Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 920
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732052

RESUMO

Fatty acid desaturase 1 (FADS1) is a rate-limiting enzyme in long-chain polyunsaturated fatty acid (LCPUFA) synthesis. Reduced activity of FADS1 was observed in metabolic dysfunction-associated steatotic liver disease (MASLD). The aim of this study was to determine whether adeno-associated virus serotype 8 (AAV8) mediated hepatocyte-specific overexpression of Fads1 (AAV8-Fads1) attenuates western diet-induced metabolic phenotypes in a rat model. Male weanling Sprague-Dawley rats were fed with a chow diet, or low-fat high-fructose (LFHFr) or high-fat high-fructose diet (HFHFr) ad libitum for 8 weeks. Metabolic phenotypes were evaluated at the endpoint. AAV8-Fads1 injection restored hepatic FADS1 protein levels in both LFHFr and HFHFr-fed rats. While AAV8-Fads1 injection led to improved glucose tolerance and insulin signaling in LFHFr-fed rats, it significantly reduced plasma triglyceride (by ~50%) and hepatic cholesterol levels (by ~25%) in HFHFr-fed rats. Hepatic lipidomics analysis showed that FADS1 activity was rescued by AAV8-FADS1 in HFHFr-fed rats, as shown by the restored arachidonic acid (AA)/dihomo-γ-linolenic acid (DGLA) ratio, and that was associated with reduced monounsaturated fatty acid (MUFA). Our data suggest that the beneficial role of AAV8-Fads1 is likely mediated by the inhibition of fatty acid re-esterification. FADS1 is a promising therapeutic target for MASLD in a diet-dependent manner.


Assuntos
Dessaturase de Ácido Graxo Delta-5 , Dieta Ocidental , Ácidos Graxos Dessaturases , Hepatócitos , Ratos Sprague-Dawley , Animais , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Dessaturases/genética , Masculino , Ratos , Dessaturase de Ácido Graxo Delta-5/metabolismo , Dieta Ocidental/efeitos adversos , Hepatócitos/metabolismo , Fenótipo , Modelos Animais de Doenças , Dependovirus/genética , Fígado/metabolismo , Triglicerídeos/metabolismo , Frutose/metabolismo
2.
Anal Chim Acta ; 1303: 342511, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38609261

RESUMO

BACKGROUND: Mammalian cells both import exogenous fatty acids and synthesize them de novo. Palmitate, the end product of fatty acid synthase (FASN) is a substrate for stearoyl-CoA desaturases (Δ-9 desaturases) that introduce a single double bond into fatty acyl-CoA substrates such as palmitoyl-CoA and stearoyl-CoA. This process is particularly upregulated in lipogenic tissues and cancer cells. Tracer methodology is needed to determine uptake versus de novo synthesis of lipids and subsequent chain elongation and desaturation. Here we describe an NMR method to determine the uptake of 13C-palmitate from the medium into HCT116 human colorectal cancer cells, and the subsequent desaturation and incorporation into complex lipids. RESULTS: Exogenous 13C16-palmitate was absorbed from the medium by HCT116 cells and incorporated primarily into complex glycerol lipids. Desaturase activity was determined from the quantification of double bonds in acyl chains, which was greatly reduced by ablation of the major desaturase SCD1. SIGNIFICANCE: The NMR approach requires minimal sample preparation, is non-destructive, and provides direct information about the level of saturation and incorporation of fatty acids into complex lipids.


Assuntos
Bis-Fenol A-Glicidil Metacrilato , Ácidos Graxos , Imageamento por Ressonância Magnética , Humanos , Animais , Isótopos , Palmitatos , Ácidos Graxos Dessaturases , Mamíferos
3.
Sci Rep ; 14(1): 9512, 2024 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-38664593

RESUMO

Continuous research on obtaining an even more efficient production of very long-chain polyunsaturated fatty acids (VLC-PUFAs) in plants remains one of the main challenges of scientists working on plant lipids. Since crops are not able to produce these fatty acids due to the lack of necessary enzymes, genes encoding them must be introduced exogenously from native organisms producing VLC-PUFAs. In this study we reported, in tobacco leaves, the characterization of three distinct ∆6-desaturases from diatom Phaeodactylum tricornutum, fungi Rhizopus stolonifer and microalge Osterococcus tauri and two different ∆5-desaturases from P. tricornutum and single-celled saprotrophic eukaryotes Thraustochytrium sp. The in planta agroinfiltration of essential ∆6-desaturases, ∆6-elongases and ∆5-desaturases allowed for successful introduction of eicosapentaenoic acid (20:5∆5,8,11,14,17) biosynthesis pathway. However, despite the desired, targeted production of ω3-fatty acids we detected the presence of ω6-fatty acids, indicating and confirming previous results that all tested desaturases are not specifically restricted to neither ω3- nor ω6-pathway. Nevertheless, the additional co-expression of acyl-CoA:lysophosphatidylcholine acyltransferase (LPCAT) from Phaeodactylum tricornutum boosted the proportion of ω3-fatty acids in newly synthesized fatty acid pools. For the most promising genes combinations the EPA content reached at maximum 1.4% of total lipid content and 4.5% of all fatty acids accumulated in the TAG pool. Our results for the first time describe the role of LPCAT enzyme and its effectiveness in alleviating a bottleneck called 'substrate dichotomy' for improving the transgenic production of VLC-PUFAs in plants.


Assuntos
Diatomáceas , Ácidos Graxos Dessaturases , Ácidos Graxos Ômega-3 , Engenharia Metabólica , Nicotiana , Plantas Geneticamente Modificadas , Diatomáceas/genética , Diatomáceas/metabolismo , Diatomáceas/enzimologia , Engenharia Metabólica/métodos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-3/biossíntese , Plantas Geneticamente Modificadas/genética , Nicotiana/genética , Nicotiana/metabolismo
4.
ACS Chem Biol ; 19(4): 896-907, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38506663

RESUMO

Cancer cell culture models frequently rely on fetal bovine serum as a source of protein and lipid factors that support cell survival and proliferation; however, serum-containing media imperfectly mimic the in vivo cancer environment. Recent studies suggest that typical serum-containing cell culture conditions can mask cancer dependencies, for example, on cholesterol biosynthesis enzymes, that exist in vivo and emerge when cells are cultured in media that provide more realistic levels of lipids. Here, we describe a high-throughput screen that identified fenretinide and ivermectin as small molecules whose cytotoxicity is greatly enhanced in lipid-restricted media formulations. The mechanism of action studies indicates that ivermectin-induced cell death involves oxidative stress, while fenretinide likely targets delta 4-desaturase, sphingolipid 1, a lipid desaturase necessary for ceramide synthesis, to induce cell death. Notably, both fenretinide and ivermectin have previously demonstrated in vivo anticancer efficacy despite their low cytotoxicity under typical cell culture conditions. These studies suggest ceramide synthesis as a targetable vulnerability of cancer cells cultured under lipid-restricted conditions and reveal a general screening strategy for identifying additional cancer dependencies masked by the superabundance of medium lipids.


Assuntos
Meios de Cultura , Lipídeos , Neoplasias , Humanos , Ceramidas/metabolismo , Meios de Cultura/química , Ácidos Graxos Dessaturases , Fenretinida/farmacologia , Ivermectina/farmacologia , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Esfingolipídeos , Lipídeos/química , Antineoplásicos/farmacologia , Ensaios de Triagem em Larga Escala/métodos , Linhagem Celular Tumoral/efeitos dos fármacos
5.
Plant J ; 117(1): 242-263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37805827

RESUMO

The unsaturation of phospholipids influences the function of membranes. In Arabidopsis thaliana, the oleoyl Δ12-desaturase FAD2 converts oleic (18:1Δ9 ) to linoleic acid (18:2Δ9,12 ) and influences phospholipid unsaturation in different cellular membranes. Despite its importance, the precise localization of Arabidopsis FAD2 has not been unambiguously described. As FAD2 is thought to modify phospholipid-associated fatty acids at the endoplasmic reticulum (ER), from where unsaturates are distributed to other cellular sites, we hypothesized that FAD2 locates to ER subdomains enabling trafficking of lipid intermediates through the secretory pathway. Fluorescent FAD2 fusions used to test this hypothesis were first assessed for functionality by heterologous expression in yeast (Saccharomyces cerevisiae), and in planta by Arabidopsis fad2 mutant rescue upon ectopic expression from an intrinsic FAD2 promoter fragment. Light sheet fluorescence, laser scanning confocal or spinning disc microscopy of roots, leaves, or mesophyll protoplasts showed the functional fluorescence-tagged FAD2 variants in flattened donut-shaped structures of ~0.5-1 µm diameter, in a pattern not resembling mere ER association. High-resolution imaging of coexpressed organellar markers showed fluorescence-tagged FAD2 in a ring-shaped pattern surrounding ER-proximal Golgi particles, colocalizing with pre-cis-Golgi markers. This localization required the unusual C-terminal retention signal of FAD2, and deletion or substitutions in this protein region resulted in relaxed distribution and diffuse association with the ER. The distinct association of FAD2 with pre-cis-Golgi stacks in Arabidopsis root and leaf tissue is consistent with a contribution of FAD2 to membrane lipid homeostasis through the secretory pathway, as verified by an increased plasma membrane liquid phase order in the fad2 mutant.


Assuntos
Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Fosfolipídeos/metabolismo
6.
Adv Sci (Weinh) ; 11(10): e2306653, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38145364

RESUMO

Polyunsaturated fatty acids (PUFAs) are essential nutrients for all living organisms. PUFA synthesis is mediated by Δ12 desaturases in plants and microorganisms, whereas animals usually obtain PUFAs through their diet. The whitefly Bemisia tabaci is an extremely polyphagous agricultural pest that feeds on phloem sap of many plants that do not always provide them with sufficient PUFAs. Here, a plant-derived Δ12 desaturase gene family BtFAD2 is characterized in B. tabaci and it shows that the BtFAD2-9 gene enables the pest to synthesize PUFAs, thereby significantly enhancing its fecundity. The role of BtFAD2-9 in reproduction is further confirmed by transferring the gene to Drosophila melanogaster, which also increases the fruit fly's reproduction. These findings reveal an extraordinary evolutionary scenario whereby a phytophagous insect acquired a family of plant genes that enables it to synthesize essential nutrients, thereby lessening its nutritional dependency and allowing it to feed and reproduce on many host plants.


Assuntos
Ácidos Graxos Dessaturases , Hemípteros , Animais , Ácidos Graxos Dessaturases/genética , Hemípteros/genética , Drosophila melanogaster , Ácidos Graxos Insaturados , Estearoil-CoA Dessaturase , Reprodução
7.
Dis Model Mech ; 16(9)2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37589563

RESUMO

Intestinal immunity is dependent on barrier function to maintain quiescence. The mechanisms for the maintenance of this barrier are not fully understood. Delta 4-desaturase, sphingolipid 2 (DEGS2) is a lipid desaturase and hydroxylase that catalyzes the synthesis of ceramide and phytoceramide from dihydroceramide. Using a forward genetic approach, we found and validated a mutation in Degs2 as causative of increasing susceptibility to colitis and altering the phytoceramide balance in the colon. DEGS2 is expressed in the intestinal epithelium, and the colitis phenotype is dependent on the non-hematopoietic compartment of the mouse. In the absence of DEGS2, the colon lacks phytoceramides and accumulates large amounts of the precursor lipid dihydroceramide. In response to dextran sodium sulfate (DSS)-induced colitis, colonic epithelial cells in DEGS2-deficient mice had increased cell death and decreased proliferation compared to those in wild-type mice. These findings demonstrate that DEGS2 is needed to maintain epithelial integrity, protect against DSS-induced colitis and maintain lipid balance in vivo.


Assuntos
Colite , Animais , Camundongos , Ceramidas , Oxigenases de Função Mista , Inflamação , Ácidos Graxos Dessaturases
8.
Sci Rep ; 13(1): 13617, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604855

RESUMO

Escin is a mixture of over 30 glycosylated triterpenoid (saponin) structures, extracted from the dried fruit of horse chestnuts. Escin is currently used as an anti-inflammatory, and has potential applications in the treatment of arthritis and cancer. Engineered yeast would enable production of specific bioactive components of escin at industrial scale, however many saponins have been shown to be toxic to yeast. Here we report that a Saccharomyces cerevisiae strain specifically lacking the sterol C-5 desaturase gene ERG3, exhibits striking enhanced tolerance to escin treatment. Transcriptome analyses, as well as pre-mixing of escin with sterols, support the hypothesis that escin interacts directly with ergosterol, but not as strongly with the altered sterols present in erg3Δ. A diverse range of saponins are of commercial interest, and this research highlights the value of screening lipidome mutants to identify appropriate hosts for engineering the industrial production of saponins.


Assuntos
Saccharomyces cerevisiae , Saponinas , Saccharomyces cerevisiae/genética , Escina , Saponinas/farmacologia , Esteróis/farmacologia , Anti-Inflamatórios , Ácidos Graxos Dessaturases
9.
Prog Lipid Res ; 92: 101242, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37597812

RESUMO

Dysregulation of fatty acid metabolism and de novo lipogenesis is a key driver of several cancer types through highly unsaturated fatty acid (HUFA) signaling precursors such as arachidonic acid. The human chromosome 11q13 locus has long been established as the most frequently amplified in a variety of human cancers. The fatty acid desaturase genes (FADS1, FADS2 and FADS3) responsible for HUFA biosynthesis localize to the 11q12-13.1 region. FADS2 activity is promiscuous, catalyzing biosynthesis of several unsaturated fatty acids by Δ6, Δ8, and Δ4 desaturation. Our main aim here is to review known and putative consequences of FADS2 dysregulation due to effects on the 11q13 locus potentially driving various cancer types. FADS2 silencing causes synthesis of sciadonic acid (5Z,11Z,14Z-20:3) in MCF7 cells and breast cancer in vivo. 5Z,11Z,14Z-20:3 is structurally identical to arachidonic acid (5Z,8Z,11Z,14Z-20:4) except it lacks the internal Δ8 double bond required for prostaglandin and leukotriene synthesis, among other eicosanoids. Palmitic acid has substrate specificity for both SCD and FADS2. Melanoma, prostate, liver and lung cancer cells insensitive to SCD inhibition show increased FADS2 activity and sapienic acid biosynthesis. Elevated serum mead acid levels found in hepatocellular carcinoma patients suggest an unsatisfied demand for arachidonic acid. FADS2 circular RNAs are at high levels in colorectal and lung cancer tissues. FADS2 circular RNAs are associated with shorter overall survival in colorectal cancer patients. The evidence thusfar supports an effort for future research on the role of FADS2 as a tumor suppressor in a range of neoplastic disorders.


Assuntos
Neoplasias Pulmonares , RNA Circular , Masculino , Humanos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Ácidos Araquidônicos
10.
Nutrients ; 15(14)2023 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-37513632

RESUMO

A gestational diabetes mellitus (GDM) diagnosis during pregnancy means an increased risk of developing type 2 diabetes later in life. By following up with women after GDM we aimed to examine the relationship between iron parameters, individual fatty acids (FAs) and desaturases in the development of impaired glucose metabolism (IGM). Based on an oral glucose tolerance test (OGTT), six years after GDM, 157 women were grouped as having normal glucose tolerance (NGT) or IGM. Fasting serum FAs, activity of desaturases and iron parameters (ferritin, transferrin, iron, soluble transferrin receptor, total iron binding capacity, hepcidin) were measured, and clinical and anthropometric measurements taken. Soluble transferrin receptor was higher in the IGM group compared to the NGT group (3.87 vs. 3.29 mg/L, p-value = 0.023) and associated positively with saturated FAs and negatively with monounsaturated FAs in the IGM group (adjusted for BMI, age and high sensitivity C-reactive protein; p-value < 0.05). Iron, as well as transferrin saturation, showed a positive association with MUFAs and desaturase activity. These associations were not seen in the NGT group. These results suggest that iron homeostasis and FA metabolism interact in the development of glucose intolerance in women with previous GDM.


Assuntos
Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Intolerância à Glucose , Gravidez , Feminino , Humanos , Glicemia/metabolismo , Ferro/metabolismo , Homeostase , Ácidos Graxos , Transferrinas , Ácidos Graxos Dessaturases/metabolismo , Imunoglobulina M/metabolismo
11.
Cell Signal ; 110: 110829, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37506860

RESUMO

PURPOSE: Osteosarcoma is one of the leading causes of cancer mortality in children and teenagers. Dysregulation of lipid metabolism has been reported to involve tumor progression. Our previous evidence has revealed that circular RNA hsa_circ_0000073 enhanced the proliferation and metastasis of osteosarcoma cells. However, the effect of hsa_circ_0000073 on the lipid metabolism of osteosarcoma remains unclear. In this paper, we focused on the effect of hsa_circ_0000073 in lipid metabolism and investigated a network among hsa_circ_0000073/ miR-1184 /FADS2 in osteosarcoma, which provides a new idea to treat osteosarcoma. METHODS: The osteosarcoma and its adjacent tissue samples were collected for further validation. qRT-PCR or western blot was employed to detect the expression of hsa_circ_0000073, miR-1184, and FADS2 in OS cells and tissues. Microarray analysis, mass spectrometry, metabolomics analysis, and bioinformatics analysis were used to explore the potential function and target gene of hsa_circ_0000073. Oil red o, Nile red staining, and Triglyceride content assay were adopted to confirm the effect of hsa_circ_0000073 on the lipid metabolism of OS. Dual-luciferase reporter assays and RNA immunoprecipitation were applied to construct and validate the ceRNA network of hsa_circ_0000073. The xenograft mouse model was taken to verify the effect of hsa_circ_0000073 on lipid metabolism in vivo. RESULTS: The results confirmed that hsa_circ_0000073 was raised in the tumor tissues more than its adjacent tissue. Moreover, the higher expression of hsa_circ_0000073 was associated with worse survival rates, advanced clinical stage, large tumor size, and metastasis. After hsa_circ_0000073 silence, the gene chip and metabolomics result implied that hsa_circ_0000073 expression is positively correlated with a 91 genes signature and 78 metabolites in MG-63 and Saos-2 cells. The bioinformatics analysis indicated that hsa_circ_0000073 might involve in the biological processes of lipid metabolism. Further loss and gain of function experiments affirmed that hsa_circ_0000073 could impact cell lipid synthesis. Mechanically, hsa_circ_0000073 favored the expression of FADS2 genes by sponging miR-1184. Consistent with these observations, silencing of hsa_circ_0000073 inhibited lipid synthesis in vivo xenograft mouse model. CONCLUSIONS: Our study revealed that hsa_circ_0000073 contributed to the lipid synthesis of osteosarcoma by decreasing the expression of miR-1184, thereby increasing FADS2, which provides new insights into treating osteosarcoma.


Assuntos
Neoplasias Ósseas , Ácidos Graxos Dessaturases , MicroRNAs , Osteossarcoma , RNA Circular , Animais , Humanos , Camundongos , Neoplasias Ósseas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Ácidos Graxos Dessaturases/genética , Lipídeos , MicroRNAs/genética , Osteossarcoma/patologia , RNA Circular/genética
12.
Nat Commun ; 14(1): 4322, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37468456

RESUMO

The association between fatty acids and prostate cancer remains poorly explored in African-descent populations. Here, we analyze 24 circulating fatty acids in 2934 men, including 1431 prostate cancer cases and 1503 population controls from Ghana and the United States, using CLIA-certified mass spectrometry-based assays. We investigate their associations with population groups (Ghanaian, African American, European American men), lifestyle factors, the fatty acid desaturase (FADS) genetic locus, and prostate cancer. Blood levels of circulating fatty acids vary significantly between the three population groups, particularly trans, omega-3 and omega-6 fatty acids. FADS1/2 germline genetic variants and lifestyle factors explain some of the variation in fatty acid levels, with the FADS1/2 locus showing population-specific associations, suggesting differences in their control by germline genetic factors. All trans fatty acids, namely elaidic, palmitelaidic, and linoelaidic acids, associated with an increase in the odds of developing prostate cancer, independent of ancestry, geographic location, or potential confounders.


Assuntos
Ácidos Graxos Ômega-3 , Neoplasias da Próstata , Ácidos Graxos trans , Masculino , Humanos , Estados Unidos/epidemiologia , Gana/epidemiologia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/genética , Polimorfismo de Nucleotídeo Único
13.
Sci Adv ; 9(29): eadf6710, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37478183

RESUMO

Corticosteroids regulate vital processes, including stress responses, systemic metabolism, and blood pressure. Here, we show that corticosteroid synthesis is related to the polyunsaturated fatty acid (PUFA) content of mitochondrial phospholipids in adrenocortical cells. Inhibition of the rate-limiting enzyme of PUFA synthesis, fatty acid desaturase 2 (FADS2), leads to perturbations in the mitochondrial lipidome and diminishes steroidogenesis. Consistently, the adrenocortical mitochondria of Fads2-/- mice fed a diet with low PUFA concentration are structurally impaired and corticoid levels are decreased. On the contrary, FADS2 expression is elevated in the adrenal cortex of obese mice, and plasma corticosterone is increased, which can be counteracted by dietary supplementation with the FADS2 inhibitor SC-26192 or icosapent ethyl, an eicosapentaenoic acid ethyl ester. In humans, FADS2 expression is elevated in aldosterone-producing adenomas compared to non-active adenomas or nontumorous adrenocortical tissue and correlates with expression of steroidogenic genes. Our data demonstrate that FADS2-mediated PUFA synthesis determines adrenocortical steroidogenesis in health and disease.


Assuntos
Adenoma , Ácidos Graxos Dessaturases , Humanos , Camundongos , Animais , Ácidos Graxos Dessaturases/genética , Lipidômica , Ácidos Graxos Insaturados/metabolismo , Glândulas Suprarrenais/metabolismo
14.
Nat Commun ; 14(1): 2651, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37156770

RESUMO

Hepatocellular carcinoma (HCC) is the 3rd most deadly malignancy. Activated hepatic stellate cells (aHSC) give rise to cancer-associated fibroblasts in HCC and are considered a potential therapeutic target. Here we report that selective ablation of stearoyl CoA desaturase-2 (Scd2) in aHSC globally suppresses nuclear CTNNB1 and YAP1 in tumors and tumor microenvironment and prevents liver tumorigenesis in male mice. Tumor suppression is associated with reduced leukotriene B4 receptor 2 (LTB4R2) and its high affinity oxylipin ligand, 12-hydroxyheptadecatrienoic acid (12-HHTrE). Genetic or pharmacological inhibition of LTB4R2 recapitulates CTNNB1 and YAP1 inactivation and tumor suppression in culture and in vivo. Single cell RNA sequencing identifies a subset of tumor-associated aHSC expressing Cyp1b1 but no other 12-HHTrE biosynthetic genes. aHSC release 12-HHTrE in a manner dependent on SCD and CYP1B1 and their conditioned medium reproduces the LTB4R2-mediated tumor-promoting effects of 12-HHTrE in HCC cells. CYP1B1-expressing aHSC are detected in proximity of LTB4R2-positive HCC cells and the growth of patient HCC organoids is blunted by LTB4R2 antagonism or knockdown. Collectively, our findings suggest aHSC-initiated 12-HHTrE-LTB4R2-CTNNB1-YAP1 pathway as a potential HCC therapeutic target.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Masculino , Camundongos , beta Catenina/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma Hepatocelular/metabolismo , Ácidos Graxos Dessaturases , Células Estreladas do Fígado/metabolismo , Neoplasias Hepáticas/metabolismo , Receptores do Leucotrieno B4/genética , Receptores do Leucotrieno B4/metabolismo , Microambiente Tumoral
15.
Plant Physiol Biochem ; 199: 107737, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37163804

RESUMO

Chia (Salvia hispanica) is a functional food crop with high α-linolenic acid (ALA), the omega-3 essential fatty acid, but its worldwide plantation is limited by cold-intolerance and strict short-photoperiod flowering feature. Fatty acid desaturases (FADs) are responsible for seed oil accumulation, and play important roles in cold stress tolerance of plants. To date, there is no report on systemically genome-wide analysis of FAD genes in chia (ShiFADs). In this study, 31 ShiFAD genes were identified, 3 of which contained 2 alternative splicing transcripts, and they were located in 6 chromosomes of chia. Phylogenetic analysis classified the ShiFAD proteins into 7 groups, with conserved gene structure and MEME motifs within each group. Tandem and segmental duplications coursed the expansion of ShiFAD genes. Numerous cis-regulatory elements, including hormone response elements, growth and development elements, biotic/abiotic stress response elements, and transcription factor binding sites, were predicted in ShiFAD promoters. 24 miRNAs targeting ShiFAD genes were identified at whole-genome level. In total, 15 SSR loci were predicted in ShiFAD genes/promoters. RNA-seq data showed that ShiFAD genes were expressed in various organs with different levels. qRT-PCR detection revealed the inducibility of ShiSAD2 and ShiSAD7 in response to cold stress, and validated the seed-specific expression of ShiSAD11a. Yeast expression of ShiSAD11a confirmed the catalytic activity of its encoded protein, and its heterologous expression in Arabidopsis thaliana significantly increased seed oleic acid content. This work lays a foundation for molecular dissection of chia high-ALA trait and functional study of ShiFAD genes in cold tolerance.


Assuntos
Ácidos Graxos Dessaturases , Salvia , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Salvia hispanica , Filogenia , Salvia/genética , Salvia/metabolismo , Óleos de Plantas/química , Sementes/metabolismo
16.
J Agric Food Chem ; 71(19): 7324-7333, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37130169

RESUMO

Modern people generally suffer from α-linolenic acid (ALA) deficiency, since most staple food oils are low in ALA content. Thus, the enhancement of ALA in staple oil crops is of importance. In this study, the FAD2 and FAD3 coding regions from the ALA-king species Perilla frutescens were fused using a newly designed double linker LP4-2A, driven by a seed-specific promoter PNAP, and engineered into a rapeseed elite cultivar ZS10 with canola quality background. The mean ALA content in the seed oil of PNAP:PfFAD2-PfFAD3 (N23) T5 lines was 3.34-fold that of the control (32.08 vs 9.59%), with the best line being up to 37.47%. There are no significant side effects of the engineered constructs on the background traits including oil content. In fatty acid biosynthesis pathways, the expression levels of structural genes as well as regulatory genes were significantly upregulated in N23 lines. On the other hand, the expression levels of genes encoding the positive regulators of flavonoid-proanthocyanidin biosynthesis but negative regulators of oil accumulation were significantly downregulated. Surprisingly, the ALA level in PfFAD2-PfFAD3 transgenic rapeseed lines driven by the constitutive promoter PD35S was not increased or even showed a slight decrease due to the lower level of foreign gene expression and downregulation of the endogenous orthologous genes BnFAD2 and BnFAD3.


Assuntos
Brassica napus , Brassica rapa , Perilla , Humanos , Brassica napus/genética , Brassica napus/metabolismo , Ácido alfa-Linolênico/química , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Brassica rapa/genética , Brassica rapa/metabolismo , Sementes/genética , Sementes/metabolismo , Óleos/metabolismo
17.
Front Immunol ; 14: 1074242, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37122728

RESUMO

Breast cancer (BC) is the most common malignant tumor in women worldwide. Emerging evidence indicates the significance of fatty acid metabolism in BC. Fatty acid desaturase (FADS) is closely associated with cancer occurrence and development. Here, bioinformatic analysis and experimental validation were applied to investigate the potential functions of FADS in BC. Several public databases, including TCGA, GEO, HPA, Kaplan-Meier plotter, STRING, DAVID, cBioPortal, TIMER, TRRUST, and LinkedOmics were used to determine mRNA/protein expression levels, prognostic significance, functional enrichment, genetic alterations, association with tumor-infiltrating immune cells, and related transcription factors and kinases. BC tissues showed higher and lower mRNA expression of FADS2/6/8 and FADS3/4/5, respectively. FADS1/2/6 and FADS3/4/5 showed higher and lower protein expression levels, respectively, in BC tissues. Moreover, FADS1/7 up- and FADS3/8 down-regulation predicted poor overall and recurrence-free survival, while FADS2/5 up- and FADS4 down-regulation were associated with poor recurrence-free survival. Receiver operating characteristic curves revealed that FADS2/3/4/8 were indicative diagnostic markers. FADS family members showing differential expression levels were associated with various clinical subtypes, clinical stages, lymph node metastasis status, copy number variants, DNA methylation, and miRNA regulation in BC. The mRNA expression level of FADS1/2/3/4/5/7/8 was observed to be significantly negatively correlated with DNA methylation. FADS1/2 upregulation was significantly correlated with clinical stages. FADS1/4 expression was obviously lower in BC patients with higher lymph node metastasis than lower lymph node metastasis, while FADS7/8 expression was obviously higher in BC patients with higher lymph node metastasis than lower lymph node metastasis. FADS family members showed varying degrees of genetic alterations, and Gene Ontology and KEGG pathway enrichment analyses suggested their involvement in lipid metabolism. Their expression level was correlated with immune cell infiltration levels. FADS2 was chosen for further validation analyses. We found FADS2 to be significantly over-expressed in clinical BC tissue samples. The proliferation, migration, and invasion abilities of MDA-MB-231 and BT474 cells were significantly reduced after FADS2 knockdown. Furthermore, FADS2 may promote the occurrence and development of BC cells via regulating the epithelial-mesenchymal transition (EMT) pathway. Altogether, our results suggest that FADS1/2/3/4 can serve as potential therapeutic targets, prognostic indicators, and diagnostic markers in patients with BC.


Assuntos
Neoplasias da Mama , Ácidos Graxos Dessaturases , Humanos , Feminino , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Neoplasias da Mama/genética , Metástase Linfática , Biologia Computacional , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
18.
Trends Cancer ; 9(6): 480-489, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37029018

RESUMO

Cancer progression is a highly balanced process and is maintained by a sequence of finely tuned metabolic pathways. Stearoyl coenzyme A desaturase-1 (SCD1), the fatty enzyme that converts saturated fatty acids into monounsaturated fatty acids, is a critical modulator of the fatty acid metabolic pathway. SCD1 expression is associated with poor prognosis in several cancer types. SCD1 triggers an iron-dependent cell death called ferroptosis and elevated levels of SCD1 protect cancer cells against ferroptosis. Pharmacological inhibition of SCD1 as monotherapy and in combination with chemotherapeutic agents shows promising antitumor potential in preclinical models. In this review, we summarize the role of SCD in cancer cell progression, survival, and ferroptosis and discuss potential strategies to exploit SCD1 inhibition in future clinical trials.


Assuntos
Ferroptose , Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Ácidos Graxos/metabolismo , Ácidos Graxos Dessaturases , Coenzima A , Estearoil-CoA Dessaturase/metabolismo
19.
Nat Commun ; 14(1): 2042, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041160

RESUMO

Colonocyte metabolism shapes the microbiome. Metabolites are the main mediators of information exchange between intestine and microbial communities. Arachidonic acid (AA) is an essential polyunsaturated fatty acid and its role in colorectal cancer (CRC) remains unexplored. In this study, we show that AA feeding promotes tumor growth in AOM/DSS and intestinal specific Apc-/- mice via modulating the intestinal microecology of increased gram-negative bacteria. Delta-5 desaturase (FADS1), a rate-limiting enzyme, is upregulated in CRC and effectively mediates AA synthesis. Functionally, FADS1 regulates CRC tumor growth via high AA microenvironment-induced enriched gram-negative microbes. Elimination of gram-negative microbe abolishes FADS1 effect. Mechanistically, gram-negative microbes activate TLR4/MYD88 pathway in CRC cells that contributes FADS1-AA axis to metabolize to prostaglandin E2 (PGE2). Cumulatively, we report a potential cancer-promoting mechanism of FADS1-AA axis in CRC that converts raising synthesized AA to PGE2 via modulating the intestinal microecology of gram-negative.


Assuntos
Ácido Araquidônico , Carcinogênese , Neoplasias Colorretais , Ácidos Graxos Dessaturases , Microbioma Gastrointestinal , Bactérias Gram-Negativas , Animais , Camundongos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/microbiologia , Ácido Araquidônico/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Células HCT116 , Xenoenxertos , Humanos , Proteína da Polipose Adenomatosa do Colo/genética , Camundongos Mutantes , Camundongos Endogâmicos C57BL , Bactérias Gram-Negativas/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo , Dinoprostona/metabolismo , Camundongos Endogâmicos BALB C
20.
EBioMedicine ; 91: 104510, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37086649

RESUMO

BACKGROUND: The causal relevance of polyunsaturated fatty acids (PUFAs) for risk of site-specific cancers remains uncertain. METHODS: Using a Mendelian randomization (MR) framework, we assessed the causal relevance of PUFAs for risk of cancer in European and East Asian ancestry individuals. We defined the primary exposure as PUFA desaturase activity, proxied by rs174546 at the FADS locus. Secondary exposures were defined as omega 3 and omega 6 PUFAs that could be proxied by genetic polymorphisms outside the FADS region. Our study used summary genetic data on 10 PUFAs and 67 cancers, corresponding to 562,871 cases and 1,619,465 controls, collected by the Fatty Acids in Cancer Mendelian Randomization Collaboration. We estimated odds ratios (ORs) for cancer per standard deviation increase in genetically proxied PUFA exposures. FINDINGS: Genetically elevated PUFA desaturase activity was associated (P < 0.0007) with higher risk (OR [95% confidence interval]) of colorectal cancer (1.09 [1.07-1.11]), esophageal squamous cell carcinoma (1.16 [1.06-1.26]), lung cancer (1.06 [1.03-1.08]) and basal cell carcinoma (1.05 [1.02-1.07]). There was little evidence for associations with reproductive cancers (OR = 1.00 [95% CI: 0.99-1.01]; Pheterogeneity = 0.25), urinary system cancers (1.03 [0.99-1.06], Pheterogeneity = 0.51), nervous system cancers (0.99 [0.95-1.03], Pheterogeneity = 0.92) or blood cancers (1.01 [0.98-1.04], Pheterogeneity = 0.09). Findings for colorectal cancer and esophageal squamous cell carcinoma remained compatible with causality in sensitivity analyses for violations of assumptions. Secondary MR analyses highlighted higher omega 6 PUFAs (arachidonic acid, gamma-linolenic acid and dihomo-gamma-linolenic acid) as potential mediators. PUFA biosynthesis is known to interact with aspirin, which increases risk of bleeding and inflammatory bowel disease. In a phenome-wide MR study of non-neoplastic diseases, we found that genetic lowering of PUFA desaturase activity, mimicking a hypothetical intervention to reduce cancer risk, was associated (P < 0.0006) with increased risk of inflammatory bowel disease but not bleeding. INTERPRETATION: The PUFA biosynthesis pathway may be an intervention target for prevention of colorectal cancer and esophageal squamous cell carcinoma but with potential for increased risk of inflammatory bowel disease. FUNDING: Cancer Resesrch UK (C52724/A20138, C18281/A19169). UK Medical Research Council (MR/P014054/1). National Institute for Health Research (NIHR202411). UK Medical Research Council (MC_UU_00011/1, MC_UU_00011/3, MC_UU_00011/6, and MC_UU_00011/4). National Cancer Institute (R00 CA215360). National Institutes of Health (U01 CA164973, R01 CA60987, R01 CA72520, U01 CA74806, R01 CA55874, U01 CA164973 and U01 CA164973).


Assuntos
Neoplasias Colorretais , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Ácidos Graxos Ômega-3 , Doenças Inflamatórias Intestinais , Humanos , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos Insaturados/metabolismo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA