Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Cell Rep ; 37(10): 110088, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879271

RESUMO

Alternative lengthening of telomeres (ALT) is a telomere-elongation mechanism observed in ∼15% of cancer subtypes. Current models indicate that ALT is mediated by homology-directed repair mechanisms. By disrupting MSH6 gene expression, we show that the deficiency of MutSα (MSH2/MSH6) DNA mismatch repair complex causes striking telomere hyperextension. Mechanistically, we show MutSα is specifically recruited to telomeres in ALT cells by associating with the proliferating-cell nuclear antigen (PCNA) subunit of the ALT telomere replisome. We also provide evidence that MutSα counteracts Bloom (BLM) helicase, which adopts a crucial role in stabilizing hyper-extended telomeres and maintaining the survival of MutSα-deficient ALT cancer cells. Lastly, we propose a model in which MutSα deficiency impairs heteroduplex rejection, leading to premature initiation of telomere DNA synthesis that coincides with an accumulation of telomere variant repeats (TVRs). These findings provide evidence that the MutSα DNA mismatch repair complex acts to restrain unwarranted ALT.


Assuntos
DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Neoplasias/enzimologia , Ácidos Nucleicos Heteroduplexes/metabolismo , Homeostase do Telômero , Telômero/metabolismo , Linhagem Celular Tumoral , Reparo de Erro de Pareamento de DNA , DNA de Neoplasias/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica , Células HeLa , Humanos , Modelos Genéticos , Proteína 2 Homóloga a MutS/genética , Neoplasias/genética , Neoplasias/patologia , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , RecQ Helicases/genética , RecQ Helicases/metabolismo , Telômero/genética
2.
Biochem J ; 477(18): 3567-3582, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32886094

RESUMO

Recombination activating genes (RAGs), consisting of RAG1 and RAG2 have ability to perform spatially and temporally regulated DNA recombination in a sequence specific manner. Besides, RAGs also cleave at non-B DNA structures and are thought to contribute towards genomic rearrangements and cancer. The nonamer binding domain of RAG1 binds to the nonamer sequence of the signal sequence during V(D)J recombination. However, deletion of NBD did not affect RAG cleavage on non-B DNA structures. In the present study, we investigated the involvement of other RAG domains when RAGs act as a structure-specific nuclease. Studies using purified central domain (CD) and C-terminal domain (CTD) of the RAG1 showed that CD of RAG1 exhibited high affinity and specific binding to heteroduplex DNA, which was irrespective of the sequence of single-stranded DNA, unlike CTD which showed minimal binding. Furthermore, we show that ZnC2 of RAG1 is crucial for its binding to DNA structures as deletion and point mutations abrogated the binding of CD to heteroduplex DNA. Our results also provide evidence that unlike RAG cleavage on RSS, central domain of RAG1 is sufficient to cleave heteroduplex DNA harbouring pyrimidines, but not purines. Finally, we show that a point mutation in the DDE catalytic motif is sufficient to block the cleavage of CD on heteroduplex DNA. Therefore, in the present study we demonstrate that the while ZnC2 module in central domain of RAG1 is required for binding to non-B DNA structures, active site amino acids are important for RAGs to function as a structure-specific nuclease.


Assuntos
Proteínas de Homeodomínio/química , Ácidos Nucleicos Heteroduplexes/química , Motivos de Aminoácidos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Domínios Proteicos , Relação Estrutura-Atividade , Recombinação V(D)J
3.
Nat Commun ; 11(1): 2950, 2020 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-32528002

RESUMO

During homologous recombination, Rad51 forms a nucleoprotein filament on single-stranded DNA to promote DNA strand exchange. This filament binds to double-stranded DNA (dsDNA), searches for homology, and promotes transfer of the complementary strand, producing a new heteroduplex. Strand exchange proceeds via two distinct three-strand intermediates, C1 and C2. C1 contains the intact donor dsDNA whereas C2 contains newly formed heteroduplex DNA. Here, we show that the conserved DNA binding motifs, loop 1 (L1) and loop 2 (L2) in site I of Rad51, play distinct roles in this process. L1 is involved in formation of the C1 complex whereas L2 mediates the C1-C2 transition, producing the heteroduplex. Another DNA binding motif, site II, serves as the DNA entry position for initial Rad51 filament formation, as well as for donor dsDNA incorporation. Our study provides a comprehensive molecular model for the catalytic process of strand exchange mediated by eukaryotic RecA-family recombinases.


Assuntos
DNA/metabolismo , Rad51 Recombinase/química , Rad51 Recombinase/metabolismo , Trifosfato de Adenosina/metabolismo , Sítios de Ligação/genética , DNA/genética , Dano ao DNA/genética , Dano ao DNA/fisiologia , Reparo do DNA/genética , Reparo do DNA/fisiologia , DNA de Cadeia Simples/genética , Recombinação Homóloga/genética , Recombinação Homóloga/fisiologia , Humanos , Mutação/genética , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Estrutura Secundária de Proteína , Rad51 Recombinase/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética
4.
Mol Cell ; 78(6): 1252-1263.e3, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32362315

RESUMO

Crossover recombination is critical for meiotic chromosome segregation, but how mammalian crossing over is accomplished is poorly understood. Here, we illuminate how strands exchange during meiotic recombination in male mice by analyzing patterns of heteroduplex DNA in recombinant molecules preserved by the mismatch correction deficiency of Msh2-/- mutants. Surprisingly, MSH2-dependent recombination suppression was not evident. However, a substantial fraction of crossover products retained heteroduplex DNA, and some provided evidence of MSH2-independent correction. Biased crossover resolution was observed, consistent with asymmetry between DNA ends in earlier intermediates. Many crossover products yielded no heteroduplex DNA, suggesting dismantling by D-loop migration. Unlike the complexity of crossovers in yeast, these simple modifications of the original double-strand break repair model-asymmetry in recombination intermediates and D-loop migration-may be sufficient to explain most meiotic crossing over in mice while also addressing long-standing questions related to Holliday junction resolution.


Assuntos
Troca Genética/fisiologia , Recombinação Homóloga/fisiologia , Meiose/fisiologia , Animais , Segregação de Cromossomos/genética , Troca Genética/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , DNA Cruciforme/genética , DNA Cruciforme/metabolismo , Recombinação Homóloga/genética , Masculino , Meiose/genética , Camundongos , Camundongos Endogâmicos DBA , Proteína 2 Homóloga a MutS/genética , Proteína 2 Homóloga a MutS/metabolismo , Ácidos Nucleicos Heteroduplexes/genética
5.
Nucleic Acids Res ; 47(15): 7798-7808, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31372639

RESUMO

Homologous recombination is a fundamental process in all living organisms that allows the faithful repair of DNA double strand breaks, through the exchange of DNA strands between homologous regions of the genome. Results of three decades of investigation and recent fruitful observations have unveiled key elements of the reaction mechanism, which proceeds along nucleofilaments of recombinase proteins of the RecA family. Yet, one essential aspect of homologous recombination has largely been overlooked when deciphering the mechanism: while ATP is hydrolyzed in large quantity during the process, how exactly hydrolysis influences the DNA strand exchange reaction at the structural level remains to be elucidated. In this study, we build on a previous geometrical approach that studied the RecA filament variability without bound DNA to examine the putative implication of ATP hydrolysis on the structure, position, and interactions of up to three DNA strands within the RecA nucleofilament. Simulation results on modeled intermediates in the ATP cycle bring important clues about how local distortions in the DNA strand geometries resulting from ATP hydrolysis can aid sequence recognition by promoting local melting of already formed DNA heteroduplex and transient reverse strand exchange in a weaving type of mechanism.


Assuntos
Trifosfato de Adenosina/química , DNA de Cadeia Simples/química , DNA/química , Recombinação Homóloga , Ácidos Nucleicos Heteroduplexes/química , Recombinases Rec A/química , Trifosfato de Adenosina/metabolismo , Bactérias/genética , Bactérias/metabolismo , Sítios de Ligação , DNA/genética , DNA/metabolismo , Quebras de DNA de Cadeia Dupla , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Hidrólise , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Ligação Proteica , Conformação Proteica , Recombinases Rec A/genética , Recombinases Rec A/metabolismo
6.
J Vet Sci ; 20(3): e23, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31161741

RESUMO

The clustered regularly interspaced short palindrome repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) system is a versatile genome editing tool with high efficiency. A guide sequence of 20 nucleotides (nt) is commonly used in application of CRISPR/Cas9; however, the relationship between the length of the guide sequence and the efficiency of CRISPR/Cas9 in porcine cells is still not clear. To illustrate this issue, guide RNAs of different lengths targeting the EGFP gene were designed. Specifically, guide RNAs of 17 nt or longer were sufficient to direct the Cas9 protein to cleave target DNA sequences, while 15 nt or shorter guide RNAs had loss-of-function. Full-length guide RNAs complemented with mismatches also showed loss-of-function. When the shortened guide RNA and target DNA heteroduplex (gRNA:DNA heteroduplex) was blocked by mismatch, the CRISPR/Cas9 would be interfered with. These results suggested the length of the gRNA:DNA heteroduplex was a key factor for maintaining high efficiency of the CRISPR/Cas9 system rather than weak bonding between shortened guide RNA and Cas9 in porcine cells.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Ácidos Nucleicos Heteroduplexes/genética , RNA Guia de Cinetoplastídeos/genética , Animais , Pareamento Incorreto de Bases/genética , Linhagem Celular , Edição de Genes/normas , Genes erbB-1/genética , Ácidos Nucleicos Heteroduplexes/química , RNA Guia de Cinetoplastídeos/química , Suínos
7.
Nucleic Acids Res ; 47(9): 4554-4568, 2019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-30809658

RESUMO

The post-replicative mismatch repair (MMR) system has anti-recombination activity that limits interactions between diverged sequences by recognizing mismatches in strand-exchange intermediates. In contrast to their equivalent roles during replication-error repair, mismatch recognition is more important for anti-recombination than subsequent mismatch processing. To obtain insight into this difference, ectopic substrates with 2% sequence divergence were used to examine mitotic recombination outcome (crossover or noncrossover; CO and NCO, respectively) and to infer molecular intermediates formed during double-strand break repair in Saccharomyces cerevisiae. Experiments were performed in an MMR-proficient strain, a strain with compromised mismatch-recognition activity (msh6Δ) and a strain that retained mismatch-recognition activity but was unable to process mismatches (mlh1Δ). While the loss of either mismatch binding or processing elevated the NCO frequency to a similar extent, CO events increased only when mismatch binding was compromised. The molecular features of NCOs, however, were altered in fundamentally different ways depending on whether mismatch binding or processing was eliminated. These data suggest a model in which mismatch recognition reverses strand-exchange intermediates prior to the initiation of end extension, while subsequent mismatch processing that is linked to end extension specifically destroys NCO intermediates that contain conflicting strand-discrimination signals for mismatch removal.


Assuntos
Reparo de Erro de Pareamento de DNA/genética , Proteínas de Ligação a DNA/genética , Mitose/genética , Proteína 1 Homóloga a MutL/genética , Recombinação Genética/genética , Proteínas de Saccharomyces cerevisiae/genética , Pareamento Incorreto de Bases/genética , Troca Genética/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Replicação do DNA/genética , Ácidos Nucleicos Heteroduplexes/genética , Saccharomyces cerevisiae/genética
8.
Mol Cell ; 73(3): 398-411, 2019 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-30735654

RESUMO

During transcription, the nascent RNA strand can base pair with its template DNA, displacing the non-template strand as ssDNA and forming a structure called an R-loop. R-loops are common across many domains of life and cause DNA damage in certain contexts. In this review, we summarize recent results implicating R-loops as important regulators of cellular processes such as transcription termination, gene regulation, and DNA repair. We also highlight recent work suggesting that R-loops can be problematic to cells as blocks to efficient transcription and replication that trigger the DNA damage response. Finally, we discuss how R-loops may contribute to cancer, neurodegeneration, and inflammatory diseases and compare the available next-generation sequencing-based approaches to map R-loops genome wide.


Assuntos
Núcleo Celular/fisiologia , DNA/genética , Genoma , Instabilidade Genômica , Ácidos Nucleicos Heteroduplexes/genética , RNA/genética , Animais , DNA/química , DNA/metabolismo , Dano ao DNA , Reparo do DNA , Regulação da Expressão Gênica , Humanos , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/metabolismo , RNA/química , RNA/metabolismo , Relação Estrutura-Atividade , Transcrição Gênica
9.
Mol Cell ; 73(4): 670-683.e12, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30639241

RESUMO

Cellular mechanisms that safeguard genome integrity are often subverted in cancer. To identify cancer-related genome caretakers, we employed a convergent multi-screening strategy coupled to quantitative image-based cytometry and ranked candidate genes according to multivariate readouts reflecting viability, proliferative capacity, replisome integrity, and DNA damage signaling. This unveiled regulators of replication stress resilience, including components of the pre-mRNA cleavage and polyadenylation complex. We show that deregulation of pre-mRNA cleavage impairs replication fork speed and leads to excessive origin activity, rendering cells highly dependent on ATR function. While excessive formation of RNA:DNA hybrids under these conditions was tightly associated with replication-stress-induced DNA damage, inhibition of transcription rescued fork speed, origin activation, and alleviated replication catastrophe. Uncoupling of pre-mRNA cleavage from co-transcriptional processing and export also protected cells from replication-stress-associated DNA damage, suggesting that pre-mRNA cleavage provides a mechanism to efficiently release nascent transcripts and thereby prevent gene gating-associated genomic instability.


Assuntos
Dano ao DNA , Replicação do DNA , Instabilidade Genômica , Neoplasias/genética , Clivagem do RNA , Precursores de RNA/genética , RNA Mensageiro/genética , RNA Neoplásico/genética , Transporte Ativo do Núcleo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA de Neoplasias/genética , DNA de Neoplasias/metabolismo , Proteínas de Ligação a DNA , Regulação Neoplásica da Expressão Gênica , Células HeLa , Humanos , Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Poliadenilação , Precursores de RNA/biossíntese , RNA Mensageiro/biossíntese , RNA Neoplásico/biossíntese , Proteínas de Ligação a RNA
10.
Mol Cell ; 72(6): 970-984.e7, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30449723

RESUMO

Extensive tracts of the mammalian genome that lack protein-coding function are still transcribed into long noncoding RNA. While these lncRNAs are generally short lived, length restricted, and non-polyadenylated, how their expression is distinguished from protein-coding genes remains enigmatic. Surprisingly, depletion of the ubiquitous Pol-II-associated transcription elongation factor SPT6 promotes a redistribution of H3K36me3 histone marks from active protein coding to lncRNA genes, which correlates with increased lncRNA transcription. SPT6 knockdown also impairs the recruitment of the Integrator complex to chromatin, which results in a transcriptional termination defect for lncRNA genes. This leads to the formation of extended, polyadenylated lncRNAs that are both chromatin restricted and form increased levels of RNA:DNA hybrid (R-loops) that are associated with DNA damage. Additionally, these deregulated lncRNAs overlap with DNA replication origins leading to localized DNA replication stress and a cellular senescence phenotype. Overall, our results underline the importance of restricting lncRNA expression.


Assuntos
Proliferação de Células , Senescência Celular , Dano ao DNA , Replicação do DNA , DNA de Neoplasias/biossíntese , RNA Longo não Codificante/metabolismo , RNA Neoplásico/metabolismo , Fatores de Transcrição/metabolismo , Neoplasias Uterinas/metabolismo , Animais , Montagem e Desmontagem da Cromatina , DNA Polimerase II/genética , DNA Polimerase II/metabolismo , DNA de Neoplasias/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica , Células HeLa , Histonas/metabolismo , Humanos , Metilação , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Estabilidade de RNA , RNA Longo não Codificante/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Neoplásico/genética , Fatores de Transcrição/genética , Transcrição Gênica , Neoplasias Uterinas/genética
11.
Biochemistry ; 57(48): 6662-6668, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30406989

RESUMO

RNA helicase A (RHA) as a member of the DExH/D-box subgroup of helicase superfamily II is involved in virtually all aspects of RNA metabolism. It exhibits robust RNA helicase activity in vitro. However, little is known about the molecular and physical determinants for RHA substrate recognition and RHA translocation along the nucleic acids. Here, our nondenaturing polyacrylamide gel electrophoresis (PAGE)-based unwinding assays of chemical and structural modified substrates indicate that RHA translocates efficiently along the 3' overhang of RNA, but not DNA, with a requirement of covalent continuity. Ribose-phosphate backbone lesions on both strands of the nucleic acids, especially on the 3' overhang of the loading strand, affect RHA unwinding significantly. Furthermore, RHA requires RNA on the 3' overhang which directly or indirectly connects with the duplex region to mediate productive unwinding. Collectively, these findings propose a basic mechanism of the substrate determinants for RHA backbone tracking during duplex unwinding.


Assuntos
RNA Helicases DEAD-box/metabolismo , Proteínas de Neoplasias/metabolismo , Conformação de Ácido Nucleico , RNA/química , RNA/metabolismo , Sequência de Bases , DNA/química , DNA/genética , DNA/metabolismo , Humanos , Cinética , Modelos Biológicos , Ácidos Nucleicos Heteroduplexes/química , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , RNA/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
12.
Mol Cell ; 70(1): 9-20.e6, 2018 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-29625041

RESUMO

Meiotic recombination is essential for fertility and allelic shuffling. Canonical recombination models fail to capture the observed complexity of meiotic recombinants. Here, by combining genome-wide meiotic heteroduplex DNA patterns with meiotic DNA double-strand break (DSB) sites, we show that part of this complexity results from frequent template switching during synthesis-dependent strand annealing that yields noncrossovers and from branch migration of double Holliday junction (dHJ)-containing intermediates that mainly yield crossovers. This complexity also results from asymmetric positioning of crossover intermediates relative to the initiating DSB and Msh2-independent conversions promoted by the suspected dHJ resolvase Mlh1-3 as well as Exo1 and Sgs1. Finally, we show that dHJ resolution is biased toward cleavage of the pair of strands containing newly synthesized DNA near the junctions and that this bias can be decoupled from the crossover-biased dHJ resolution. These properties are likely conserved in eukaryotes containing ZMM proteins, which includes mammals.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Cruciforme , DNA Fúngico/genética , Meiose , Ácidos Nucleicos Heteroduplexes/genética , Recombinação Genética , Saccharomyces cerevisiae/genética , DNA Fúngico/metabolismo , Exodesoxirribonucleases/genética , Exodesoxirribonucleases/metabolismo , Proteína 1 Homóloga a MutL/genética , Proteína 1 Homóloga a MutL/metabolismo , Proteínas MutL/genética , Proteínas MutL/metabolismo , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
Cell Rep ; 21(11): 3166-3177, 2017 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-29241544

RESUMO

Srs2 is a superfamily 1 (SF1) helicase and antirecombinase that is required for genome integrity. However, the mechanisms that regulate Srs2 remain poorly understood. Here, we visualize Srs2 as it acts upon single-stranded DNA (ssDNA) bound by the Rad51 recombinase. We demonstrate that Srs2 is a processive translocase capable of stripping thousands of Rad51 molecules from ssDNA at a rate of ∼50 monomers/s. We show that Srs2 is recruited to RPA clusters embedded between Rad51 filaments and that multimeric arrays of Srs2 assemble during translocation on ssDNA through a mechanism involving iterative Srs2 loading events at sites cleared of Rad51. We also demonstrate that Srs2 acts on heteroduplex DNA joints through two alternative pathways, both of which result in rapid disruption of the heteroduplex intermediate. On the basis of these findings, we present a model describing the recruitment and regulation of Srs2 as it acts upon homologous recombination intermediates.


Assuntos
DNA Helicases/genética , Regulação Fúngica da Expressão Gênica , Recombinação Homóloga , Ácidos Nucleicos Heteroduplexes/genética , Rad51 Recombinase/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Adenosina Trifosfatases/genética , Adenosina Trifosfatases/metabolismo , DNA Helicases/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , DNA Fúngico/genética , DNA Fúngico/metabolismo , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Ácidos Nucleicos Heteroduplexes/metabolismo , Ligação Proteica , Rad51 Recombinase/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Vermelha Fluorescente
14.
Nature ; 544(7650): 377-380, 2017 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-28405019

RESUMO

The Rad51 (also known as RecA) family of recombinases executes the critical step in homologous recombination: the search for homologous DNA to serve as a template during the repair of DNA double-strand breaks (DSBs). Although budding yeast Rad51 has been extensively characterized in vitro, the stringency of its search and sensitivity to mismatched sequences in vivo remain poorly defined. Here, in Saccharomyces cerevisiae, we analysed Rad51-dependent break-induced replication in which the invading DSB end and its donor template share a 108-base-pair homology region and the donor carries different densities of single-base-pair mismatches. With every eighth base pair mismatched, repair was about 14% of that of completely homologous sequences. With every sixth base pair mismatched, repair was still more than 5%. Thus, completing break-induced replication in vivo overcomes the apparent requirement for at least 6-8 consecutive paired bases that has been inferred from in vitro studies. When recombination occurs without a protruding nonhomologous 3' tail, the mismatch repair protein Msh2 does not discourage homeologous recombination. However, when the DSB end contains a 3' protruding nonhomologous tail, Msh2 promotes the rejection of mismatched substrates. Mismatch correction of strand invasion heteroduplex DNA is strongly polar, favouring correction close to the DSB end. Nearly all mismatch correction depends on the proofreading activity of DNA polymerase-δ, although the repair proteins Msh2, Mlh1 and Exo1 influence the extent of correction.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo de Erro de Pareamento de DNA , Rad51 Recombinase/metabolismo , Reparo de DNA por Recombinação , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Pareamento de Bases , Sequência de Bases , DNA Polimerase III/metabolismo , Replicação do DNA , DNA Fúngico/genética , DNA Fúngico/metabolismo , Exodesoxirribonucleases/metabolismo , Proteína 1 Homóloga a MutL/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Saccharomyces cerevisiae/metabolismo , Homologia de Sequência do Ácido Nucleico , Especificidade por Substrato , Moldes Genéticos
15.
Sci Rep ; 6: 38873, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27974823

RESUMO

DNA replication is essential for cellular proliferation. If improperly controlled it can constitute a major source of genome instability, frequently associated with cancer and aging. POLD1 is the catalytic subunit and POLD3 is an accessory subunit of the replicative Pol δ polymerase, which also functions in DNA repair, as well as the translesion synthesis polymerase Pol ζ, whose catalytic subunit is REV3L. In cells depleted of POLD1 or POLD3 we found a differential but general increase in genome instability as manifested by DNA breaks, S-phase progression impairment and chromosome abnormalities. Importantly, we showed that both proteins are needed to maintain the proper amount of active replication origins and that POLD3-depletion causes anaphase bridges accumulation. In addition, POLD3-associated DNA damage showed to be dependent on RNA-DNA hybrids pointing toward an additional and specific role of this subunit in genome stability. Interestingly, a similar increase in RNA-DNA hybrids-dependent genome instability was observed in REV3L-depleted cells. Our findings demonstrate a key role of POLD1 and POLD3 in genome stability and S-phase progression revealing RNA-DNA hybrids-dependent effects for POLD3 that might be partly due to its Pol ζ interaction.


Assuntos
DNA Polimerase III/metabolismo , Replicação do DNA , Instabilidade Genômica , Fase S , Quebras de DNA , DNA Polimerase III/genética , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo
16.
Mol Cell ; 60(3): 351-61, 2015 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-26593718

RESUMO

DNA replication stress can cause chromosomal instability and tumor progression. One key pathway that counteracts replication stress and promotes faithful DNA replication consists of the Fanconi anemia (FA) proteins. However, how these proteins limit replication stress remains largely elusive. Here we show that conflicts between replication and transcription activate the FA pathway. Inhibition of transcription or enzymatic degradation of transcription-associated R-loops (DNA:RNA hybrids) suppresses replication fork arrest and DNA damage occurring in the absence of a functional FA pathway. Furthermore, we show that simple aldehydes, known to cause leukemia in FA-deficient mice, induce DNA:RNA hybrids in FA-depleted cells. Finally, we demonstrate that the molecular mechanism by which the FA pathway limits R-loop accumulation requires FANCM translocase activity. Failure to activate a response to physiologically occurring DNA:RNA hybrids may critically contribute to the heightened cancer predisposition and bone marrow failure of individuals with mutated FA proteins.


Assuntos
Dano ao DNA , DNA Helicases/metabolismo , Replicação do DNA , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Instabilidade Genômica , Ácidos Nucleicos Heteroduplexes/metabolismo , Animais , DNA Helicases/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Células HeLa , Humanos , Leucemia/genética , Leucemia/metabolismo , Leucemia/patologia , Camundongos , Camundongos Knockout , Mutação , Ácidos Nucleicos Heteroduplexes/genética
17.
Nucleic Acids Res ; 43(5): 2499-512, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25690900

RESUMO

2-Thiouracil-containing nucleosides are essential modified units of natural and synthetic nucleic acids. In particular, the 5-substituted-2-thiouridines (S2Us) present in tRNA play an important role in tuning the translation process through codon-anticodon interactions. The enhanced thermodynamic stability of S2U-containing RNA duplexes and the preferred S2U-A versus S2U-G base pairing are appreciated characteristics of S2U-modified molecular probes. Recently, we have demonstrated that 2-thiouridine (alone or within an RNA chain) is predominantly transformed under oxidative stress conditions to 4-pyrimidinone riboside (H2U) and not to uridine. Due to the important biological functions and various biotechnological applications for sulfur-containing nucleic acids, we compared the thermodynamic stabilities of duplexes containing desulfured products with those of 2-thiouracil-modified RNA and DNA duplexes. Differential scanning calorimetry experiments and theoretical calculations demonstrate that upon 2-thiouracil desulfuration to 4-pyrimidinone, the preferred base pairing of S2U with adenosine is lost, with preferred base pairing with guanosine observed instead. Therefore, biological processes and in vitro assays in which oxidative desulfuration of 2-thiouracil-containing components occurs may be altered. Moreover, we propose that the H2U-G base pair is a suitable model for investigation of the preferred recognition of 3'-G-ending versus A-ending codons by tRNA wobble nucleosides, which may adopt a 4-pyrimidinone-type structural motif.


Assuntos
Pareamento de Bases , DNA/química , Guanina/química , Ácidos Nucleicos Heteroduplexes/química , RNA/química , Tiouracila/química , Adenina/química , Dicroísmo Circular , DNA/genética , Modelos Químicos , Modelos Moleculares , Conformação de Ácido Nucleico , Desnaturação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/genética , RNA/genética , Termodinâmica , Tiouridina/análogos & derivados , Tiouridina/química
18.
PLoS One ; 10(1): e0116852, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25617833

RESUMO

Homologous recombination is involved in the repair of DNA damage and collapsed replication fork, and is critical for the maintenance of genomic stability. Its process involves a network of proteins with different enzymatic activities. Human DNA helicase B (HDHB) is a robust 5'-3' DNA helicase which accumulates on chromatin in cells exposed to DNA damage. HDHB facilitates cellular recovery from replication stress, but its role in DNA damage response remains unclear. Here we report that HDHB silencing results in reduced sister chromatid exchange, impaired homologous recombination repair, and delayed RPA late-stage foci formation induced by ionizing radiation. Ectopically expressed HDHB colocalizes with Rad51, Rad52, RPA, and ssDNA. In vitro, HDHB stimulates Rad51-mediated heteroduplex extension in 5'-3' direction. A helicase-defective mutant HDHB failed to promote this reaction. Our studies implicate HDHB promotes homologous recombination in vivo and stimulates 5'-3' heteroduplex extension during Rad51-mediated strand exchange in vitro.


Assuntos
DNA Helicases/metabolismo , DNA/genética , Recombinação Homóloga , Ácidos Nucleicos Heteroduplexes/genética , Rad51 Recombinase/metabolismo , Linhagem Celular Tumoral , Cromátides/genética , Cromátides/efeitos da radiação , Dano ao DNA , Reparo do DNA/efeitos da radiação , DNA de Cadeia Simples/genética , Desoxirribonucleases de Sítio Específico do Tipo II/metabolismo , Recombinação Homóloga/efeitos da radiação , Humanos , Transporte Proteico/efeitos da radiação , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , Proteína de Replicação A/metabolismo
19.
FEBS J ; 282(1): 4-18, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25327637

RESUMO

RAGs (recombination activating genes) are responsible for the generation of antigen receptor diversity through the process of combinatorial joining of different V (variable), D (diversity) and J (joining) gene segments. In addition to its physiological property, wherein RAG functions as a sequence-specific nuclease, it can also act as a structure-specific nuclease leading to genomic instability and cancer. In the present study, we investigate the factors that regulate RAG cleavage on non-B DNA structures. We find that RAG binding and cleavage on heteroduplex DNA is dependent on the length of the double-stranded flanking region. Besides, the immediate flanking double-stranded region regulates RAG activity in a sequence-dependent manner. Interestingly, the cleavage efficiency of RAGs at the heteroduplex region is influenced by the phasing of DNA. Thus, our results suggest that sequence, length and phase positions of the DNA can affect the efficiency of RAG cleavage when it acts as a structure-specific nuclease. These findings provide novel insights on the regulation of the pathological functions of RAGs.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Ácidos Nucleicos Heteroduplexes/genética , Ácidos Nucleicos Heteroduplexes/metabolismo , Região 5'-Flanqueadora , Sequência de Bases , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Desoxirribonucleases/química , Desoxirribonucleases/genética , Desoxirribonucleases/metabolismo , Genes RAG-1 , Células HEK293 , Proteínas de Homeodomínio/genética , Humanos , Proteínas Nucleares/genética , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes/química , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Recombinação V(D)J
20.
DNA Repair (Amst) ; 19: 48-54, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24767944

RESUMO

DNA mismatch repair (MMR) maintains genome stability primarily by repairing DNA replication-associated mispairs. Because loss of MMR function increases the mutation frequency genome-wide, defects in this pathway predispose affected individuals to cancer. The genes encoding essential eukaryotic MMR activities have been identified, as the recombinant proteins repair 'naked' heteroduplex DNA in vitro. However, the reconstituted system is inactive on nucleosome-containing heteroduplex DNA, and it is not understood how MMR occurs in vivo. Recent studies suggest that chromatin organization, nucleosome assembly/disassembly factors and histone modifications regulate MMR in eukaryotic cells, but the complexity and importance of the interaction between MMR and chromatin remodeling has only recently begun to be appreciated. This article reviews recent progress in understanding the mechanism of eukaryotic MMR in the context of chromatin structure and dynamics, considers the implications of these recent findings and discusses unresolved questions and challenges in understanding eukaryotic MMR.


Assuntos
Cromatina/genética , Reparo de Erro de Pareamento de DNA/genética , Replicação do DNA/genética , Instabilidade Genômica , Montagem e Desmontagem da Cromatina , Humanos , Ácidos Nucleicos Heteroduplexes/genética , Nucleossomos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA