Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Molecules ; 29(11)2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38893502

RESUMO

Callus cultures of the Iranian medicinal plant Salvia atropatana were initiated from three-week-old seedlings on Murashige and Skoog (MS) medium supplemented with α-naphthaleneacetic acid (NAA) and various cytokinins. Although all tested hormonal variants of the medium and explant enabled callus induction, the most promising growth was noted for N-(2-chloro-4-pyridyl)-N'-phenylurea (CPPU)-induced calli. Three lines obtained on this medium (cotyledon line-CL, hypocotyl line-HL, and root line-RL) were preselected for further studies. Phenolic compounds in the callus tissues were identified using UPLC-MS (ultra-performance liquid chromatography-mass spectrometry) and quantified with HPLC (high-performance liquid chromatography). All lines exhibited intensive growth and contained twelve phenolic acid derivatives, with rosmarinic acid predominating. The cotyledon-derived callus line displayed the highest growth index values and polyphenol content; this was exposed to different light-emitting diodes (LED) for improving biomass accumulation and secondary metabolite yield. Under LED treatments, all callus lines exhibited enhanced RA and total phenolic content compared to fluorescent light, with the highest levels observed for white (48.5-50.2 mg/g dry weight) and blue (51.4-53.9 mg/g dry weight) LEDs. The selected callus demonstrated strong antioxidant potential in vitro based on the 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl (DPPH), and ferric reducing antioxidant power (FRAP) tests. Our findings confirm that the S. atropatana callus system is suitable for enhanced rosmarinic acid production; the selected optimized culture provide high-quality plant-derived products.


Assuntos
Polifenóis , Salvia , Polifenóis/metabolismo , Salvia/metabolismo , Salvia/química , Antioxidantes/metabolismo , Antioxidantes/química , Cromatografia Líquida de Alta Pressão , Cinamatos/metabolismo , Cinamatos/química , Ácido Rosmarínico , Depsídeos/metabolismo , Cotilédone/metabolismo , Cotilédone/química , Ácidos Naftalenoacéticos/farmacologia , Ácidos Naftalenoacéticos/química , Ácidos Naftalenoacéticos/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Plântula/metabolismo , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos
2.
Sci Rep ; 12(1): 1683, 2022 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-35102225

RESUMO

Thunbergia coccinea Wall. ex D. Don being a rare, ornamental and medicinal plant of India, is needed to propagate for conserving the germplasm and analyzing its phytochemical compounds in the future. A reliable protocol for direct in vitro propagation using nodal shoot meristem of T. coccinea as explant was standardized. The highest number of shoots per explant (22.17 ± 0.54) with maximum shoot length (2.36 ± 0.28) in cm was obtained in Murashige and Skoog (MS) medium supplemented with 9.70 µM of 6-furfurylaminopurine (Kinetin) and 0.053 µM of α-naphthaleneacetic acid (NAA) combination, among all the different plant growth regulators (PGR's) and concentrations tested. The aforesaid PGR's combination was optimum for axillary shoot bud induction and multiplication in T. coccinea. The best rooting was observed on the half-strength MS medium fortified with 2.68 µM NAA with the highest number of roots per shoot (3.75 ± 0.12) and maximum length (5.22 ± 0.32) in cm. All the in vitro raised plantlets were acclimatized in sterile sand and soil mixture (1:1) with a survival rate of 70% on earthen pots under greenhouse conditions. PCR-based RAPD (Random Amplified Polymorphic DNA) and ISSR (Inter-Simple Sequence Repeat) molecular markers were employed to determine the genetic homogeneity amongst the plantlets. Twelve (12) RAPD and nine (9) ISSR primers developed a total of 104 and 91 scorable bands, respectively. The band profiles of micropropagated plantlets were monomorphic to the mother, donor in vivo plant, and similarity values varied from 0.9542-1.000. The dendrogram generated through UPGMA (unweighted pair group method with arithmetic mean) showed 99% similarities amongst all tested plants confirming the genetic uniformity of in vitro raised plants.


Assuntos
Acanthaceae/genética , DNA de Plantas/genética , Genes de Plantas , Genoma de Planta , Meristema/genética , Repetições de Microssatélites , Técnica de Amplificação ao Acaso de DNA Polimórfico , Acanthaceae/efeitos dos fármacos , Acanthaceae/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Marcadores Genéticos , Instabilidade Genômica , Genótipo , Cinetina/farmacologia , Meristema/efeitos dos fármacos , Meristema/crescimento & desenvolvimento , Ácidos Naftalenoacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia
3.
Cells ; 10(7)2021 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-34359847

RESUMO

Auxin plays a dual role in growth regulation and, depending on the tissue and concentration of the hormone, it can either promote or inhibit division and expansion processes in plants. Recent studies have revealed that, beyond transcriptional reprogramming, alternative auxin-controlled mechanisms regulate root growth. Here, we explored the impact of different concentrations of the synthetic auxin NAA that establish growth-promoting and -repressing conditions on the root tip proteome and phosphoproteome, generating a unique resource. From the phosphoproteome data, we pinpointed (novel) growth regulators, such as the RALF34-THE1 module. Our results, together with previously published studies, suggest that auxin, H+-ATPases, cell wall modifications and cell wall sensing receptor-like kinases are tightly embedded in a pathway regulating cell elongation. Furthermore, our study assigned a novel role to MKK2 as a regulator of primary root growth and a (potential) regulator of auxin biosynthesis and signalling, and suggests the importance of the MKK2 Thr31 phosphorylation site for growth regulation in the Arabidopsis root tip.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Hormônios Peptídicos/genética , Fosfoproteínas/genética , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Proteínas Quinases/genética , Receptores de Superfície Celular/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Ácidos Indolacéticos/farmacologia , Meristema/genética , Meristema/crescimento & desenvolvimento , Meristema/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Ácidos Naftalenoacéticos/síntese química , Ácidos Naftalenoacéticos/farmacologia , Hormônios Peptídicos/metabolismo , Fosfoproteínas/classificação , Fosfoproteínas/metabolismo , Fosforilação , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteínas Quinases/metabolismo , Processamento de Proteína Pós-Traducional , Proteoma/classificação , Proteoma/genética , Proteoma/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/metabolismo , Receptores de Superfície Celular/metabolismo , Transdução de Sinais
4.
Acta sci., Biol. sci ; 43: e52866, 2021. tab
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1460986

RESUMO

In vitro multiplication is an important tissue culture technique that is capable of efficiently producing seedlings at any scale. It is a propagation method based on the aseptic culture of small propagules in a suitable culture medium to enable plant regeneration. Multiplication experiments conducted in vitro to set protocols adapted to wild Manihot species have used modified mineral salts and MS vitamins as basic culture medium. Here, 25 treatments based on combinations of the regulators benzylaminopurine (BAP) and naphthaleneacetic acid (NAA) at 0, 0.025, 0.05, 0.075, and 0.1 mg L-1 were used for in vitro multiplication of three genotypes of wild Manihot species (M. violaceae Pohl Müll. Arg., M. pseudoglaziovii Pax & Hoff., and M. flabellifolia Pohl). Plant height and the number of 1 cm minicuttings, number of roots, shoots, green leaves and senescent leaves were recorded 120 days after explant inoculation. M. violaceae Pohl. Müll. Arg. and M. flabellifolia Pohl. presented favorable results with 0.05 and 0.025 mg L-1 NAA, respectively. Culture medium lacking NAA and BAP favored the in vitro growth of M. pseudoglaziovii Pax & Hoff.


Assuntos
Manihot/crescimento & desenvolvimento , Manihot/química , Técnicas In Vitro , Ácidos Naftalenoacéticos/análise
5.
Mol Biol Rep ; 47(9): 6621-6633, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32803508

RESUMO

Purple coneflower (Echinacea purpurea (L.) Moench) is a widely used medicinal and ornamental plant. In the present study, the callus embryogenesis was examined using benzyl adenine (BA) at three levels (3, 4, 5 mg L-1), 1-Naphthalene acetic acid (NAA) at three levels (0.1, 0.2 and 0.5 mg L-1) with or without activated charcoal (1 g L-1), coconut milk (50 ml L-1) and casein hydrolysate (50 mg L-1) in the MS (Murashige and Skoog 1962) medium. The embryogenesis indirectly occurred with the production of callus. The calli were observed in three forms: undifferentiated, embryogenic and organogenic. The embryogenic calli were dark green and coherent with a faster growth rate. The highest embryogenesis (100%) and embryonic regeneration (plantlet production) were obtained in the combined BA + NAA treatments with the activated charcoal, coconut milk and casein hydrolysate. However, the combined treatments of growth regulators failed to produce somatic embryos without the use of coconut milk and casein hydrolysate. The maximum amount of protein, peroxidase and catalase activity of embryogenic calli (2.02, 1.79 and 6.62ΔOD/Min/mg.protein, respectively), and highest percentage of acclimatization success (29.3% of plants) were obtained in the combined treatment of 5 mg L-1 BA + 0.5 mg L-1 NAA + activated charcoal + coconut milk + casein hydrolysate. The highest amount of chlorophyll content (33.3 SPAD value) and growth characteristics of acclimatized plantlets were observed in the media containing 3 mg L-1 BA + 0.1 and 0.2 mg L-1 NAA + 1 g. L-1 combined activated charcoal, coconut milk, casein hydrolysate. The histological studies confirmed the somatic embryogenesis in purple coneflower. Generally, it was found that the somatic embryogenesis of E. purpurea occurs at high levels of BA and low levels of NAA with the addition of coconut milk and casein hydrolysate.


Assuntos
Antioxidantes/farmacologia , Echinacea/química , Echinacea/embriologia , Reguladores de Crescimento de Plantas/farmacologia , Brotos de Planta/efeitos dos fármacos , Técnicas de Embriogênese Somática de Plantas/métodos , Adenina/análogos & derivados , Adenina/farmacologia , Caseínas/farmacologia , Carvão Vegetal/farmacologia , Cocos/química , Meios de Cultura , Echinacea/enzimologia , Ácidos Naftalenoacéticos/farmacologia , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/embriologia , Organoides/crescimento & desenvolvimento , Brotos de Planta/embriologia , Brotos de Planta/crescimento & desenvolvimento , Plantas Medicinais/química
6.
Mol Biol Rep ; 46(2): 2231-2241, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30756335

RESUMO

Efficient micropropagation procedure was developed for Origanum vulgare, a high-value culinary herb, and the phytochemicals, phenolic content, antioxidant and antimutagenic activity of leaf and stem, derived from different growing stages were analyzed. The agar solidified Murashige and Skoog (MS) medium supplemented with a combination of 6-benzylaminopurine and α-naphthaleneacetic acid was optimized as best shoot-multiplication-medium. Shoots were rooted best on 1/2 strength MS medium supplemented with 50 µM indole-3-butyric acid (IBA). The plantlets were successfully acclimatized ex vitro in a soil, sand and farmyard manure mixture (2:1:1 v/v/v) with 100% survival rate in greenhouse. The total anthocyanin and total phenolic content were observed significantly higher in leaves of in vitro-raised plants. However, total tannin, flavonoid and antioxidant activity remained higher in leaves of mother plant maintained under ployhouse condition. All the plant extracts have shown significant antimutagenic activity except in vitro-growing plants. A total of 13 polyphenolic compounds were detected in different extracts using high performance liquid chromatography. Among these, catechin was detected maximum in in vitro-growing cultures and chlorogenic acid in leaves of mother plant. These findings will help the farmers, medicinal plant growers, and industries for mass multiplication and effective extraction of phytochemicals from O. vulgare.


Assuntos
Origanum/química , Origanum/metabolismo , Extratos Vegetais/isolamento & purificação , Antimutagênicos/metabolismo , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Meios de Cultura/farmacologia , Indóis/farmacologia , Ácidos Naftalenoacéticos/farmacologia , Fenóis/isolamento & purificação , Fenóis/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Compostos Fitoquímicos/metabolismo , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Brotos de Planta/efeitos dos fármacos , Plantas Medicinais
7.
Chem Commun (Camb) ; 54(83): 11721-11724, 2018 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-30272064

RESUMO

Short peptide-based hydrogels have attracted extensive research interests in drug delivery because of their responsive properties. So far, most drug molecules have been conjugated with short peptides via an amide bond, restricting the release of the native drug molecules. In this study, we demonstrated the effectiveness of an auxin-based hydrogelator linked by a hydrolysable ester bond. Hydrogel I, formed by the gelator (NAA-G'FFY) linked with an ester bond, was able to release 1-naphthaleneacetic acid (NAA), whereas hydrogel II, formed by the gelator without an ester bond (NAA-GFFY), was not. By mixing NAA-G'FFY with Fmoc-GFFY to form a two-component hydrogel, the spatial and temporal release of NAA was achieved, promoting on-site auxin responses including primary root elongation and lateral root formation in the model plant Arabidopsis thaliana. The strategy of using a hydrolysable ester bond to connect drug molecules and self-assembling peptides could lead to the development of supramolecular hydrogels with more controllable drug release profiles.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Portadores de Fármacos/química , Hidrogéis/química , Ácidos Indolacéticos/administração & dosagem , Peptídeos/química , Raízes de Plantas/crescimento & desenvolvimento , Arabidopsis/efeitos dos fármacos , Arabidopsis/metabolismo , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Esterificação , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ácidos Naftalenoacéticos/administração & dosagem , Ácidos Naftalenoacéticos/química , Ácidos Naftalenoacéticos/metabolismo , Reguladores de Crescimento de Plantas/química , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo
8.
Plant Physiol ; 177(2): 819-832, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29720555

RESUMO

Auxin has been shown to enhance root growth inhibition under aluminum (Al) stress in Arabidopsis (Arabidopsis thaliana). However, in maize (Zea mays), auxin may play a negative role in the Al-induced inhibition of root growth. In this study, we identified mutants deficient in the maize auxin efflux carrier P-glycoprotein (ZmPGP1) after ethyl methanesulfonate mutagenesis and used them to elucidate the contribution of ZmPGP1 to Al-induced root growth inhibition. Root growth in the zmpgp1 mutant, which forms shortened roots and is hyposensitive to auxin, was less inhibited by Al stress than that in the inbred line B73. In the zmpgp1 mutants, the root tips displayed higher auxin accumulation and enhanced auxin signaling under Al stress, which was also consistent with the increased expression of auxin-responsive genes. Based on the behavior of the auxin-responsive marker transgene, DR5rev:RFP, we concluded that Al stress reduced the level of auxin in the root tip, which contrasts with the tendency of Al stress-induced Arabidopsis plants to accumulate more auxin in their root tips. In addition, Al stress induced the expression of ZmPGP1 Therefore, in maize, Al stress is associated with reduced auxin accumulation in root tips, a process that is regulated by ZmPGP1 and thus causes inhibition of root growth. This study provides further evidence about the role of auxin and auxin polar transport in Al-induced root growth regulation in maize.


Assuntos
Alumínio/toxicidade , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Zea mays/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Meristema/efeitos dos fármacos , Meristema/genética , Meristema/metabolismo , Mutação , Ácidos Naftalenoacéticos/farmacologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Transdução de Sinais , Zea mays/genética , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo
9.
Ying Yong Sheng Tai Xue Bao ; 29(4): 1215-1224, 2018 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-29726231

RESUMO

With pot experiment, two soybean (Glycine max) varieties, Jindou 21 (drought-tole-rant) and Xudou 22 (drought-sensitive), were used to examine the effects of α-naphthaleneacetic acid (NAA) on carbon metabolism of soybean under drought stress at flowering stage. The results showed that under drought stress, compared to Xudou 22, Jindou 21 had smaller decrease in net photosynthetic rate (Pn), smaller increase in photorespiration rate (Pr) and soluble sugar content of leaves, while a greater increase in the activities of sucrose phosphate synthase (SPS) and sucrose synthetase (SS) (synthesis) of leaves and sucrose content of roots. NAA treatment increased Pn and decreased Pr under drought stress, and thus obviously alleviated the growth inhibition of drought stress on plants. NAA treatment reduced the activities of starch-degrading enzymes, acid invertase (AI) and SS (cleavage), thereby inhibited the accumulation of soluble sugar induced by drought stress. In addition, NAA treatment increased SPS and SS (synthesis) activities of leaves, sucrose content of roots and shoot-root ratio, indicating that NAA treatment improved the transportation of sucrose from leaf blade to root under drought stress. In conclusion, exogenous NAA could enhance drought tolerance in soybean by regulating carbon metabolism.


Assuntos
Secas , Glycine max , Ácidos Naftalenoacéticos/farmacologia , Metabolismo dos Carboidratos , Carbono , Fabaceae , Glucosiltransferases , Fotossíntese , Folhas de Planta , Estresse Fisiológico , Sacarose , beta-Frutofuranosidase
10.
Molecules ; 23(6)2018 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-29799442

RESUMO

A protocol was established to produce bioactive compounds in a callus culture of Ageratina pichinchensis by using 1 mg L-1 NAA with 0.1 mg L-1 KIN. The phytochemical study of the EtOAc extract obtained from the callus biomass, allowed the isolation and characterization of eleven secondary metabolites, of which dihydrobenzofuran (5) and 3-epilupeol (7), showed important anti-inflammatory activity. Compound 5 inhibits in vitro the secretion of NO (IC50 = 36.96 ± 1.06 µM), IL-6 (IC50 = 73.71 ± 3.21 µM), and TNF-α (IC50 = 73.20 ± 5.99 µM) in RAW (Murine macrophage cells) 264.7 macrophages, as well as the activation of NF-κB (40% at 150 µM) in RAW-blue macrophages, while compound 7 has been described that inhibit the in vivo TPA-induced ear edema, and the in vitro production of NO, and the PLA2 enzyme activity. In addition, quantitative GC-MS analysis showed that the anti-inflammatory metabolites 5 and 7 were not detected in the wild plant. Overall, our results indicated that A. pichinchensis can be used as an alternative biotechnological resource for obtaining anti-inflammatory compounds. This is the first report of the anti-inflammatory activity of compound 5 and its production in a callus culture of A. pichinchensis.


Assuntos
Ageratina/química , Anti-Inflamatórios/farmacologia , Benzofuranos/farmacologia , Edema/tratamento farmacológico , Triterpenos Pentacíclicos/farmacologia , Animais , Anti-Inflamatórios/isolamento & purificação , Benzofuranos/isolamento & purificação , Técnicas de Cultura , Orelha , Edema/induzido quimicamente , Edema/imunologia , Edema/patologia , Etanol/química , Interleucina-6/antagonistas & inibidores , Interleucina-6/biossíntese , Cinetina/farmacologia , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Ácidos Naftalenoacéticos/farmacologia , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Triterpenos Pentacíclicos/isolamento & purificação , Fosfolipases A2/metabolismo , Extratos Vegetais/química , Folhas de Planta/química , Células RAW 264.7 , Metabolismo Secundário/efeitos dos fármacos , Solventes/química , Acetato de Tetradecanoilforbol/administração & dosagem , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Fator de Necrose Tumoral alfa/biossíntese
11.
Chem Asian J ; 13(10): 1366-1378, 2018 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-29578316

RESUMO

A series of primary ammonium monocarboxylate (PAM) salts derived from ß-alanine derivatives of pyrene and naphthalene acetic acid, along with the parent acids, were explored to probe the plausible role of orthogonal hydrogen bonding resulting from amide⋅⋅⋅amide and PAM synthons on gelation. Single-crystal X-ray diffraction (SXRD) studies were performed on two parent acids and five PAM salts in the series. The data revealed that orthogonal hydrogen bonding played an important role in gelation. Structure-property correlation based on SXRD and powder X-ray diffraction data also supported the working hypothesis upon which these gelators were designed. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and cell migration assay on a highly aggressive human breast cancer cell line, MDA-MB-231, revealed that one of the PAM salts in the series, namely, PAA.B2, displayed anticancer properties, and internalization of the gelator salt in the same cell line was confirmed by cell imaging.


Assuntos
Amidas/farmacologia , Substâncias Macromoleculares/farmacologia , Ácidos Naftalenoacéticos/farmacologia , Pirenos/farmacologia , beta-Alanina/análogos & derivados , beta-Alanina/farmacologia , Amidas/síntese química , Amidas/química , Amidas/toxicidade , Animais , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Géis , Humanos , Ligação de Hidrogênio , Substâncias Macromoleculares/síntese química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/toxicidade , Camundongos , Ácidos Naftalenoacéticos/síntese química , Ácidos Naftalenoacéticos/química , Ácidos Naftalenoacéticos/toxicidade , Pirenos/síntese química , Pirenos/química , Pirenos/toxicidade , Células RAW 264.7 , Substâncias Viscoelásticas/síntese química , Substâncias Viscoelásticas/química , Substâncias Viscoelásticas/farmacologia , Substâncias Viscoelásticas/toxicidade , Difração de Raios X , beta-Alanina/síntese química , beta-Alanina/toxicidade
12.
Plant Cell Rep ; 36(9): 1507-1518, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28660363

RESUMO

KEY MESSAGE: A fresh look at the roles of auxin, ethylene, and polar auxin transport during the plant root growth response to warmer ambient temperature (AT). The ambient temperature (AT) affects plant growth and development. Plants can sense changes in the AT, but how this change is transduced into a plant root growth response is still relatively unclear. Here, we found that the Arabidopsis ckrc1-1 mutant is sensitive to higher AT. At 27 °C, the ckrc1-1 root length is significantly shortened and the root gravity defect is enhanced, changes that can be restored with addition of 1-naphthaleneacetic acid, but not indole-3-acetic acid (IAA). AUX1, PIN1, and PIN2 are involved in the ckrc1-1 root gravity response under increased AT. Furthermore, CKRC1-dependent auxin biosynthesis was critical for maintaining PIN1, PIN2, and AUX1 expression at elevated temperatures. Ethylene was also involved in this regulation through the ETR1 pathway. Higher AT can promote CKRC1-dependent auxin biosynthesis by enhancing ETR1-mediated ethylene signaling. Our research suggested that the interaction between auxin and ethylene and that the interaction-mediated polar auxin transport play important roles during the plant root growth response to higher AT.


Assuntos
Arabidopsis/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo , Temperatura , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Etilenos/metabolismo , Etilenos/farmacologia , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacologia , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mutação , Ácidos Naftalenoacéticos/metabolismo , Ácidos Naftalenoacéticos/farmacologia , Reguladores de Crescimento de Plantas/farmacologia , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento
13.
J Biotechnol ; 247: 11-17, 2017 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-28223005

RESUMO

Schisandra chinensis (Chinese magnolia vine) is a rich source of therapeutically relevant dibenzocyclooctadiene lignans with anticancer, immunostimulant and hepatoprotective activities. In this work, shoot cultures of S. chinensis were grown in different types of bioreactors with the aim to select a system suitable for the large scale in vitro production of schisandra lignans. The cultures were maintained in Murashige-Skoog (MS) medium supplemented with 3mg/l 6-benzylaminopurine (BA) and 1mg/l 1-naphthaleneacetic acid (NAA). Five bioreactors differing with respect to cultivation mode were tested: two liquid-phase systems (baloon-type bioreactor and bubble-column bioreactor with biomass immobilization), the gas-phase spray bioreactor and two commercially available temporary immersion systems: RITA® and Plantform. The experiments were run for 30 and 60 days in batch mode. The harvested shoots were evaluated for growth and lignan content determined by LC-DAD and LC-DAD-ESI-MS. Of the tested bioreactors, temporary immersion systems provided the best results with respect to biomass production and lignan accumulation: RITA® bioreactor yielded 17.86g/l (dry weight) during 60 day growth period whereas shoots grown for 30 days in Plantform bioreactor contained the highest amount of lignans (546.98mg/100g dry weight), with schisandrin, deoxyschisandrin and gomisin A as the major constituents (118.59, 77.66 and 67.86mg/100g dry weight, respectively).


Assuntos
Técnicas de Cultura Celular por Lotes/métodos , Lignanas/análise , Extratos Vegetais/análise , Schisandra/crescimento & desenvolvimento , Compostos de Benzil/farmacologia , Biomassa , Reatores Biológicos , Cromatografia Líquida de Alta Pressão , Meios de Cultura/química , Lignanas/química , Ácidos Naftalenoacéticos/farmacologia , Extratos Vegetais/química , Brotos de Planta/química , Brotos de Planta/crescimento & desenvolvimento , Purinas/farmacologia , Schisandra/química
14.
Appl Biochem Biotechnol ; 180(6): 1076-1092, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27287999

RESUMO

Prunella vulgaris L. (P. vulgaris) is an important medicinal plant with a wide range of antiviral properties. Traditionally, it is known as self-heal because of its faster effects on wound healing. It is commonly known as a natural antiseptic due to the presence of various polyphenols. There is lack of research efforts on its propagation and production of bioactive compounds under field and in vitro conditions. In this study, the effects of different ratios (1:2, 1:3, 2:1, and 3:1) of silver (Ag) and gold (Au) nanoparticles (NPs) alone or in combination with naphthalene acetic acid (NAA) were investigated for callus culture development and production of secondary metabolites. The Ag (30 µg l-1), AgAu (1:2), and AgAu (2:1) NPs in combination with NAA (2.0 mg l-1) enhanced callus proliferation (100 %) as compared to the control (95 %). Among the different NPs tested, AuNPs with or without NAA produced higher biomass in log phases (35-42 days) of growth kinetics. Furthermore, AgAu (1:3) and AuNPs alone enhanced total protein content (855 µg-BSAE/mg-fresh weight (FW)), superoxide dismutase (0.54 nM/min/mg-FW), and peroxidase (0.39 nM/min/mg-FW) enzymes in callus cultures. The AgAuNPs (1:3) in combination with NAA induced maximum accumulation of phenolics (TPC 9.57 mg/g-dry weight (DW)) and flavonoid (6.71 mg/g-DW) content. Moreover, AgAuNPs (3:1) without NAA enhanced antioxidant activity (87.85 %). This study provides the first evidence of NP effect on callus culture development and production of natural antioxidants in P. vulgaris.


Assuntos
Antioxidantes/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Plantas Medicinais/crescimento & desenvolvimento , Prunella/crescimento & desenvolvimento , Metabolismo Secundário , Prata/química , Técnicas de Cultura de Tecidos/métodos , Biomassa , Proliferação de Células , Flavonoides/análise , Cinética , Ácidos Naftalenoacéticos/farmacologia , Fenóis/análise , Proteínas de Plantas/análise , Plantas Medicinais/efeitos dos fármacos , Plantas Medicinais/metabolismo , Prunella/efeitos dos fármacos , Prunella/metabolismo , Metabolismo Secundário/efeitos dos fármacos
15.
Ying Yong Sheng Tai Xue Bao ; 26(6): 1718-26, 2015 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-26572024

RESUMO

Two different drought tolerance soybean ( Glycine max) varieties (Nannong 99-6 and Kefeng 1) were used to study the effects of α-naphthaleneacetic acid (NAA) on the antioxidation system under long-term drought stress after flowering with pot experiment, which lasted for 110 days at Pailou Experiment Station, Nanjing Agricultural University, in 2012. The results showed that long-term stress decreased the shoot dry mass significantly, however, increased the level of reactive oxygen species (ROS) and malondialdehyde (MDA) content. It also obviously increased the activities of superoxide dismutase (SOD), peroxidase (POD), catalase (CAT) , ascorbate peroxidase (APX), monodehydroascorbate reductase (MDHAR), glutathione reductase (GR) and glutathione peroxidase (GPX). The contents of ascorbic acid (AsA) and glutathione (GSH), and the ratios of AsA/DHA (dehydroascorbic acid) and GSH/GSSG (L-glutathione oxidized) were obviously enhanced. Kefeng 1 showed a higher antioxidation ability than Nannong 99-6, and could consequently maintain lower ROS and MDA levels. NAA distinctly enhanced the activities of APX, POD, CAT, MDHAR, GPX, and ratios of AsA/DHA and GSH/GSSG, while decreased the levels of ROS and MDA. The AsA content and dehydroascorbate reductase (DHAR) activity were significantly increased in Kefeng 1.


Assuntos
Secas , Flores/fisiologia , Glycine max/efeitos dos fármacos , Ácidos Naftalenoacéticos/farmacologia , Antioxidantes/metabolismo , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/análogos & derivados , Ácido Ascórbico/metabolismo , Catalase/metabolismo , Ácidos Docosa-Hexaenoicos/metabolismo , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Malondialdeído/metabolismo , NADH NADPH Oxirredutases/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Glycine max/fisiologia , Estresse Fisiológico , Superóxido Dismutase/metabolismo
16.
Plant Physiol ; 167(2): 517-30, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25516603

RESUMO

We show that antiphase light-temperature cycles (negative day-night temperature difference [-DIF]) inhibit hypocotyl growth in Arabidopsis (Arabidopsis thaliana). This is caused by reduced cell elongation during the cold photoperiod. Cell elongation in the basal part of the hypocotyl under -DIF was restored by both 1-aminocyclopropane-1-carboxylic acid (ACC; ethylene precursor) and auxin, indicating limited auxin and ethylene signaling under -DIF. Both auxin biosynthesis and auxin signaling were reduced during -DIF. In addition, expression of several ACC Synthase was reduced under -DIF but could be restored by auxin application. In contrast, the reduced hypocotyl elongation of ethylene biosynthesis and signaling mutants could not be complemented by auxin, indicating that auxin functions upstream of ethylene. The PHYTOCHROME INTERACTING FACTORS (PIFs) PIF3, PIF4, and PIF5 were previously shown to be important regulators of hypocotyl elongation. We now show that, in contrast to pif4 and pif5 mutants, the reduced hypocotyl length in pif3 cannot be rescued by either ACC or auxin. In line with this, treatment with ethylene or auxin inhibitors reduced hypocotyl elongation in PIF4 overexpressor (PIF4ox) and PIF5ox but not PIF3ox plants. PIF3 promoter activity was strongly reduced under -DIF but could be restored by auxin application in an ACC Synthase-dependent manner. Combined, these results show that PIF3 regulates hypocotyl length downstream, whereas PIF4 and PIF5 regulate hypocotyl length upstream of an auxin and ethylene cascade. We show that, under -DIF, lower auxin biosynthesis activity limits the signaling in this pathway, resulting in low activity of PIF3 and short hypocotyls.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ritmo Circadiano/efeitos dos fármacos , Etilenos/metabolismo , Hipocótilo/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Temperatura , Aminoácidos Cíclicos/farmacologia , Arabidopsis/efeitos dos fármacos , Etilenos/biossíntese , Hipocótilo/citologia , Hipocótilo/efeitos dos fármacos , Modelos Biológicos , Ácidos Naftalenoacéticos/farmacologia , Fotoperíodo , Transdução de Sinais/efeitos dos fármacos
17.
J Chromatogr A ; 1368: 37-43, 2014 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-25441342

RESUMO

A new material, graphene oxide/polypyrrole (GO/Ppy), was synthesized by mixing graphene oxide and polypyrrole in a specific proportion. It possesses a unique structure similar to that of foam. A homemade pipette-tip solid-phase extraction (PT-SPE) device, which is more simple and convenient than traditional devices, was used for saving reagents and operation time. When GO/Ppy was used as the adsorbent of PT-SPE for determining three auxins (indole-3-propionic acid, indole-3-butyric acid, and 1-naphthaleneacetic acid) present in trace amounts in papaya juice, it showed high affinity and adsorption capacity for all the three auxins. GO/Ppy-PT-SPE also had a significant capacity for eliminating the interferences from the papaya juice matrix. Under optimized conditions, a good linearity of auxins was obtained in the range 16.3-812.5 ng g(-1); the average recoveries at the three spiked levels of the three auxins ranged from 89.4% to 105.6% with the relative standard deviations ≤ 3.0%. Meanwhile, six papaya juice samples with different growth stages were analyzed under optimum conditions, and trace auxins in the range 18.3-100.6 ng g(-1) were observed. Because of its high selectivity, simplicity, and reliability, the GO/Ppy-PT-SPE method developed herein can be potentially applied for determining trace auxins in complex biological samples.


Assuntos
Carica/química , Ácidos Indolacéticos/análise , Indóis/análise , Ácidos Naftalenoacéticos/análise , Polímeros/química , Pirróis/química , Extração em Fase Sólida/métodos , Adsorção , Grafite/química , Óxidos/química , Reprodutibilidade dos Testes
18.
Environ Sci Pollut Res Int ; 21(19): 11218-27, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24838128

RESUMO

Decatungstate W10O32(4-) was efficiently intercalated between the layers of three-dimensionally ordered macroporous Mg2Al-layered double hydroxide. The structural and textural properties of as-prepared intercalated compound were characterized using different solid-state characterization techniques such as X-ray powder diffraction, FTIR and Raman spectroscopies and electronic microscopy. The photocatalytic properties of immobilized W10O32 (4-) within Mg2Al structure were investigated using 2-(1-naphthyl) acetamide (NAD) as a model of pesticide. The influence of different parameters such as amount of catalyst, pH and oxygen concentration were investigated. An optimal NAD degradation was obtained for a photocatalyst concentration of 60 mg l(-1). Under our experimental conditions, this heterogeneous photocatalyst induces photodegradation of 60 % of NAD after 17 h of irradiation at 365 nm and at pH 6.6. Interestingly, pesticide photodegradation leads to the mineralization of substrates to H2O and CO2 and the photocatalyst can be recycled and reused without any loss of activity over four cycles.


Assuntos
Hidróxidos/química , Substâncias Intercalantes/química , Ácidos Naftalenoacéticos/química , Praguicidas/química , Compostos de Tungstênio/química , Compostos de Tungstênio/efeitos da radiação , Alumínio/química , Catálise , Magnésio/química , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral Raman , Difração de Raios X
19.
Plant Signal Behav ; 9(3): e28361, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24598313

RESUMO

Auxin and ethylene have been largely reported to reduce root elongation in maize primary root. However the effects of auxin are greater than those caused by ethylene. Although auxin stimulates ethylene biosynthesis through the specific increase of ACC synthase, the auxin inhibitory effect on root elongation is not mediated by the auxin-induced increase of ethylene production. Recently it has been demonstrated that root inhibition by the application of the synthetic auxin NAA (1-naphtalenacetic acid) is increased if combined with the ethylene precursor ACC (1-aminocyclopropane-1-carboxilic acid) when both compounds are applied at very low concentrations.   Root elongation is basically the result of two processes: a) cell divisions in the meristem where meristematic cells continuously generate new cells and b) subsequently polarized growth by elongation along the root axis as cells leave the meristem and enter the root elongation zone. Our results indicate that exogenous auxin reduced both root elongation and epidermal cell length. In a different way, ethylene at very low concentrations only inhibited root elongation without affecting significantly epidermal cell length. However, these concentrations of ethylene increased the inhibitory effect of auxin on root elongation and cell length. Consequently the results support the hypothesis that ethylene acts synergistically with auxin in the regulation of root elongation and that inhibition by both hormones is due, at least partially, to the reduction of cell length in the epidermal layer.


Assuntos
Etilenos , Ácidos Indolacéticos , Epiderme Vegetal/citologia , Raízes de Plantas/crescimento & desenvolvimento , Aminoácidos Cíclicos , Tamanho Celular , Ácidos Naftalenoacéticos , Raízes de Plantas/citologia , Zea mays
20.
J Plant Physiol ; 171(6): 429-37, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24594395

RESUMO

Polar auxin transport is a crucial process for control and coordination of plant development. Studies of auxin transport through plant tissues and organs showed that auxin is transported by a combination of phloem flow and the active, carrier-mediated cell-to-cell transport. Since plant organs and even tissues are too complex for determination of the kinetics of carrier-mediated auxin uptake and efflux on the cellular level, simplified models of cell suspension cultures are often used, and several tobacco cell lines have been established for auxin transport assays. However, there are very few data available on the specificity and kinetics of auxin transport across the plasma membrane for Arabidopsis thaliana suspension-cultured cells. In this report, the characteristics of carrier-mediated uptake (influx) and efflux for the native auxin indole-3-acetic acid and synthetic auxins, naphthalene-1-acetic and 2,4-dichlorophenoxyacetic acids (NAA and 2,4-D, respectively) in A. thaliana ecotype Landsberg erecta suspension-cultured cells (LE line) are provided. By auxin competition assays and inhibitor treatments, we show that, similarly to tobacco cells, uptake carriers have high affinity towards 2,4-D and that NAA is a good tool for studies of auxin efflux in LE cells. In contrast to tobacco cells, metabolic profiling showed that only a small proportion of NAA is metabolized in LE cells. These results show that the LE cell line is a useful experimental system for measurements of kinetics of auxin carriers on the cellular level that is complementary to tobacco cells.


Assuntos
Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Ácido 2,4-Diclorofenoxiacético/metabolismo , Arabidopsis/citologia , Arabidopsis/crescimento & desenvolvimento , Transporte Biológico , Técnicas de Cultura de Células , Cotilédone/citologia , Cotilédone/crescimento & desenvolvimento , Cotilédone/metabolismo , Hipocótilo/citologia , Hipocótilo/crescimento & desenvolvimento , Hipocótilo/metabolismo , Metaboloma , Ácidos Naftalenoacéticos/metabolismo , Fenótipo , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plântula/citologia , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Nicotiana/citologia , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA