Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.279
Filtrar
1.
J Chem Theory Comput ; 20(9): 4045-4053, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38648670

RESUMO

pH-responsive nanoparticles are ideal vehicles for drug delivery and are widely used in cell imaging in targeted therapy of cancer, which usually has a weakly acidic microenvironment. In this work, we constructed a titratable molecular model for nanoparticles grafted with ligands of pH-sensitive carboxylic acids and investigated the interactions between the nanoparticles and the lipid bilayer in varying pH environments. We mainly examined the effect of the grafting density of the pH-sensitive ligands of the nanoparticles on the interactions of the nanoparticles with the lipid bilayer. The results show that the nanoparticles can penetrate the lipid bilayer only when the pH value is lower than a critical value, which can be readily modulated to the specific pH value of the tumor microenvironment by changing the ligand grafting density. This work provides some insights into modulating the interactions between the pH-sensitive nanoparticles and cellular membranes to realize targeted drug delivery to tumors based on their specific pH environment.


Assuntos
Bicamadas Lipídicas , Nanopartículas , Bicamadas Lipídicas/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Neoplasias/tratamento farmacológico , Humanos , Simulação de Dinâmica Molecular , Ácidos Carboxílicos/química , Ligantes , Microambiente Tumoral
2.
Chemosphere ; 357: 142045, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38641293

RESUMO

Several new per- and polyfluoroalkyl substances (PFASs) have been synthesized to replace traditional (legacy) PFASs frequently without clear information on their structure, use and potential toxicity. Among them, chloroperfluoropolyether carboxylates (ClPFPECAs) are an emerging group used as processing aids in the production of fluoropolymers to replace the ammonium salt of perfluorononanoic acid (PFNA). The Solvay Company has produced ClPFPECAs as a mixture of six congeners (oligomers) since the mid-1990s, but other possible manufacturers and annual quantities synthesized and used worldwide are unknown. Initial studies to monitor their presence were conducted because of public authority concerns about suspect environmental contamination near fluoropolymer plants. As of 2015, these chemicals have been found in soil, water, vegetative tissues and wildlife, as well as in biological fluids of exposed workers and people, in research carried out mainly in the United States (New Jersey) and Italy. Analysis of wildlife collected even in non-industrialized areas demonstrated widespread occurrence of ClPFPECAs. From the analytical point of view, the (presumptive) evidence of their presence was obtained through the application of non-targeted approaches performed by liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS). Available toxicological data show that ClPFPECAs have similar adverse effects than the compounds which they have replaced, whereas their carcinogenic potential and reproductive damage are currently unknown. All these observations once again cast doubt on whether many alternatives to traditional PFAS are actually safer for the environment and health.


Assuntos
Ácidos Carboxílicos , Poluentes Ambientais , Poluentes Ambientais/química , Poluentes Ambientais/análise , Poluentes Ambientais/toxicidade , Ácidos Carboxílicos/química , Humanos , Fluorocarbonos/química , Fluorocarbonos/análise , Fluorocarbonos/toxicidade , Animais , Polímeros de Fluorcarboneto/química , Polímeros de Fluorcarboneto/toxicidade , Monitoramento Ambiental
3.
Chemosphere ; 358: 142076, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38670506

RESUMO

Much of the toxicity in oil sands process-affected water in Athabasca oil sands tailings has been attributed to naphthenic acids (NAs) and associated naphthenic acid fraction compounds (NAFCs). Previous work has characterized the environmental behaviour and fate of these compounds, particularly in the context of constructed treatment wetlands. There is evidence that wetlands can attenuate NAFCs in natural and engineered contexts, but relative contributions of chemical, biotic, and physical adsorption with sequestration require deconvolution. In this work, the objective was to evaluate the extent to which prospective wetland substrate material may adsorb NAFCs using a peat-mineral mix (PMM) sourced from the Athabasca Oil Sands Region (AOSR). The PMM and NAFCs were first mixed and then equilibrated across a range of NAFC concentrations (5-500 mg/L) with moderate ionic strength and hardness (∼200 ppm combined Ca2+ and Mg2+) that approximate wetland water chemistry. Under these experimental conditions, low sorption of NAFCs to PMM was observed, where sorbed concentrations of NAFCs were approximately zero mg/kg at equilibrium. When NAFCs and PMM were mixed and equilibrated together at environmentally relevant concentrations, formula diversity increased more than could be explained by combining constituent spectra. The TOC present in this PMM was largely cellulose-derived, with low levels of thermally recalcitrant carbon (e.g., lignin, black carbon). The apparent enhancement of the concentration and diversity of components in PMM/NAFCs mixtures are likely related to aqueous solubility of some PMM-derived organic materials, as post-hoc combination of dissolved components from PMM and NAFCs cannot replicate enhanced complexity observed when the two components are agitated and equilibrated together.


Assuntos
Ácidos Carboxílicos , Campos de Petróleo e Gás , Solo , Áreas Alagadas , Adsorção , Ácidos Carboxílicos/química , Solo/química , Minerais/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Areia/química
4.
ACS Chem Biol ; 19(5): 1066-1081, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630468

RESUMO

Human ornithine aminotransferase (hOAT), a pyridoxal 5'-phosphate (PLP)-dependent enzyme, has been shown to play an essential role in the metabolic reprogramming and progression of hepatocellular carcinoma (HCC). HCC accounts for approximately 75% of primary liver cancers and is within the top three causes of cancer death worldwide. As a result of treatment limitations, the overall 5-year survival rate for all patients with HCC is under 20%. The prevalence of HCC necessitates continued development of novel and effective treatment methods. In recent years, the therapeutic potential of selective inactivation of hOAT has been demonstrated for the treatment of HCC. Inspired by previous increased selectivity for hOAT by the expansion of the cyclopentene ring scaffold to a cyclohexene, we designed, synthesized, and evaluated a series of novel fluorinated cyclohexene analogues and identified (R)-3-amino-5,5-difluorocyclohex-1-ene-1-carboxylic acid as a time-dependent inhibitor of hOAT. Structural and mechanistic studies have elucidated the mechanism of inactivation of hOAT by 5, resulting in a PLP-inactivator adduct tightly bound to the active site of the enzyme. Intact protein mass spectrometry, 19F NMR spectroscopy, transient state kinetic studies, and X-ray crystallography were used to determine the structure of the final adduct and elucidate the mechanisms of inactivation. Interestingly, despite the highly electrophilic intermediate species conferred by fluorine and structural evidence of solvent accessibility in the hOAT active site, Lys292 and water did not participate in nucleophilic addition during the inactivation mechanism of hOAT by 5. Instead, rapid aromatization to yield the final adduct was favored.


Assuntos
Desenho de Fármacos , Inibidores Enzimáticos , Ornitina-Oxo-Ácido Transaminase , Humanos , Ornitina-Oxo-Ácido Transaminase/metabolismo , Ornitina-Oxo-Ácido Transaminase/química , Ornitina-Oxo-Ácido Transaminase/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/química , Inibidores Enzimáticos/síntese química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/síntese química , Ácidos Carboxílicos/farmacologia , Cicloexenos/química , Cicloexenos/síntese química , Cicloexenos/farmacologia , Cicloexenos/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Cristalografia por Raios X , Modelos Moleculares
5.
Toxicology ; 504: 153764, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38428665

RESUMO

Hepatotoxicity poses a significant concern in drug design due to the potential liver damage that can be caused by new drugs. Among common manifestations of hepatotoxic damage is lipid accumulation in hepatic tissue, resulting in liver steatosis or phospholipidosis. Carboxylic derivatives are prone to interfere with fatty acid metabolism and cause lipid accumulation in hepatocytes. This study investigates the toxic behaviour of 24 structurally related carboxylic acids in hepatocytes, specifically their ability to cause accumulation of fatty acids and phospholipids. Using high-content screening (HCS) assays, we identified two distinct lipid accumulation patterns. Subsequently, we developed structure-activity relationship (SAR) and quantitative structure-activity relationship (QSAR) models to determine relevant molecular substructures and descriptors contributing to these adverse effects. Additionally, we calculated physicochemical properties associated with lipid accumulation in hepatocytes and examined their correlation with our chemical structure characteristics. To assess the applicability of our findings to a wide range of chemical compounds, we employed two external datasets to evaluate the distribution of our QSAR descriptors. Our study highlights the significance of subtle molecular structural variations in triggering hepatotoxicity, such as the presence of nitrogen or the specific arrangement of substitutions within the carbon chain. By employing our comprehensive approach, we pinpointed specific molecules and elucidated their mechanisms of toxicity, thus offering valuable insights to guide future toxicology investigations.


Assuntos
Ácidos Carboxílicos , Hepatócitos , Relação Quantitativa Estrutura-Atividade , Ácidos Carboxílicos/toxicidade , Ácidos Carboxílicos/química , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Humanos , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fosfolipídeos/metabolismo , Fosfolipídeos/química , Ácidos Graxos/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Fígado/patologia , Células Hep G2
6.
Chembiochem ; 25(4): e202300672, 2024 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-38051126

RESUMO

Amide bond-containing biomolecules are functionally significant and useful compounds with diverse applications. For example, N-acyl amino acids (NAAAs) are an important class of lipoamino acid amides with extensive use in food, cosmetic and pharmaceutical industries. Their conventional chemical synthesis involves the use of toxic chlorinating agents for carboxylic acid activation. Enzyme-catalyzed biotransformation for the green synthesis of these amides is therefore highly desirable. Here, we review a range of enzymes suitable for the synthesis of NAAA amides and their strategies adopted in carboxylic acid activation. Generally, ATP-dependent enzymes for NAAA biosynthesis are acyl-adenylating enzymes that couple the hydrolysis of phosphoanhydride bond in ATP with the formation of an acyl-adenylate intermediate. In contrast, ATP-independent enzymes involve hydrolases such as lipases or aminoacylases, which rely on the transient activation of the carboxylic acid. This occurs either through an acyl-enzyme intermediate or by favorable interactions with surrounding residues to anchor the acyl donor in a suitable orientation for the incoming amine nucleophile. Recently, the development of an alternative pathway involving ester-amide interconversion has unraveled another possible strategy for amide formation through esterification-aminolysis cascade reactions, potentially expanding the substrate scope for enzymes to catalyze the synthesis of a diverse range of NAAA amides.


Assuntos
Amidas , Aminoácidos , Amidas/química , Ácidos Carboxílicos/química , Lipase , Monofosfato de Adenosina , Aminas , Trifosfato de Adenosina
7.
Chemosphere ; 349: 141018, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38141671

RESUMO

Oil sands process-affected water (OSPW) is a by-product of the extraction of bitumen, and volumes of OSPW have accumulated across the Alberta oil sands region due to the governments zero-discharge policy. Some dissolved organics in OSPW, including toxic naphthenic acids (NAs), can be biodegraded in oxic conditions, thereby reducing the toxicity of OSPW. While there has been much focus on degradation of NAs, the biodegradation of other dissolved organic chemicals by endogenous organisms remains understudied. Here, using the HPLC-ultrahigh resolution Orbitrap mass spectrometry, we examined the microbial biodegradation of dissolved organic acids in OSPW. Non-targeted analysis enabled the estimation of biodegradation rates for unique heteroatomic chemical classes detected in negative ion mode. The microcosm experiments were conducted with and without nutrient supplementation, and the changes in the microbial community over time were investigated. Without added nutrients, internal standard-adjusted intensities of all organics, including NAs, were largely unchanged. The addition of nutrients increased the biodegradation rate of O2- and SO2- chemical classes. While anoxic biodegradation can occur in tailings ponds and end pit lakes, microbial community analyses confirmed that the presence of oxygen stimulated biodegradation of the OSPW samples studied. We detected several aerobic hydrocarbon-degrading microbes (e.g., Pseudomonas and Brevundimonas), and microbes capable of degrading sulfur-containing hydrocarbons (e.g., Microbacterium). Microbial community diversity decreased over time with nutrient addition. Overall, the results from this study indicate that toxic dissolved organics beyond NAs can be biodegraded by endogenous organisms in OSPW, but reaffirms that biological treatment strategies require careful consideration of how nutrients and dissolved oxygen may impact efficacy.


Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Compostos Orgânicos , Ácidos Carboxílicos/química , Oxigênio/análise
8.
J Org Chem ; 88(16): 11694-11701, 2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37530571

RESUMO

Oxoanions such as carboxylates, phosphates, and sulfates play important roles in both chemistry and biology and are abundant on the cell surface. We report on the synthesis and properties of a rationally designed guanidinium-containing oxoanion binder, 1-guanidino-8-amino-2,7-diazacarbazole (GADAC). GADAC binds to a carboxylate, phosphate, and sulfate in pure water with affinities of 3.6 × 104, 1.1 × 103, and 4.2 × 103 M-1, respectively. Like 2-azacarbazole, which is a natural product that enables scorpions to fluoresce, GADAC is fluorescent in water (λabs = 356 nm, λem = 403 nm, ε = 13,400 M-1 cm-1). The quantum yield of GADAC is pH-sensitive, increasing from Φ = 0.12 at pH 7.4 to Φ = 0.53 at pH 4.0 as a result of the protonation of the aminopyridine moiety. The uptake of GADAC into live human melanoma cells is detectable in the DAPI channel at low micromolar concentrations. Its properties make GADAC a promising candidate for applications in oxoanion binding and fluorescence labeling in biological (e.g., the delivery of cargo into cells) and other contexts.


Assuntos
Fosfatos , Água , Humanos , Guanidina/química , Água/química , Ácidos Carboxílicos/química , Corantes
9.
Environ Sci Technol ; 57(23): 8796-8807, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37195265

RESUMO

In this study, we investigated the thermal decomposition mechanisms of perfluoroalkyl ether carboxylic acids (PFECAs) and short-chain perfluoroalkyl carboxylic acids (PFCAs) that have been manufactured as replacements for phased-out per- and polyfluoroalkyl substances (PFAS). C-C, C-F, C-O, O-H, and C═C bond dissociation energies were calculated at the M06-2X/Def2-TZVP level of theory. The α-C and carboxyl-C bond dissociation energy of PFECAs declines with increasing chain length and the attachment of an electron-withdrawing trifluoromethyl (-CF3) group to the α-C. Experimental and computational results show that the thermal transformation of hexafluoropropylene oxide dimer acid to trifluoroacetic acid (TFA) occurs due to the preferential cleavage of the C-O ether bond close to the carboxyl group. This pathway produces precursors of perfluoropropionic acid (PFPeA) and TFA and is supplemented by a minor pathway (CF3CF2CF2OCFCF3COOH → CF3CF2CF2· + ·OCFCF3COOH) through which perfluorobutanoic acid (PFBA) is formed. The weakest C-C bond in PFPeA and PFBA is the one connecting the α-C and the ß-C. The results support (1) the C-C scission in the perfluorinated backbone as an effective PFCA thermal decomposition mechanism and (2) the thermal recombination of radicals through which intermediates are formed. Additionally, we detected a few novel thermal decomposition products of studied PFAS.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Éter , Ácidos Carboxílicos/química , Poluentes Químicos da Água/análise , Éteres , Fluorocarbonos/análise
10.
Int J Biol Macromol ; 240: 124526, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37080403

RESUMO

Biocatalysts have been gaining extra attention in recent decades due to their industrial-relevance properties, which may hasten the transition to a cleaner environment. Carboxylic acid reductases (CARs) are large, multi-domain proteins that can catalyze the reduction of carboxylic acids to corresponding aldehydes, with the presence of adenosine triphosphate (ATP) and nicotinamide adenine dinucleotide phosphate (NADPH). This biocatalytic reaction is of great interest due to the abundance of carboxylic acids in nature and the ability of CAR to convert carboxylic acids to a wide range of aldehydes essentially needed as end products such as vanillin or reaction intermediates for several compounds production such as alcohols, alkanes, and amines. This modular enzyme, found in bacteria and fungi, demands an activation via post-translational modification by the phosphopantetheinyl transferase (PPTase). Recent advances in the characterization and structural studies of CARs revealed valuable information about the dynamics, mechanisms, and unique features of the enzymes. In this comprehensive review, we summarize the previous findings on the phylogeny, structural and mechanistic insight of the domains, post-translational modification requirement, strategies for the cofactors regeneration, the extensively broad aldehyde-related industrial application properties of CARs, as well as their recent immobilization approaches.


Assuntos
Biotecnologia , Oxirredutases , Oxirredutases/metabolismo , Aldeídos/metabolismo , Ácidos Carboxílicos/química
11.
J Hazard Mater ; 452: 131353, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37030227

RESUMO

With the increasing restrictions and concerns about legacy poly- and perfluoroalkyl substances (PFAS), the production and usage of alternatives, i.e., perfluoroalkyl ether carboxylic acids (PFECAs), have risen recently. However, there is a knowledge gap regarding the bioaccumulation and trophic behaviors of emerging PFECAs in coastal ecosystems. The bioaccumulation and trophodynamics of perfluorooctanoic acid (PFOA) and its substitutes (PFECAs) were investigated in Laizhou Bay, which is located downstream of a fluorochemical industrial park in China. Hexafluoropropylene oxide trimer acid (HFPO-TrA), perfluoro-2-methoxyacetic acid (PFMOAA) and PFOA constituted the dominant compounds in the ecosystem of Laizhou Bay. PFMOAA was dominant in invertebrates, whereas the long-chain PFECAs preferred to accumulate in fishes. The PFAS concentrations in carnivorous invertebrates were higher than those in filter-feeding species. Considering migration behaviors, the ∑PFAS concentrations followed the order oceanodromous fish < diadromous fish < non-migratory fish. The trophic magnification factors (TMFs) of long-chain PFECAs (HFPO-TrA, HFPO-TeA and PFO5DoA) were >1, suggesting trophic magnification potential, while biodilution for short-chain PFECAs (PFMOAA) was observed. The intake of PFOA in seafood may constitute a great threat to human health. More attention should be given to the impact of emerging hazardous PFAS on organisms for the health of ecosystems and human beings.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Animais , Humanos , Éter , Ecossistema , Cadeia Alimentar , Ácidos Carboxílicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Invertebrados , Fluorocarbonos/análise , Éteres , Etil-Éteres , Peixes , China , Ácidos Alcanossulfônicos/análise
12.
Chemosphere ; 326: 138462, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36963589

RESUMO

This study investigated the application of materials peat-mineral mix (PT) and Pleistocene fluvial sands from different location (PF-1 and PF-2) obtained from surface mining of oil sands as sorbents of naphthenic acids (NAs) from oil sands process water (OSPW). To understand the sorption properties and mechanisms of NAs in the materials, sorption and desorption studies were performed using decanoic acid (DA) and 5-phenylvaleric acid (PVA). Additionally, the removal efficiency was evaluated using real OSPW to understand the effect of NA structure on sorption. Equilibrium of DA and PVA was reached at 2 days for PT, and 3 and 6 days for PF materials, respectively. Langmuir isotherm best fitted the equilibrium data. Maximum sorption capacities for DA and PVA were, respectively, 16.8 × 103 and 104 mg/kg for PT, 142.9 and 81.3 mg/kg for PF-1, and 600 and 476.2 mg/kg for PF-2. Hydrophobic interactions, hydrogen bonding, and π-π interaction were the main sorption mechanisms. Desorption of model compounds from post-sorption materials was not observed for 14 days. The removal of NAs from real OSPW ranged from 20 to 54%. PT is the most promising sorbent of NAs from OSPW because it partially removed NAs with a wide range of molecular weights and structures at very low dosage. Sorption of NAs was affected by the total organic carbon of the materials, emphasizing the hydrophobic interaction as an important sorption mechanism. The results suggest that some mobility of NAs is expected to take place if the reclamation materials come in contact with OSPW, which might occur in an oil sands reclamation landscape.


Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Ácidos Carboxílicos/química , Água/química
13.
Environ Sci Technol ; 57(11): 4434-4442, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36883325

RESUMO

Fe(III) and carboxylic acids are common compositions in atmospheric microdroplet systems like clouds, fogs, and aerosols. Although photochemical processes of Fe(III)-carboxylate complexes have been extensively studied in bulk aqueous solution, relevant information on the dynamic microdroplet system, which may be largely different from the bulk phase, is rare. With the help of the custom-made ultrasonic-based dynamic microdroplet photochemical system, this study examines the photochemical process of Fe(III)-citric acid complexes in microdroplets for the first time. We find that when the degradation extent of citric acid is similar between the microdroplet system and the bulk solution, the significantly lower Fe(II) ratio is present in microdroplet samples due to the rapider reoxidation of photogenerated Fe(II). However, by replacing citric acid with benzoic acid, no much difference in the Fe(II) ratio between microdroplets and bulk solution is observed, which indicates distinct reoxidation pathways of Fe(II). Moreover, the presence of •OH scavenger, namely, methanol, greatly accelerates the reoxidation of photogenerated Fe(II) in both citric acid and benzoic acid situations. Further experiments reveal that the high availability of O2 and the citric acid- or methanol-derived carbon-centered radicals are responsible for the rapider reoxidation of Fe(II) in iron-citric acid microdroplets by prolonging the length of HO2•- and H2O2-involved radical reaction chains. The results in this study may provide a new understanding about iron-citric acid photochemistry in atmospheric liquid particles, which can further influence the photoactivity of particles and the formation of secondary organic aerosols.


Assuntos
Ácido Cítrico , Ferro , Ferro/química , Ácido Cítrico/química , Peróxido de Hidrogênio/química , Fotoquímica , Metanol , Oxirredução , Ácidos Carboxílicos/química , Compostos Ferrosos , Aerossóis , Benzoatos , Compostos Férricos/química
14.
Molecules ; 28(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36770800

RESUMO

Ornithine aminotransferase (OAT) is overexpressed in hepatocellular carcinoma (HCC), and we previously showed that inactivation of OAT inhibits the growth of HCC. Recently, we found that (3S,4S)-3-amino-4-fluorocyclopentenecarboxylic acid (5) was a potent inactivator of γ-aminobutyric acid aminotransferase (GABA-AT), proceeding by an enamine mechanism. Here we describe our investigations into the activity and mechanism of 5 as an inactivator of human OAT. We have found that 5 exhibits 10-fold less inactivation efficiency (kinact/KI) against hOAT than GABA-AT. A comprehensive mechanistic study was carried out to understand its inactivation mechanism with hOAT. pKa and electrostatic potential calculations were performed to further support the notion that the α,ß-unsaturated alkene of 5 is critical for enhancing acidity and nucleophilicity of the corresponding intermediates and ultimately responsible for the improved inactivation efficiency of 5 over the corresponding saturated analogue (4). Intact protein mass spectrometry and the crystal structure complex with hOAT provide evidence to conclude that 5 mainly inactivates hOAT through noncovalent interactions, and that, unlike with GABA-AT, covalent binding with hOAT is a minor component of the total inhibition which is unique relative to other monofluoro-substituted derivatives. Furthermore, based on the results of transient-state measurements and free energy calculations, it is suggested that the α,ß-unsaturated carboxylate group of PLP-bound 5 may be directly involved in the inactivation cascade by forming an enolate intermediate. Overall, compound 5 exhibits unusual structural conversions which are catalyzed by specific residues within hOAT, ultimately leading to an enamine mechanism-based inactivation of hOAT through noncovalent interactions and covalent modification.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Aminoácidos/farmacologia , Inibidores Enzimáticos/farmacologia , Ornitina-Oxo-Ácido Transaminase/química , Ornitina-Oxo-Ácido Transaminase/metabolismo , Ácido gama-Aminobutírico , Ácidos Carboxílicos/farmacologia , Ácidos Carboxílicos/química , Ornitina
15.
Acc Chem Res ; 55(23): 3285-3293, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36472092

RESUMO

The gas-liquid interface of water is environmentally relevant due to the abundance of aqueous aerosol particles in the atmosphere. Aqueous aerosols often contain a significant fraction of organics. As aerosol particles are small, surface effects are substantial but not yet well understood. One starting point for studying the surface of aerosols is to investigate the surface of aqueous solutions. We review here studies of the surface composition of aqueous solutions using liquid-jet photoelectron spectroscopy in combination with theoretical simulations. Our focus is on model systems containing two functional groups, the carboxylic group and the amine group, which are both common in atmospheric organics. For alkanoic carboxylic acids and alkyl amines, we find that the surface propensity of such amphiphiles can be considered to be a balance between the hydrophilic interactions of the functional group and the hydrophobic interactions of the alkyl chain. For the same chain length, the neutral alkyl amine has a lower surface propensity than the neutral alkanoic carboxylic acid, whereas the surface propensity of the corresponding alkyl ammonium ion is higher than that of the alkanoic carboxylate ion. This different propensity leads to a pH-dependent surface composition which differs from the bulk, with the neutral forms having a much higher surface propensity than the charged ones. In aerosols, alkanoic carboxylic acids and alkyl amines are often found together. For such mixed systems, we find that the oppositely charged molecular ions form ion pairs at the surface. This cooperative behavior leads to a more organic-rich and hydrophobic surface than would be expected in a wide, environmentally relevant pH range. Amino acids contain a carboxylic and an amine group, and amino acids of biological origin are found in aerosols. Depending on the side group, we observe surface propensity ranging from surface-depleted to enriched by a factor of 10. Cysteine contains one more titratable group, which makes it exhibit more complex behavior, with some protonation states found only at the surface and not in the bulk. Moreover, the presence of molecular ions at the surface is seen to affect the distribution of inorganic ions. As the charge of the molecular ions changes with protonation, the effects on the inorganic ions also exhibit a pH dependence. Our results show that for these systems the surface composition differs from the bulk and changes with pH and that the results obtained for single-component solutions may be modified by ion-ion interactions in the case of mixed solutions.


Assuntos
Aminas , Ácidos Carboxílicos , Ácidos Carboxílicos/química , Aminas/química , Aminoácidos , Água/química , Aerossóis , Íons
16.
J Phys Chem A ; 126(46): 8753-8760, 2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36374611

RESUMO

Perfluoroalkyl carboxylic acids (PFCAs) are persistent and ubiquitous pollutants. Environmental remediation is often achieved by absorption on matrices followed by high-temperature thermal treatment to desorb and decompose the PFCAs. Detailed product studies of the thermal degradation of PFCAs have been hampered by the complex nature of product mixtures and associated analytical challenges. On the basis of high-level computational studies, we propose reaction pathways and mechanisms for the high-temperature mineralization of a series of linear PFCAs with a backbone length from C-4 to C-8. The favored initial reaction pathways are nonselective C-C bond homolytic cleavages (with bond dissociation energies of ∼75-90 kcal/mol), resulting in carbon-centered radicals which can undergo ß-scissions (Ea ≈ 30-40 kcal/mol) which can be preceded by F atom shifts (Ea ≈ 30-45 kcal/mol). In competing barrierless processes, the carbon-centered radicals can lose •F, resulting in the formation of volatile perfluoroalkenes (ΔH ≈ 50-80 kcal/mol). A variety of competing fragmentation processes yield shorter chain perfluorinated PFCAs, isomeric alkenes, alkenoic acids, alkyl, and alkyloic acid radicals. The results provide the energetics for primary, secondary, and tertiary reaction products and insight into the fundamental understanding of the pyrolytic pathways of PFCAs leading to their mineralization.


Assuntos
Poluentes Ambientais , Fluorocarbonos , Ácidos Carboxílicos/química , Fluorocarbonos/análise , Fluorocarbonos/química , Carbono/química , Isomerismo
17.
Chem Res Toxicol ; 35(10): 1777-1788, 2022 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-36200746

RESUMO

Glucuronidation and CoA (coenzyme A) conjugation are common pathways for the elimination of carboxylic acid-containing drug molecules. In some instances, these biotransformations have been associated with toxicity (such as idiosyncratic hepatic injury, renal impairment, hemolytic anemia, gastrointestinal inflammation, and bladder cancer) attributed to, in part, the propensity of acyl glucuronides and acyl CoA thioesters to covalently modify biological macromolecules such as proteins and DNA. It is to be noted that, while acyl glucuronidation and CoA conjugation are indeed implicated in adverse effects, there are many safe drugs in the market that are cleared by these reactive pathways. It is therefore important that new molecular entities with carboxylic acid groups are evaluated for toxicity in a manner that is not unreasonably risk-averse. In the absence of truly predictable methods, therefore, the general approach is to apply a set of end points to generate a weight-of-evidence evaluation. In practice, the focus is to identify structural liabilities and provide structure-activity recommendations early in the program, at a stage where an attempt to improve reactive metabolism does not deoptimize other critical drug-quality criteria. This review will present a high-level overview of the chemistry of glucuronidation and CoA conjugation and provide a discussion of the possible mechanisms of adverse effects that have been associated with these pathways, as well as how such potential hazards are addressed while delivering a new chemical entity for clinical evaluation.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Glucuronídeos , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Ácidos Carboxílicos/química , Coenzima A , Glucuronídeos/metabolismo , Humanos , Proteínas/metabolismo
18.
J Appl Toxicol ; 42(12): 2005-2015, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35894097

RESUMO

The extraction of bitumen from surface mining in the Athabasca Oil Sands Region (AOSR) produces large quantities of oil sands process-affected water (OSPW) that needs to be stored in settling basins near extraction sites. Chemical constituents of OSPW are known to impair bone health in some organisms, which can lead to increased fracture risk and lower reproductive fitness. Naphthenic acid fraction components (NAFCs) are thought to be among the most toxic class of compounds in OSPW; however, the effect of NAFCs on osteoblast development is largely unknown. In this study, we demonstrate that NAFCs from OSPW inhibit osteoblast differentiation and deposition of extracellular matrix, which is required for bone formation. Extracellular matrix deposition was inhibited in osteoblasts exposed to 12.5-125 mg/L of NAFC for 21 days. We also show that components within NAFCs inhibit the expression of gene markers of osteoblast differentiation and function, namely, alkaline phosphatase (Alp), osteocalcin, and collagen type 1 alpha 1 (Col1a1). These effects were partially mediated by the induction of glucocorticoid receptor (GR) activity; NAFC induces the expression of the GR activity marker genes Sgk1 (12.5 mg/L) and p85a (125 mg/L) and inhibits GR protein (125 mg/L) and Opg RNA (12.5 mg/L) expression. This study provides evidence that NAFC concentrations of 12.5 mg/L and above can directly act on osteoblasts to inhibit bone formation and suggests that NAFCs contain components that can act as GR agonists, which may have further endocrine disrupting effects on exposed wildlife.


Assuntos
Campos de Petróleo e Gás , Poluentes Químicos da Água , Animais , Camundongos , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Osteogênese , Ácidos Carboxílicos/química , Água/química , Osteoblastos
19.
J Enzyme Inhib Med Chem ; 37(1): 1987-1994, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35880250

RESUMO

We have recently developed a new synthetic methodology that provided both N-aryl-5-hydroxytriazoles and N-pyridine-4-alkyl triazoles. A selection of these products was carried through virtual screening towards targets that are contemporary and validated for drug discovery and development. This study determined a number of potential structure target dyads of which N-pyridinium-4-carboxylic-5-alkyl triazole displayed the highest score specificity towards KAT2A. Binding affinity tests of abovementioned triazole and related analogs towards KAT2A confirmed the predictions of the in-silico assay. Finally, we have run in vitro inhibition assays of selected triazoles towards KAT2A; the ensemble of binding and inhibition assays delivered pyridyl-triazoles carboxylates as the prototype of a new class of inhibitors of KAT2A.


Assuntos
Acetiltransferases , Triazóis , Ácidos Carboxílicos/química , Estrutura Molecular , Relação Estrutura-Atividade , Triazóis/química , Triazóis/farmacologia
20.
Environ Res ; 213: 113755, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35753377

RESUMO

This study is the first to investigate the removal of naphthenic acids in a full-scale constructed wetland within the Alberta Oil Sands region. The average mass-removal efficiency for all O2-naphthenic acids measured in three separate deployments in the wetland ranged from 7.5% to 68.9% and appeared sensitive to physicochemical properties of the naphthenic acids, environmental conditions, and water quality. Treatment efficiency of individual naphthenic acids was found to increase with increasing carbon number and decreasing number of double bond equivalents in the molecule. Treatment efficiency was also found to increase with both higher initial turbidity in OSPW entering the wetland, and warmer average OSPW temperatures during wetland operation. Half-life times of naphthenic acids in the treatment wetland ranged between 8.9 and 39 days and were substantially lower than those in tailings ponds (i.e., 12.9-13.6 years) and laboratory studies focussed on bench-scale aerobic microbial biodegradation (i.e., 44-315 days). Using published dose-response data, biomimetic extraction measurements using solid phase microextraction fibers indicate that 14 days of wetland treatment resulted in a reduction in (4 d) deformity of Danio rerio from 50 to 16%, while exhibiting less than 1% toxic response for less sensitive toxic endpoints. The study concludes that wetland treatment is a feasible and productive treatment method for naphthenic acids in oil sands process-affected water due to a combination of sorption and biodegradation.


Assuntos
Poluentes Químicos da Água , Áreas Alagadas , Ácidos Carboxílicos/química , Meia-Vida , Campos de Petróleo e Gás , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA