Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 320
Filtrar
1.
Anal Chem ; 96(28): 11455-11462, 2024 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-38968402

RESUMO

Efficient, mild, and reversible adsorption of nucleic acids onto nanomaterials represents a promising analytical approach for medical diagnosis. However, there is a scarcity of efficient and reversible nucleic acid adsorption nanomaterials. Additionally, the lack of comprehension of the molecular mechanisms governing their interactions poses significant challenges. These issues hinder the rational design and analytical applications of the nanomaterials. Herein, we propose an ultra-efficient nucleic acid affinity nanomaterial based on programmable lanthanide metal-organic frameworks (Ln-MOFs). Through experiments and density functional theory calculations, a rational design guideline for nucleic acid affinity of Ln-MOF was proposed, and a modular and flexible preparation scheme was provided. Then, Er-TPA (terephthalic acid) MOF emerged as the optimal candidate due to its pore size-independent adsorption and desorption capabilities for nucleic acids, enabling ultra-efficient adsorption (about 150% mass ratio) within 1 min. Furthermore, we elucidate the molecular-level mechanisms underlying the Ln-MOF adsorption of single- and double-stranded DNA and G4 structures. The affinity nanomaterial based on Ln-MOF exhibits robust nucleic acid extraction capability (4-fold higher than commercial reagent kits) and enables mild and reversible CRISPR/Cas9 functional regulation. This method holds significant promise for broad application in DNA/RNA liquid biopsy and gene editing, facilitating breakthroughs in analytical chemistry, pharmacy, and medical research.


Assuntos
DNA , Elementos da Série dos Lantanídeos , Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Elementos da Série dos Lantanídeos/química , Adsorção , DNA/química , DNA/isolamento & purificação , Ácidos Ftálicos/química , Nanoestruturas/química , Teoria da Densidade Funcional , Humanos
2.
Spectrochim Acta A Mol Biomol Spectrosc ; 321: 124696, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38950475

RESUMO

Metal-organic gels (MOGs) are a type of metal-organic colloid material with a large specific surface area, loose porous structure, and open metal active sites. In this work, FeNi-MOGs were synthesized by the simple one-step static method, using Fe(III) and Ni(II) as the central metal ions and terephthalic acid as the organic ligand. The prepared FeNi-MOGs could effectively catalyze the chemiluminescence of luminol without the involvement of H2O2, which exhibited good catalytic activity. Then, the multifunctional detected platform was constructed for the detection of GSH and Hg2+, based on the antioxidant capacity of GSH, and the strong affinity between mercury ion (Hg2+) and GSH which inactivated the antioxidant capacity of GSH. The experimental limits of detection (LOD) for GSH and Hg2+ were 76 nM and 210 nM, and the detection ranges were 2-100 µM and 8-4000 µM, respectively. The as-proposed sensor had good performance in both detection limit and detection range of GSH and Hg2+, which fully met the needs of daily life. Surprisingly, the sensor had low detection limits and an extremely wide detection range for Hg2+, spanning five orders of magnitude. Furthermore, the detection of mercury ions in actual lake water and GSH in human serum showed good results, with recovery rates ranging from 90.10 % to 105.37 %, which proved that the method was accurate and reliable. The as-proposed sensor had great potential as the platform for GSH and Hg2+ detection applications.


Assuntos
Coloides , Glutationa , Ferro , Limite de Detecção , Medições Luminescentes , Mercúrio , Níquel , Mercúrio/análise , Mercúrio/sangue , Níquel/química , Glutationa/análise , Glutationa/sangue , Glutationa/química , Medições Luminescentes/métodos , Coloides/química , Ferro/química , Ferro/análise , Ferro/sangue , Catálise , Óxidos/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/sangue , Luminescência , Ácidos Ftálicos/química
3.
Molecules ; 29(9)2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38731608

RESUMO

In this paper, Cu-BTC derived mesoporous CuS nanomaterial (m-CuS) was synthesized via a two-step process involving carbonization and sulfidation of Cu-BTC for colorimetric glutathione detection. The Cu-BTC was constructed by 1,3,5-benzenetri-carboxylic acid (H3BTC) and Cu2+ ions. The obtained m-CuS showed a large specific surface area (55.751 m2/g), pore volume (0.153 cm3/g), and pore diameter (15.380 nm). In addition, the synthesized m-CuS exhibited high peroxidase-like activity and could catalyze oxidation of the colorless substrate 3,3',5,5'-tetramethylbenzidine to a blue product. Peroxidase-like activity mechanism studies using terephthalic acid as a fluorescent probe proved that m-CuS assists H2O2 decomposition to reactive oxygen species, which are responsible for TMB oxidation. However, the catalytic activity of m-CuS for the oxidation of TMB by H2O2 could be potently inhibited in the presence of glutathione. Based on this phenomenon, the colorimetric detection of glutathione was demonstrated with good selectivity and high sensitivity. The linear range was 1-20 µM and 20-300 µM with a detection limit of 0.1 µM. The m-CuS showing good stability and robust peroxidase catalytic activity was applied for the detection of glutathione in human urine samples.


Assuntos
Colorimetria , Cobre , Glutationa , Peróxido de Hidrogênio , Nanoestruturas , Glutationa/análise , Glutationa/química , Colorimetria/métodos , Cobre/química , Nanoestruturas/química , Catálise , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Porosidade , Oxirredução , Ácidos Ftálicos/química , Humanos , Benzidinas/química , Limite de Detecção
4.
Biosens Bioelectron ; 258: 116356, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705073

RESUMO

In this work, the dual-ligand lanthanide metal-organic framework (MOF)-based electrochemiluminescence (ECL) sensor was constructed for the detection of miRNA-128 in glioblastoma (GBM) diagnosis. The luminescent Eu-MOF (EuBBN) was synthesized with terephthalic acid (BDC) and 2-amino terephthalic acid (BDC-NH2) as dual-ligand. Due to the antenna effect, EuBBN with conjugated-π structure exhibited strong luminescent signal and high quantum efficiency, which can be employed as ECL nanoprobe. Furthermore, the novel plasmonic CuS@Au heterostructure array has been prepared. The localized surface plasmon resonance coupling effect of the CuS@Au heterostructure array can amplify the ECL signal of EuBBN significantly. The EuBBN/CuS@Au heterostructure array-based sensing system has been prepared for the detection of miRNA-128 with a wide linear range from 1 fM to 1 nM and a detection limit of 0.24 fM. Finally, miRNA-128 in the clinic GBM tissue sample has been analysis for the distinguish of tumor grade successfully. The results demonstrated that the dual-ligand MOF/CuS@Au heterostructure array-based ECL sensor can provide important support for the development of GBM diagnosis.


Assuntos
Técnicas Biossensoriais , Európio , Glioblastoma , Ouro , Estruturas Metalorgânicas , MicroRNAs , MicroRNAs/análise , Glioblastoma/diagnóstico , Humanos , Estruturas Metalorgânicas/química , Técnicas Biossensoriais/métodos , Ouro/química , Európio/química , Limite de Detecção , Medições Luminescentes/métodos , Ligantes , Técnicas Eletroquímicas/métodos , Neoplasias Encefálicas/diagnóstico , Ácidos Ftálicos/química , Nanopartículas Metálicas/química , Cobre/química
5.
Waste Manag ; 183: 21-31, 2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38714119

RESUMO

Poly(vinyl chloride) (PVC) is one of the most widely used plastics. However, a major challenge in recycling PVC is that there is no economical method to separate and remove its toxic phthalate plasticizers. This research made a breakthrough by extracting PVC with liquefied dimethyl ether (DME) and successfully separating the plasticizer components. Nearly all (97.1 %) of the di(2-ethylhexyl) phthalate plasticizer was extracted within 30 min by passing liquefied DME (285 g) through PVC at 25 °C. The compatibility of PVC with organic solvents, including liquefied DME, was derived theoretically from their Hansen solubility parameters (HSP), and actual dissolution experiments were conducted to determine the optimal PVC solvents. A liquefied DME mixture was used to dissolve PVC, and the extract was diluted with ethanol to precipitate the dissolved PVC. We demonstrated that liquefied DME is a promising method for producing high quality recycled products and that the process retains the fundamental properties of plasticizers and PVC without inducing degradation or depolymerization. Because of its low boiling point, DME can be easily separated from the solute after extraction, allowing for efficient reuse of the solvent, extracted plasticizer, and PVC. DME does not require heat and produces little harmful wastewater, which significantly reduces the energy consumption of the plasticizer additive separation process.


Assuntos
Dietilexilftalato , Éteres Metílicos , Plastificantes , Cloreto de Polivinila , Reciclagem , Cloreto de Polivinila/química , Dietilexilftalato/química , Reciclagem/métodos , Éteres Metílicos/química , Éteres Metílicos/análise , Solventes/química , Ácidos Ftálicos/química
6.
ACS Appl Mater Interfaces ; 16(17): 21450-21462, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38649157

RESUMO

Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage degeneration. Unfortunately, currently available clinical drugs are mainly analgesics and cannot alleviate the development of OA. Kartogenin (KGN) has been found to promote the differentiation of bone marrow mesenchymal stem cells (BMSCs) into chondrocytes for the treatment of cartilage damage in early OA. However, KGN, as a small hydrophobic molecule, is rapidly cleared from the synovial fluid after intra-articular injection. This study synthesized a KGN-loaded nanocarrier based on PLGA/polydopamine core/shell structure to treat OA. The fluorescence signal of KGN@PLGA/PDA-PEG-E7 nanoparticles lasted for 4 weeks, ensuring long-term sustained release of KGN from a single intra-articular injection. In addition, the polyphenolic structure of PDA enables it to effectively scavenge reactive oxygen species, and the BMSC-targeting peptide E7 (EPLQLKM) endows KGN@PLGA/PDA-PEG-E7 NPs with an effective affinity for BMSCs. As a result, the KGN@PLGA/PDA-PEG-E7 nanoparticles could effectively induce cartilage in vitro and protect the cartilage and subchondral bone in a rat ACLT model. This therapeutic strategy could also be extended to the delivery of other drugs, targeting other tissues to treat joint diseases.


Assuntos
Anilidas , Indóis , Células-Tronco Mesenquimais , Nanopartículas , Osteoartrite , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Polímeros , Ratos Sprague-Dawley , Osteoartrite/tratamento farmacológico , Osteoartrite/patologia , Animais , Ratos , Injeções Intra-Articulares , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Nanopartículas/química , Polímeros/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Indóis/química , Indóis/farmacologia , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Masculino , Portadores de Fármacos/química , Humanos
7.
Environ Sci Pollut Res Int ; 31(23): 33443-33453, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38683426

RESUMO

A new type of titanium phthalate (Ti-PA) catalyst was prepared by exchange method of phthalic acid and isopropyl titanate, which is never been reported before. The Ti-PA catalyst was characterized by FT-IR, TG, Uv-vis, BET, SEM, and EDS. The Ti-PA catalyst shows good catalytic activity in the alcoholysis reaction of polyethylene terephthalate (PET) and optimal experimental conditions for the alcoholysis process were optimized by response surface methodology; the Ti-PA catalyst provided a BHET yield of 81.98% for reaction lasting 3.98 h at 191 °C of 0.86% catalyst and 13.7 ml ethylene glycol; the model has good reliability. The kinetics and reaction mechanism of the process were explored and apparent activation energy is 75.52 kJ/mol. Finally, the good catalytic activity of Ti-PA was illustrated by comparing it with currently reported catalysts.


Assuntos
Ácidos Ftálicos , Polietilenotereftalatos , Titânio , Titânio/química , Polietilenotereftalatos/química , Catálise , Ácidos Ftálicos/química , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
8.
Acta Biomater ; 179: 220-233, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554890

RESUMO

An effective treatment for the irregular partial-thickness cartilage defect in the early stages of osteoarthritis (OA) is lacking. Cartilage tissue engineering is effective for treating full-thickness cartilage defects with limited area. In this study, we designed an injectable multifunctional poly(lactic-co-glycolic acid) (PLGA) microsphere to repair partial-thickness cartilage defects. The microsphere was grafted with an E7 peptide after loading the microsphere with kartogenin (KGN) and modifying the outer layer through dopamine self-polymerization. The microsphere could adhere to the cartilage defect, recruit synovial mesenchymal stem cells (SMSCs) in situ, and stimulate their differentiation into chondrocytes after injection into the articular cavity. Through in vivo and in vitro experiments, we demonstrated the ability of multifunctional microspheres to adhere to cartilage matrix, recruit SMSCs, and promote their differentiation into cartilage. Following treatment, the cartilage surface of the model group with partial-thickness cartilage defect showed smooth recovery, and the glycosaminoglycan content remained normal; the untreated control group showed significant progression of OA. The microsphere, a framework for cartilage tissue engineering, promoted the expression of SMSCs involved in cartilage repair while adapting to cell migration and growth. Thus, for treating partial-thickness cartilage defects in OA, this innovative carrier system based on stem cell therapy can potentially improve therapeutic outcomes. STATEMENT OF SIGNIFICANCE: Mesenchymal stem cells (MSCs) therapy is effective in the repair of cartilage injury. However, because of the particularity of partial-thickness cartilage injury, it is difficult to recruit enough seed cells in situ, and there is a lack of suitable scaffolds for cell migration and growth. Here, we developed polydopamine surface-modified PLGA microspheres (PMS) containing KGN and E7 peptides. The adhesion ability of the microspheres is facilitated by the polydopamine layer wrapped in them; thus, the microspheres can adhere to the injured cartilage and recruit MSCs, thereby promoting their differentiation into chondrocytes and accomplishing cartilage repair. The multifunctional microspheres can be used as a safe and potential method to treat partial-thickness cartilage defects in OA.


Assuntos
Anilidas , Células-Tronco Mesenquimais , Microesferas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Animais , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Coelhos , Copolímero de Ácido Poliláctico e Ácido Poliglicólico/química , Diferenciação Celular/efeitos dos fármacos , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Cartilagem Articular/patologia , Ácido Poliglicólico/química , Ácido Láctico/química , Injeções , Matriz Extracelular/metabolismo , Condrócitos/citologia , Condrócitos/metabolismo , Engenharia Tecidual/métodos
9.
Bioorg Chem ; 146: 107255, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38457955

RESUMO

Monoaminooxidases (MAOs) are important targets for drugs used in the treatment of neurological and psychiatric disorders and particularly on Parkinson's Disease (PD). Compounds containing a trans-stilbenoid skeleton have demonstrated good selective and reversible MAO-B inhibition. Here, twenty-two (Z)-3-benzylidenephthalides (benzalphthalides, BPHs) displaying a trans-stilbenoid skeleton have been synthesised and evaluated as inhibitors of the MAO-A and MAO-B isoforms. Some BPHs have selectively inhibited MAO-B, with IC50 values ranging from sub-nM to µM. The most potent compound with IC50 = 0.6 nM was the 3',4'-dichloro-BPH 16, which showed highly selective and reversible MAO-B inhibitory activity. Furthermore, the most selective BPHs displayed a significant protection against the apoptosis, and mitochondrial toxic effects induced by 6-hydroxydopamine (6OHDA) on SH-SY5Y cells, used as a cellular model of PD. The results of virtual binding studies on the most potent compounds docked in MAO-B and MAO-A were in agreement with the potencies and selectivity indexes found experimentally. Additionally, related to toxicity risks, drug-likeness and ADME properties, the predictions found for the most relevant BPHs in this research were within those ranges established for drug candidates.


Assuntos
Neuroblastoma , Doença de Parkinson , Estilbenos , Humanos , Simulação de Acoplamento Molecular , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/química , Doença de Parkinson/tratamento farmacológico , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Relação Estrutura-Atividade , Compostos de Benzil/síntese química , Compostos de Benzil/química , Compostos de Benzil/farmacologia
10.
Molecules ; 28(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38005350

RESUMO

Phthalic acid esters (PAEs) are a class of chemicals widely used as plasticizers. These compounds, considered toxic, do not bond to the polymeric matrix of plastic and can, therefore, migrate into the surrounding environment, posing a risk to human health. The primary source of human exposure is food, which can become contaminated during cultivation, production, and packaging. Therefore, it is imperative to control and regulate this exposure. This review covers the analytical methods used for their determination in two economically significant products: olive oil and wine. Additionally, it provides a summary and analysis of information regarding the characteristics, toxicity, effects on human health, and current regulations pertaining to PAEs in food. Various approaches for the extraction, purification, and quantification of these analytes are highlighted. Solvent and sorbent-based extraction techniques are reviewed, as are the chromatographic separation and other methods currently applied in the analysis of PAEs in wines and olive oils. The analysis of these contaminants is challenging due to the complexities of the matrices and the widespread presence of PAEs in analytical laboratories, demanding the implementation of appropriate strategies.


Assuntos
Ácidos Ftálicos , Vinho , Humanos , Azeite de Oliva/análise , Vinho/análise , Ésteres/química , Ácidos Ftálicos/química
11.
Biotechnol J ; 18(12): e2300119, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37594123

RESUMO

Poly(ethylene terephthalate) (PET) is one of the world's most widely used polyester plastics. Due to its chemical stability, PET is extremely difficult to hydrolyze in a natural environment. Recent discoveries in new polyester hydrolases and breakthroughs in enzyme engineering strategies have inspired enormous research on biorecycling of PET. This study summarizes our research efforts toward large-scale, efficient, and economical biodegradation of post-consumer waste PET, including PET hydrolase selection and optimization, high-yield enzyme production, and high-capacity enzymatic degradation of post-consumer waste PET. First, genes encoding PETase and MHETase from Ideonella sakaiensis and the ICCG variant of leaf-branch compost cutinase (LCCICCG ) were codon-optimized and expressed in Escherichia coli BL21(DE3) for high-yield production. To further lower the enzyme production cost, a pelB leader sequence was fused to LCCICCG so that the enzyme can be secreted into the medium to facilitate recovery. To help bind the enzyme on the hydrophobic surface of PET, a substrate-binding module in a polyhydroxyalkanoate depolymerase from Alcaligenes faecalis (PBM) was fused to the C-terminus of LCCICCG . The resulting four different LCCICCG variants (LCC, PelB-LCC, LCC-PBM, and PelB-LCC-PBM), together with PETase and MHETase, were compared for PET degradation efficiency. A fed-batch fermentation process was developed to produce the target enzymes up to 1.2 g L-1 . Finally, the best enzyme, PelB-LCC, was selected and used for the efficient degradation of 200 g L-1 recycled PET in a well-controlled, stirred-tank reactor. The results will help develop an economical and scalable biorecycling process toward a circular PET economy.


Assuntos
Ácidos Ftálicos , Polietilenotereftalatos , Polietilenotereftalatos/química , Hidrolases/química , Ácidos Ftálicos/química , Ácidos Ftálicos/metabolismo , Etilenos
12.
Chemosphere ; 328: 138578, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37023900

RESUMO

As a kind of compounds abused in industry productions, phthalic acid esters (PAEs) cause serious problems in natural environment. PAEs pollution has penetrated into environmental media and human food chain. This review consolidates the updated information to assess the occurrence and distribution of PAEs in each transmission section. It is found that micrograms per kilogram of PAEs are exposed to humans through daily diets. After entering the human body, PAEs often undergo the metabolic process of hydrolysis to monoesters phthalates and conjugation process. Unfortunately, in the process of systemic circulation, PAEs will interact with biological macromolecules in vivo under the action of non-covalent binding, which is also the essence of biological toxicity. The interactions usually operate in the following pathways: (a) competitive binding; (b) functional interference; and (c) abnormal signal transduction. While the non-covalent binding forces mainly contain hydrophobic interaction, hydrogen bond, electrostatic interaction, and π interaction. As a typical endocrine disruptor, the health risks of PAEs often start with endocrine disorder, further leading to metabolic disruption, reproductive disorders, and nerve injury. Besides, genotoxicity and carcinogenicity are also attributed to the interaction between PAEs and genetic materials. This review also pointed out that the molecular mechanism study on biological toxicity of PAEs are deficient. Future toxicological research should pay more attention to the intermolecular interactions. This will be beneficial for evaluating and predicting the biological toxicity of pollutants at molecular scale.


Assuntos
Poluentes Ambientais , Ácidos Ftálicos , Humanos , Ácidos Ftálicos/química , Poluentes Ambientais/toxicidade , Poluentes Ambientais/química , Meio Ambiente , Saúde Ambiental , Ésteres/metabolismo , China , Dibutilftalato
13.
Chem Biodivers ; 20(4): e202201167, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36912724

RESUMO

In this study, three new axially disubstituted silicon phthalocyanines (SiPc1-3) and their quaternized phthalocyanine derivatives (QSiPc1-3) were prepared and characterized. The biological properties (antioxidant, antimicrobial, antibiofilm, and microbial cell viability activities) of the water-soluble silicon phthalocyanines were examined, as well. A 1 % DMSO diluted with pure water was used as a solvent in biological activity studies. All the compounds exhibited high antioxidant activity. They displayed efficient antimicrobial and antimicrobial photodynamic therapeutic properties against various microorganisms, especially Gram (+) bacteria. Additionally, they demonstrated high antibiofilm activities against S. aureus and P. aeruginosa. In addition, 100 % bacterial reduction was obtained for all the studied phthalocyanines against E. coli viable cells. Besides, the DNA cleavage and binding features of compounds (QSiPc1-3) were studied using pBR322 DNA and CT-DNA, respectively. Furthermore, the human topoisomerase I enzyme inhibition activities of compounds QSiPc1-3 were studied. Anticancer properties of the water-soluble compounds were investigated using cell proliferation MTT assay. They exhibited anticarcinogenic activity against the human colon cancer cell line (DLD-1). Compounds QSiPc1 and QSiPc3 displayed a high anticarcinogenic effect on the DLD-1 cell line. The obtained results indicated that all the studied compounds may be effective biological agents and anticancer drugs after further investigations.


Assuntos
Anti-Infecciosos , Antineoplásicos , Compostos de Organossilício , Staphylococcus aureus , Humanos , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral/efeitos dos fármacos , DNA/química , Escherichia coli/efeitos dos fármacos , Ligantes , Staphylococcus aureus/efeitos dos fármacos , Compostos de Organossilício/química , Compostos de Organossilício/farmacologia , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia
14.
ChemSusChem ; 16(8): e202202277, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36811288

RESUMO

Enzyme-based depolymerization is a viable approach for recycling of poly(ethylene terephthalate) (PET). PETase from Ideonella sakaiensis (IsPETase) is capable of PET hydrolysis under mild conditions but suffers from concentration-dependent inhibition. In this study, this inhibition is found to be dependent on incubation time, the solution conditions, and PET surface area. Furthermore, this inhibition is evident in other mesophilic PET-degrading enzymes to varying degrees, independent of the level of PET depolymerization activity. The inhibition has no clear structural basis, but moderately thermostable IsPETase variants exhibit reduced inhibition, and the property is completely absent in the highly thermostable HotPETase, previously engineered by directed evolution, which simulations suggest results from reduced flexibility around the active site. This work highlights a limitation in applying natural mesophilic hydrolases for PET hydrolysis and reveals an unexpected positive outcome of engineering these enzymes for enhanced thermostability.


Assuntos
Ácidos Ftálicos , Polietilenotereftalatos , Polietilenotereftalatos/química , Hidrolases , Ácidos Ftálicos/química , Etilenos
15.
Environ Sci Pollut Res Int ; 30(8): 21104-21114, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36264459

RESUMO

Take-away containers are the common food contact materials (FCMs) that are widely used in daily life. However, little is known regarding the effects of different food simulants on the pollution characteristics of microplastics derived from food containers, as well as the toxic effects of the chemical substances that are leached from them. Extracts were obtained by adding organic solvents into plastic containers (polypropylene, PP; polystyrene, PS) to simulate aqueous, alcoholic, and fatty environments. The extracted substances and their toxic effects were then assessed by counting and characterizing the resulting microplastics and performing bio-acute toxicity assays. The results demonstrated that the highest abundance of microplastics occurred in PS containers in fatty environments, which was likely due to the rough surface of the PS. In contrast, organic solvents seemed more conducive to the migration of substances. Furthermore, the PP and PS extracts in an alcohol and fatty environment have significant impacts on zebrafish embryo development, including arrhythmia, pericardial cysts, and spinal curvature.


Assuntos
Ácidos Ftálicos , Poluentes Químicos da Água , Animais , Plásticos/toxicidade , Plásticos/química , Microplásticos/toxicidade , Peixe-Zebra , Ácidos Ftálicos/química , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
16.
Molecules ; 27(13)2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35807403

RESUMO

Determining the level of phthalic acid esters (PAEs) in packaged carbonated beverages is a current need to ensure food safety. High-selectivity and -accuracy identification of individual PAEs can be achieved by chromatographic and mass spectrometric (MS) techniques. However, these methods are slow; involve complicated, expensive instruments in professional laboratories; and consume a large amount of organic solvents. As such, a food analysis method is needed to conveniently and rapidly evaluate multiple contaminants on site. In this study, with the assistance of ultrasound, we quickly determined the total PAEs in soft drinks using 1.5 mL of petroleum ether in one step. Then, we determined the characteristic molecular fluorescence spectrum of all PAEs in samples (excitation (Ex)/emission (Em) at 218/351 nm) using selectively concentrated sulfuric acid derivatization. The relative standard deviations of the fluorescent intensities of mixed solutions with five different PAEs were lower than 7.1% at three concentration levels. The limit of detection of the proposed method is 0.10 µmol L-1, which matches that of some of the chromatographic methods, but the proposed method uses less organic solvent and cheaper instruments. These microextraction devices and the fluorescence spectrometer are portable and provide an instant result, which shows promise for the evaluation of the total level of PAEs in beverages on site. The proposed method successfully detected the total level of PAEs in 38 kinds of soft drink samples from local supermarkets, indicating its potential for applications in the packaged beverage industry.


Assuntos
Petróleo , Ácidos Ftálicos , Alcanos , Bebidas Gaseificadas/análise , Ésteres/análise , Limite de Detecção , Petróleo/análise , Ácidos Ftálicos/química , Solventes/análise
17.
Biosensors (Basel) ; 12(1)2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-35049672

RESUMO

A magnetic-based immunoassay (MBI) combined with biotin-streptavidin amplification was proposed for butyl benzyl phthalate (BBP) investigation and risk assessment. The values of LOD (limit of detection, IC10) and IC50 were 0.57 ng/mL and 119.61 ng/mL, with a detection range of 0.57-24,977.71 ng/mL for MBI. The specificity, accuracy and precision are well demonstrated. A total of 36 environmental water samples of urban sewage from Zhenjiang, China, were collected and assessed for BBP contamination. The results show that BBP-positive levels ranged from 2.47 to 89.21 ng/mL, with a positive rate of 77.8%. The health effects of BBP in the urban sewage were within a controllable range, and the ambient severity for health (ASI) was below 1.49. The highest value of AS for ecology (ASII) was 7.43, which indicates a potential harm to ecology. The entropy value of risk quotient was below 100, the highest being 59.47, which poses a low risk to the environment and ecology, indicating that there is a need to strengthen BBP controls. The non-carcinogenic risk of BBP exposure from drinking water was higher for females than that for males, and the non-carcinogenic risk from drinking-water and bathing pathways was negligible. This study could provide an alternative method for detecting BBP and essential information for controlling BBP contamination.


Assuntos
Água Potável , Esgotos , Feminino , Humanos , Imunoensaio/métodos , Fenômenos Magnéticos , Masculino , Ácidos Ftálicos/química , Medição de Risco
18.
J Nanobiotechnology ; 19(1): 298, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34592996

RESUMO

BACKGROUND: Hypoxia is a characteristic of solid tumors that can lead to tumor angiogenesis and early metastasis, and addressing hypoxia presents tremendous challenges. In this work, a nanomedicine based on oxygen-absorbing perfluorotributylamine (PFA) and the bioreductive prodrug tirapazamine (TPZ) was prepared by using a polydopamine (PDA)-coated UiO-66 metal organic framework (MOF) as the drug carrier. RESULTS: The results showed that TPZ/PFA@UiO-66@PDA nanoparticles significantly enhanced hypoxia, induced cell apoptosis in vitro through the oxygen-dependent HIF-1α pathway and decreased oxygen levels in vivo after intratumoral injection. In addition, our study demonstrated that TPZ/PFA@UiO-66@PDA nanoparticles can accumulate in the tumor region after tail vein injection and effectively inhibit tumor growth when combined with photothermal therapy (PTT). TPZ/PFA@UiO-66@PDA nanoparticles increased HIF-1α expression while did not promote the expression of CD31 in vivo during the experiment. CONCLUSIONS: By using TPZ and PFA and the enhanced permeability and retention effect of nanoparticles, TPZ/PFA@UiO-66@PDA can target tumor tissues, enhance hypoxia in the tumor microenvironment, and activate TPZ. Combined with PTT, the growth of osteosarcoma xenografts can be effectively inhibited.


Assuntos
Fluorocarbonos , Estruturas Metalorgânicas , Osteossarcoma/metabolismo , Ácidos Ftálicos , Tirapazamina , Hipóxia Tumoral , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Humanos , Indóis/química , Indóis/farmacologia , Masculino , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Camundongos , Camundongos Nus , Nanopartículas/química , Nanopartículas/toxicidade , Ácidos Ftálicos/química , Ácidos Ftálicos/farmacologia , Polímeros/química , Polímeros/farmacologia , Tirapazamina/química , Tirapazamina/farmacologia
19.
J Mater Chem B ; 9(43): 9031-9040, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34657951

RESUMO

Integrating metal-organic frameworks (MOFs) of different components or structures together and exploiting them as electrochemical sensors for electrochemical sensing has aroused great interest. Furthermore, the incorporation of noble metals with MOFs is conducive to the improvement of catalytic performance. In this work, Pd@UiO-66-on-ZIF-L nanomaterials were successfully synthesised onto a self-supported flexible carbon cloth (Pd@UiO-66-on-ZIF-L/CC) through a novel strategy called MOF-on-MOF. Then, Au nanoparticles were electrodeposited onto Pd@UiO-66-on-ZIF-L/CC to obtain Au-Pd@UiO-66-on-ZIF-L/CC, which can serve as an excellent electrocatalyst for the reduction of hydrogen peroxide (H2O2). The obtained flower-like Pd@UiO-66-on-ZIF-L/CC hybrid MOF changes the structure of the monomeric MOF alone and adds more attachment sites. The synergy of the bimetals greatly improved the catalytic performance of the as-developed sensor. Electrochemical experiment results show that the proposed sensor based on Au-Pd@UiO-66-on-ZIF-L/CC has an extended linear range from 1 µM to 19.6 mM with a sensitivity of 390 µA mM-1 cm-2, and a low limit of detection (LOD) of 21.2 nM (S/N = 3). Moreover, it has good anti-interference, reproducibility, repeatability and excellent stability. Furthermore, the real-time in situ detection of H2O2 secreted from human adenocarcinomic alveolar basal epithelial cells (A549 cells) was achieved by culturing cells on Au-Pd@UiO-66-on-ZIF-L/CC, which indicates the potential of the sensor for applications in cancer pathology. Both the synthesis strategy and the sensor design provide new methods and ideas for the production of ultrasensitive H2O2 electrochemical sensors.


Assuntos
Peróxido de Hidrogênio/análise , Estruturas Metalorgânicas/química , Células A549 , Técnicas Biossensoriais , Carbono/química , Técnicas Eletroquímicas , Ouro/química , Humanos , Paládio/química , Tamanho da Partícula , Ácidos Ftálicos/química , Propriedades de Superfície , Zeolitas/química
20.
Carbohydr Polym ; 271: 118407, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364550

RESUMO

In this study, three natural biomaterials, Locust bean gum (LBG), Xanthan gum (XG), and Mastic gum (MG), were combined to form cryogel scaffolds. Thermal and chemical characterizations revealed the successful blend formation from LBG-XG (LX) and LBG-XG-MG (LXM) polymers. All blends resulted in macro-porous scaffolds with interconnected pore structures under the size of 400 µm. The swollen cryogels had similar mechanical properties compared with other polysaccharide-based cryogels. The mean tensile and compressive modulus values of the wet cryogels were in the range of 3.5-11.6 kPa and 82-398 kPa, respectively. The sustained release of the small molecule Kartogenin from varying concentrations and ratios of cryogels was in between 32 and 66% through 21 days of incubation. Physical, mechanical, and chemical properties make LX and LXM polysaccharide-based cryogels promising candidates for cartilage and other soft tissue engineering, and drug delivery applications.


Assuntos
Criogéis/química , Preparações de Ação Retardada/química , Alicerces Teciduais/química , Anilidas/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Criogéis/toxicidade , Preparações de Ação Retardada/toxicidade , Liberação Controlada de Fármacos , Galactanos/química , Galactanos/toxicidade , Mananas/química , Mananas/toxicidade , Resina Mástique/química , Resina Mástique/toxicidade , Células-Tronco Mesenquimais/efeitos dos fármacos , Camundongos , Células NIH 3T3 , Ácidos Ftálicos/química , Gomas Vegetais/química , Gomas Vegetais/toxicidade , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/toxicidade , Porosidade , Ratos Sprague-Dawley , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA