whether GABA is synthesized and released by the EC and its potential functions. METHODS AND RESULTS: Utilizing the human umbilical vein ECs and aortic ECs, we demonstrated for the first time that ECs synthesize and release GABA from [1-(14)C]glutamate. Localization of GABA and the presence of the GABA-synthesizing enzyme, glutamic acid decarboxylase in EC were confirmed by immunostaining and immunoblot analysis, respectively. The presence of GABA was further confirmed by immunohistochemistry in the EC lining the human coronary vessel. EC-derived GABA regulated the key mechanisms of ATP synthesis, fatty acid, and pyruvate oxidation in EC. GABA protected EC by inhibiting the reactive oxygen species generation and prevented monocyte adhesion by attenuating vascular cell adhesion molecule -1 and monocyte chemoattractant protein-1 expressions. GABA had no relaxing effect on rat aortic rings. GABA exhibited a dose-dependent fall in blood pressure. However, the fall in BP was abolished after pretreatment with pentolinium. CONCLUSIONS: Our findings indicate novel potential functions of endothelium-derived GABA.


Assuntos
Células Endoteliais/metabolismo , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/metabolismo , Animais , Aorta/efeitos dos fármacos , Aorta/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/fisiologia , Células Cultivadas , Células Endoteliais/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/farmacologia
14.
Neurochem Int ; 98: 4-18, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27233497

RESUMO

The neuronal excitatory amino acid transporter 3 (EAAT3) is fairly ubiquitously expressed in the brain, though it does not necessarily maintain the same function everywhere. It is important in maintaining low local concentrations of glutamate, where its predominant post-synaptic localization can buffer nearby glutamate receptors and modulate excitatory neurotransmission and synaptic plasticity. It is also the main neuronal cysteine uptake system acting as the rate-limiting factor for the synthesis of glutathione, a potent antioxidant, in EAAT3 expressing neurons, while on GABAergic neurons, it is important in supplying glutamate as a precursor for GABA synthesis. Several diseases implicate EAAT3, and modulation of this transporter could prove a useful therapeutic approach. Regulation of EAAT3 could be targeted at several points for functional modulation, including the level of transcription, trafficking and direct pharmacological modulation, and indeed, compounds and experimental treatments have been identified that regulate EAAT3 function at different stages, which together with observations of EAAT3 regulation in patients is giving us insight into the endogenous function of this transporter, as well as the consequences of altered function. This review summarizes work done on elucidating the role and regulation of EAAT3.


Assuntos
Transportador 3 de Aminoácido Excitatório/genética , Transportador 3 de Aminoácido Excitatório/fisiologia , Animais , Transportador 3 de Aminoácido Excitatório/metabolismo , Regulação da Expressão Gênica , Humanos , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Doenças do Sistema Nervoso/genética , Doenças do Sistema Nervoso/metabolismo , Ácido gama-Aminobutírico/biossíntese , Ácido gama-Aminobutírico/metabolismo
15.
Chin J Physiol ; 59(2): 119-25, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27080467

RESUMO

Gamma-aminobutyric acid (GABA) is involved in the proliferation, differentiation, and migration of several cell types including cancer cells. Whether GABA may be involved with acute lymphoblastic leukemia (ALL) is unclear. Therefore, the goal of this report was to examine if GABAergic signaling expression is altered in bone marrow lymphocytes of ALL children. RT-PCR and western blot analysis were used to examine the expression of the GABA synthetizing enzyme glutamic acid decarboxylase (GAD) isoforms (GAD65 and GAD67), and type-A GABA receptor (GABAAR) subunits [α(1-6), ß(1-3), γ(1-3), δ, ε, θ, π, and ρ(1-3)] in bone marrow lymphocytes of 19 ALL children before chemotherapy. The data obtained were compared with those in 13 age-matched non-ALL children. Immunofluorescent staining was used to examine the cellular localization of GAD. We found that GAD and GABAAR subunits were expressed in bone marrow lymphocytes of ALL children. Moreover, RT-PCR and western blot showed that GAD and several GABAAR subunits were significantly increased in ALL children as compared with the data of non-ALL children. Our present study reveals up-regulation of GABAergic signaling events in bone marrow lymphocytes in ALL children. However, the role of this signaling system in lymphocyte proliferation and invasion as related to the progression of ALL requires further investigation.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Linfócitos/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/metabolismo , Ácido gama-Aminobutírico/metabolismo , Western Blotting , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Glutamato Descarboxilase/biossíntese , Glutamato Descarboxilase/genética , Humanos , Isoenzimas/biossíntese , Isoenzimas/genética , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/enzimologia , Receptores de GABA-A/biossíntese , Receptores de GABA-A/genética , Transdução de Sinais/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos , Ácido gama-Aminobutírico/biossíntese
16.
J Dairy Sci ; 99(2): 994-1001, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26686724

RESUMO

γ-Aminobutyric acid (GABA) is one of the most important functional components in fermented foods because of its physiological functions, such as neurotransmission and antihypertensive activities. However, little is known about components other than GABA in GABA-rich fermented foods. A metabolomic approach offers an opportunity to discover bioactive and flavor components in fermented food. To find specific components in milk fermented with GABA-producing Lactococcus lactis 01-7, we compared the components found in GABA-rich fermented milk with those found in control milk fermented without GABA production using capillary electrophoresis time-of-flight mass spectrometry. A principal component analysis score plot showed a clear differentiation between the control milk fermented with L. lactis 01-1, which does not produce GABA, and GABA-rich milk fermented with a combination of L. lactis strains 01-1 and 01-7. As expected, the amount of GABA in GABA-rich fermented milk was much higher (1,216-fold) than that of the control milk. Interestingly, the amount of Orn was also much higher (27-fold) than that of the control milk. Peptide analysis showed that levels of 6 putative angiotensin-I-converting enzyme (ACE)-inhibitory peptides were also higher in the GABA-rich fermented milk. Furthermore, ACE-inhibitory activity of GABA-rich fermented milk tended to be higher than that of the control milk. These results indicate that the GABA-producing strain 01-7 provides fermented milk with other functional components in addition to GABA.


Assuntos
Fermentação , Lactococcus lactis/metabolismo , Metabolômica , Leite/química , Ácido gama-Aminobutírico/biossíntese , Inibidores da Enzima Conversora de Angiotensina/análise , Animais , Anti-Hipertensivos/análise , Leite/metabolismo , Peptídeos/análise , Ácido gama-Aminobutírico/análise
17.
Cereb Cortex ; 26(5): 2191-2204, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25824535

RESUMO

Non-overlapping groups of cortical γ-aminobutyric acid-releasing (GABAergic) neurons are identifiable by the presence of calbindin (CB), calretinin (CR), or parvalbumin (PV). Boutons from PV neuron subtypes are also distinguishable by differences in protein levels of the GABA-synthesizing enzymes GAD65 and GAD67. Multilabel fluorescence microscopy was used to determine if this diversity extends to boutons of CB and CR neurons in monkey prefrontal cortex. CB and CR neurons gave rise to 3 subpopulations of GAD-containing boutons: GAD65+, GAD67+, and GAD65/GAD67+. Somatostatin and vasoactive intestinal peptide-expressing neurons, subtypes of CB and CR neurons, respectively, also gave rise to these distinct bouton subpopulations. At the transcript level, CB and CR neurons contained mRNA encoding GAD67-only or both GADs. Thus, the distinct subpopulations of CB/GAD+ and CR/GAD+ boutons arise from 2 unique subtypes of CB and CR neurons. The different CB and CR GAD-expressing neurons targeted the same projection neurons and neuronal structures immunoreactive for PV, CR, or CB. These findings suggest that GABA synthesis from CB/GAD67+ and CR/GAD67+ neurons would presumably be more vulnerable to disease-associated deficits in GAD67 expression, such as in schizophrenia, than neurons that also contain GAD65.


Assuntos
Calbindina 2/metabolismo , Calbindinas/metabolismo , Neurônios GABAérgicos/enzimologia , Córtex Pré-Frontal/enzimologia , Terminações Pré-Sinápticas/enzimologia , Ácido gama-Aminobutírico/biossíntese , Animais , Glutamato Descarboxilase/metabolismo , Macaca mulatta , Masculino , Somatostatina/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo
18.
J Med Food ; 18(12): 1371-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26348620

RESUMO

The aim of this study is to select a lactic acid bacterial strain as a starter culture for flatfish-Sikhae fermentation and to evaluate its suitability for application in a food system. Four strains of lactic acid bacteria isolated from commercial flatfish-Sikhae were identified and selected as starter culture candidates through investigation of growth rates, salt tolerance, food safety, and functional properties such as antioxidative and antimicrobial activities. The fermentation properties of the starter candidates were also examined in food systems prepared with these strains (candidate batch) in comparison with a spontaneous fermentation process without starter culture (control batch) at 15°C. The results showed that the candidate YG331 batch had better fermentation properties such as viable cell count, pH, and acidity than the other experimental batches, including the control batch. The results are expressed according to selection criteria based on a preliminary sensory evaluation and physiochemical investigation. Also, only a small amount of histamine was detected with the candidate YG331 batch. The radical scavenging activity of the candidate batches was better compared with the control batch, and especially candidate YG331 batch showed the best radical scavenging activity. Also, we isolated another starter candidate (identified as Lactobacillus brevis PM03) with γ-aminobutyric acid (GABA)-producing activity from commercial flatfish-Sikhae products. The sensory scores of the candidate YG331 batch were better than those of the other experimental batches in terms of flavor, color, and overall acceptance. In this study, we established selection criteria for the lactic acid bacterial starter for the flatfish-Sikhae production and finally selected candidate YG331 as the most suitable starter.


Assuntos
Antioxidantes/farmacologia , Fermentação , Peixes/microbiologia , Lactobacillus , Ácido gama-Aminobutírico/biossíntese , Animais , Técnicas de Cultura de Células/métodos , Cor , Humanos , Lactobacillus/classificação , Lactobacillus/metabolismo , Levilactobacillus brevis , Especificidade da Espécie , Paladar
19.
Pharmacol Biochem Behav ; 135: 97-104, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26044967

RESUMO

BACKGROUND: Cortical GABA regulates a number of cognitive functions including attention and working memory and is dysregulated in a number of psychiatric conditions. In schizophrenia for example, changes in GABA neurons [reduced expression of glutamic acid decarboxylase (GAD), parvalbumin (PV) and the GABA reuptake transporter (GAT1)] suggest reduced cortical GABA synthesis and release; these changes are hypothesized to cause the cognitive deficits observed in this disorder. The goals of this experiment were to determine whether chronically reducing GAD function within the rat PFC causes attention deficits and alterations in PV and GAT1 expression. METHODS: Male Sprague Dawley rats were trained on the 5-choice serial reaction time task (5CSRTT, a task of attention) until they reached criterion performance and then were implanted with a bilateral cannula aimed at the medial PFC. Cannulae were connected to osmotic minipumps that infused the GAD inhibitor l-allylglycine (LAG, 3.2µg/0.5µl/h) for 13days. Following a 5-day recovery from surgery rats were tested on the standard 5CSRTT for 5 consecutive days and then tested on two modifications of the 5CSRTT. Finally, locomotor activity was assessed and the rats sacrificed. Brains were rapidly extracted and flash frozen and analyzed for the expression of GAD67, PV, GAT1 and the obligatory NMDA receptor subunit NR1. RESULTS: Chronic LAG infusions transiently impaired attention, persistently impaired impulse control and increased locomotor activity. Behavioral changes were associated with an upregulation of GAD67, but no change in PV, GAT1 or NR1 expression. SUMMARY: Chronic inhibition of GABA synthesis within the medial PFC, increased impulsive behavior and locomotion, but did not impair attention; results consistent with previous research following acute inhibition of GABA synthesis. Moreover, our data do not support the hypothesis that decreasing GABA synthesis and release is sufficient to cause changes in other GABA-related proteins.


Assuntos
Atenção/efeitos dos fármacos , Antagonistas GABAérgicos/farmacologia , Comportamento Impulsivo , Ácido gama-Aminobutírico/biossíntese , Animais , Inibidores Enzimáticos/farmacologia , Antagonistas GABAérgicos/uso terapêutico , Proteínas da Membrana Plasmática de Transporte de GABA/biossíntese , Glutamato Descarboxilase/antagonistas & inibidores , Glutamato Descarboxilase/metabolismo , Masculino , Parvalbuminas/metabolismo , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/enzimologia , Ratos , Ratos Sprague-Dawley , Tempo de Reação/efeitos dos fármacos , Receptores de N-Metil-D-Aspartato/biossíntese , Receptores de N-Metil-D-Aspartato/genética
20.
J Mol Cell Biol ; 7(2): 168-79, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25701657

RESUMO

Otoferlin, an integral membrane protein implicated in a late stage of exocytosis, has been reported to play a critical role in hearing although the underlying mechanisms remain elusive. However, its widespread tissue distribution infers a more ubiquitous role in synaptic vesicle trafficking. Glutamate, an excitatory neurotransmitter, is converted to its inhibitory counterpart, γ-aminobutyric acid (GABA), by L-glutamic acid decarboxylase (GAD), which exists in soluble (GAD67) and membrane-bound (GAD65) forms. For the first time, we have revealed a close association between otoferlin and GAD65 in both HEK293 and neuronal cells, including SH-SY5Y neuroblastoma and primary rat hippocampus cells, showing a direct interaction between GAD65 and otoferlin's C2 domains. In primary rat hippocampus cells, otoferlin and GAD65 co-localized in a punctate pattern within the cell body, as well as in the axon along the path of vesicular traffic. Significantly, GABA is virtually abolished in otoferlin-knockdown neuronal cells whereas otoferlin overexpression markedly increases endogenous GABA. GABA attenuation in otoferlin-knockdown primary cells is correlated with diminished L-type calcium current. This previously unknown and close correlation demonstrates that otoferlin, through GAD65, modulates GABAergic activity. The discovery of otoferlin-GAD65 functional coupling provides a new avenue for understanding the molecular mechanism by which otoferlin functions in neurological pathways.


Assuntos
Neurônios GABAérgicos/fisiologia , Glutamato Descarboxilase/fisiologia , Proteínas de Membrana/fisiologia , Animais , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Células Cultivadas , Células HEK293 , Hipocampo/citologia , Humanos , Transporte Proteico , Ratos Sprague-Dawley , Ácido gama-Aminobutírico/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA