Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 158
Filtrar
1.
Int J Mol Sci ; 25(10)2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38791199

RESUMO

Danger-associated molecular patterns (DAMPs) are elevated within the amniotic cavity, and their increases correlate with advancing gestational age, chorioamnionitis, and labor. Although the specific triggers for their release in utero remain unclear, it is thought that they may contribute to the initiation of parturition by influencing cellular stress mechanisms that make the fetal membranes (FMs) more susceptible to rupture. DAMPs induce inflammation in many different tissue types. Indeed, they precipitate the subsequent release of several proinflammatory cytokines that are known to be key for the weakening of FMs. Previously, we have shown that in vitro stretch of human amnion epithelial cells (hAECs) induces a cellular stress response that increases high-mobility group box-1 (HMGB1) secretion. We have also shown that cell-free fetal DNA (cffDNA) induces a cytokine response in FM explants that is fetal sex-specific. Therefore, the aim of this work was to further investigate the link between stretch and the DAMPs HMGB1 and cffDNA in the FM. These data show that stretch increases the level of cffDNA released from hAECs. It also confirms the importance of the sex of the fetus by demonstrating that female cffDNA induced more cellular stress than male fetuses. Our data treating hAECs and human amnion mesenchymal cells with HMGB1 show that it has a differential effect on the ability of the cells of the amnion to upregulate the proinflammatory cytokines and propagate a proinflammatory signal through the FM that may weaken it. Finally, our data show that sulforaphane (SFN), a potent activator of Nrf2, is able to mitigate the proinflammatory effects of stretch by decreasing the levels of HMGB1 release and ROS generation after stretch and modulating the increase of key cytokines after cell stress. HMGB1 and cffDNA are two of the few DAMPs that are known to induce cytokine release and matrix metalloproteinase (MMP) activation in the FMs; thus, these data support the general thesis that they can function as potential central players in the normal mechanisms of FM weakening during the normal distension of this tissue at the end of a normal pregnancy.


Assuntos
Membranas Extraembrionárias , Proteína HMGB1 , Inflamação , Humanos , Proteína HMGB1/metabolismo , Proteína HMGB1/genética , Feminino , Gravidez , Inflamação/metabolismo , Inflamação/patologia , Membranas Extraembrionárias/metabolismo , Ácidos Nucleicos Livres/metabolismo , Masculino , Âmnio/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Células Cultivadas , Alarminas/metabolismo
2.
J Chem Inf Model ; 64(10): 4002-4008, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798191

RESUMO

Transcription factors (TFs) are important regulatory elements for vital cellular activities, and the identification of transcription factor binding sites (TFBS) can help to explore gene regulatory mechanisms. Research studies have proved that cfDNA (cell-free DNA) shows relatively higher coverage at TFBS due to the protection by TF from degradation by nucleases and short fragments of cfDNA are enriched in TFBS. However, there are still great difficulties in the noninvasive identification of TFBSs from experimental techniques. In this study, we propose a deep learning-based approach that can noninvasively predict TFBSs of cfDNA by learning sequence information from known TFBSs through convolutional neural networks. Under the addition of long short-term memory, our model achieved an area under the curve of 84%. Based on this model to predict cfDNA, we found consistent motifs in cfDNA fragments and lower coverage occurred upstream and downstream of these cfDNA fragments, which is consistent with a previous study. We also found that the binding sites of the same TF differ in different cell lines. TF-specific target genes were detected from cfDNA and were enriched in cancer-related pathways. In summary, our method of locating TFBSs from plasma has the potential to reflect the intrinsic regulatory mechanism from a noninvasive perspective and provide technical guidance for dynamic monitoring of disease in clinical practice.


Assuntos
Ácidos Nucleicos Livres , Aprendizado Profundo , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Sítios de Ligação , Humanos , Ácidos Nucleicos Livres/metabolismo , Ácidos Nucleicos Livres/química , DNA/metabolismo , DNA/química
3.
BMC Cancer ; 24(1): 482, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627648

RESUMO

BACKGROUND: Therapies for metastatic castration-resistant prostate cancer (mCRPC) include targeting the androgen receptor (AR) with androgen receptor inhibitors (ARIs) and prostate-specific membrane antigen (PSMA). Having the ability to detect AR, AR splice variant 7 (AR-V7), or PSMA in circulating tumor cells (CTCs) or circulating exosomal cell-free RNA (cfRNA) could be helpful to guide selection of the appropriate therapy for each individual patient. The Vortex Biosciences VTX-1 system is a label-free CTC isolation system that enables the detection of the expression of multiple genes in both CTCs and exosomal cfRNA from the same blood sample in patients with mCRPC. Detection of both AR-V7 and PSMA gene expression in both CTCs and cfRNA simultaneously has not yet been reported. METHODS: To characterize the combined VTX-1-AdnaDetect workflow, 22Rv1 cancer cells were spiked into blood from healthy donors and processed with the VTX-1 to mimic patient samples and assess performances (capture efficiency, purity, AR and AR-V7 expression). Then, we collected 19 blood samples from 16 patients with mCRPC and therapeutic resistance to androgen receptor inhibitors (ARIs). Plasma was separated and the plasma-depleted blood was processed further with the VTX-1 to collect CTCs. Both plasma exosomal cfRNA and CTCs were subsequently analyzed for AR, AR-V7, PSMA, and prostate-specific antigen (PSA) mRNA expression using the AdnaTest ProstateCancerPanel AR-V7 assay. RESULTS: AR-V7 expression could be detected in 22Rv1 cells spiked into blood from healthy volunteers as well as in CTCs and plasma-derived exosomal cfRNA from patients with mCRPC by processing blood with the VTX-1 CTC isolation system followed by the AdnaTest ProstateCancerPanel AR-V7 assay. 94.7% of patient blood samples (18/19) had detectable AR expression in either CTCs or exosomal cfRNA (16 in CTCs, 12 in cfRNA). 15.8% of the 19 patient blood samples (3/19) were found to have AR-V7-positive (AR-V7+) CTCs, one of which was also AR-V7+ in the exosomal cfRNA analysis. 42.1% of patient blood samples (8/19) were found to be PSMA positive (PSMA+): 26.3% (5/19) were PSMA+ in the CTC analysis and 31.6% (6/19) were PSMA+ in the exosomal cfRNA analysis. Of those 8 PSMA+ samples, 2 had detectable PSMA only in CTCs, and 3 had detectable PSMA only in exosomal cfRNA. CONCLUSION: VTX-1 enables isolation of CTCs and plasma exosomes from a single blood draw and can be used for detecting AR-V7 and PSMA mRNA in both CTCs and cfRNA in patients with mCRPC and resistance to ARIs. This technology facilitates combining RNA measurements in CTCs and exosomal cfRNA for future studies to develop potentially clinically relevant cancer biomarker detection in blood.


Assuntos
Ácidos Nucleicos Livres , Exossomos , Células Neoplásicas Circulantes , Neoplasias de Próstata Resistentes à Castração , Humanos , Masculino , Antagonistas de Receptores de Andrógenos/farmacologia , Antagonistas de Receptores de Andrógenos/uso terapêutico , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/metabolismo , Exossomos/genética , Exossomos/metabolismo , Células Neoplásicas Circulantes/patologia , Próstata/patologia , Antígeno Prostático Específico , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Isoformas de Proteínas/genética , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo , RNA Mensageiro/genética
4.
Clin Epigenetics ; 16(1): 50, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561804

RESUMO

BACKGROUND: Nucleosome repositioning in cancer is believed to cause many changes in genome organisation and gene expression. Understanding these changes is important to elucidate fundamental aspects of cancer. It is also important for medical diagnostics based on cell-free DNA (cfDNA), which originates from genomic DNA regions protected from digestion by nucleosomes. RESULTS: We have generated high-resolution nucleosome maps in paired tumour and normal tissues from the same breast cancer patients using MNase-assisted histone H3 ChIP-seq and compared them with the corresponding cfDNA from blood plasma. This analysis has detected single-nucleosome repositioning at key regulatory regions in a patient-specific manner and common cancer-specific patterns across patients. The nucleosomes gained in tumour versus normal tissue were particularly informative of cancer pathways, with ~ 20-fold enrichment at CpG islands, a large fraction of which marked promoters of genes encoding DNA-binding proteins. The tumour tissues were characterised by a 5-10 bp decrease in the average distance between nucleosomes (nucleosome repeat length, NRL), which is qualitatively similar to the differences between pluripotent and differentiated cells. This effect was correlated with gene activity, differential DNA methylation and changes in local occupancy of linker histone variants H1.4 and H1X. CONCLUSIONS: Our study offers a novel resource of high-resolution nucleosome maps in breast cancer patients and reports for the first time the effect of systematic decrease of NRL in paired tumour versus normal breast tissues from the same patient. Our findings provide a new mechanistic understanding of nucleosome repositioning in tumour tissues that can be valuable for patient diagnostics, stratification and monitoring.


Assuntos
Neoplasias da Mama , Ácidos Nucleicos Livres , Humanos , Feminino , Nucleossomos/genética , Neoplasias da Mama/genética , Metilação de DNA , Histonas/genética , Histonas/metabolismo , DNA/metabolismo , Ácidos Nucleicos Livres/metabolismo , Cromatina
5.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38473908

RESUMO

As the burden of type 2 diabetes (T2D) continues to escalate globally, there is a growing need for novel, less-invasive biomarkers capable of early diabetes detection and monitoring of disease progression. Liquid biopsy, recognized for its minimally invasive nature, is increasingly being applied beyond oncology, and nevertheless shows its potential when the collection of the tissue biopsy is not possible. This diagnostic approach involves utilizing liquid biopsy markers such as cell-free nucleic acids, extracellular vesicles, and diverse metabolites for the molecular diagnosis of T2D and its related complications. In this context, we thoroughly examine recent developments in T2D liquid biopsy research. Additionally, we discuss the primary challenges and future prospects of employing liquid biopsy in the management of T2D. Prognosis, diagnosis and monitoring of T2D through liquid biopsy could be a game-changing technique for personalized diabetes management.


Assuntos
Ácidos Nucleicos Livres , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Células Neoplásicas Circulantes , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Biomarcadores Tumorais/metabolismo , Biópsia Líquida/métodos , Vesículas Extracelulares/metabolismo , Ácidos Nucleicos Livres/metabolismo , Células Neoplásicas Circulantes/patologia
6.
Gut ; 73(4): 639-648, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38123998

RESUMO

OBJECTIVE: Pancreatic ductal adenocarcinoma (PDAC) is commonly diagnosed at an advanced stage. Liquid biopsy approaches may facilitate detection of early stage PDAC when curative treatments can be employed. DESIGN: To assess circulating marker discrimination in training, testing and validation patient cohorts (total n=426 patients), plasma markers were measured among PDAC cases and patients with chronic pancreatitis, colorectal cancer (CRC), and healthy controls. Using CA19-9 as an anchor marker, measurements were made of two protein markers (TIMP1, LRG1) and cell-free DNA (cfDNA) pancreas-specific methylation at 9 loci encompassing 61 CpG sites. RESULTS: Comparative methylome analysis identified nine loci that were differentially methylated in exocrine pancreas DNA. In the training set (n=124 patients), cfDNA methylation markers distinguished PDAC from healthy and CRC controls. In the testing set of 86 early stage PDAC and 86 matched healthy controls, CA19-9 had an area under the receiver operating characteristic curve (AUC) of 0.88 (95% CI 0.83 to 0.94), which was increased by adding TIMP1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.06), LRG1 (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02) or exocrine pancreas-specific cfDNA methylation markers at nine loci (AUC 0.92; 95% CI 0.88 to 0.96; p=0.02). In the validation set of 40 early stage PDAC and 40 matched healthy controls, a combined panel including CA19-9, TIMP1 and a 9-loci cfDNA methylation panel had greater discrimination (AUC 0.86, 95% CI 0.77 to 0.95) than CA19-9 alone (AUC 0.82; 95% CI 0.72 to 0.92). CONCLUSION: A combined panel of circulating markers including proteins and methylated cfDNA increased discrimination compared with CA19-9 alone for early stage PDAC.


Assuntos
Adenocarcinoma , Carcinoma Ductal Pancreático , Ácidos Nucleicos Livres , Neoplasias Pancreáticas , Humanos , Antígeno CA-19-9 , Biomarcadores Tumorais , Ácidos Nucleicos Livres/metabolismo , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/diagnóstico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Pâncreas/patologia , Adenocarcinoma/diagnóstico , Adenocarcinoma/genética , Adenocarcinoma/patologia , Metilação de DNA
7.
JCI Insight ; 8(22)2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37991024

RESUMO

Plasma cell-free DNA (cfDNA), a marker of disease severity in sepsis, is a recognized driver of thromboinflammation and a potential therapeutic target. In sepsis, plasma cfDNA is mostly derived from neutrophil extracellular trap (NET) degradation. Proposed NET-directed therapeutic strategies include preventing NET formation or accelerating NET degradation. However, NET digestion liberates pathogens and releases cfDNA that promote thrombosis and endothelial cell injury. We propose an alternative strategy of cfDNA and NET stabilization with chemokine platelet factor 4 (PF4, CXCL4). We previously showed that human PF4 (hPF4) enhances NET-mediated microbial entrapment. We now show that hPF4 interferes with thrombogenicity of cfDNA and NETs by preventing their cleavage to short-fragment and single-stranded cfDNA that more effectively activates the contact pathway of coagulation. In vitro, hPF4 also inhibits cfDNA-induced endothelial tissue factor surface expression and von Willebrand factor release. In vivo, hPF4 expression reduced plasma thrombin-antithrombin (TAT) levels in animals infused with exogenous cfDNA. Following lipopolysaccharide challenge, Cxcl4-/- mice had significant elevation in plasma TAT, cfDNA, and cystatin C levels, effects prevented by hPF4 infusion. These results show that hPF4 interacts with cfDNA and NETs to limit thrombosis and endothelial injury, an observation of potential clinical benefit in the treatment of sepsis.


Assuntos
Ácidos Nucleicos Livres , Armadilhas Extracelulares , Sepse , Trombose , Humanos , Camundongos , Animais , Armadilhas Extracelulares/metabolismo , Fator Plaquetário 4/genética , Trombose/metabolismo , Inflamação/metabolismo , Trombina/metabolismo , Fatores Imunológicos , Ácidos Nucleicos Livres/metabolismo
8.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958808

RESUMO

Understanding the complex interactions between metabolism and the immune system ("metaflammation") is crucial for the identification of key immunomodulatory factors as potential therapeutic targets in obesity and in cardiovascular diseases. Cathelicidin antimicrobial peptide (CAMP) is an important factor of innate immunity and is expressed in adipocytes. CAMP, therefore, might play a role as an adipokine in metaflammation and adipose inflammation. TNFα, cell-free nucleic acids (cfDNA), and toll-like receptor (TLR) 9 are components of the innate immune system and are functionally active in adipose tissue. The aim of the present study was to investigate the impact of TNFα and cfDNA on CAMP expression in adipocytes. Since cfDNA acts as a physiological TLR9 agonist, we additionally investigated TLR9-mediated CAMP regulation in adipocytes and adipose tissue. CAMP gene expression in murine 3T3-L1 and human SGBS adipocytes and in murine and human adipose tissues was quantified by real-time PCR. Adipocyte inflammation was induced in vitro by TNFα and cfDNA stimulation. Serum CAMP concentrations in TLR9 knockout (KO) and in wildtype mice were quantified by ELISA. In primary adipocytes of wildtype and TLR9 KO mice, CAMP gene expression was quantified by real-time PCR. CAMP gene expression was considerably increased in 3T3-L1 and SGBS adipocytes during differentiation. TNFα significantly induced CAMP gene expression in mature adipocytes, which was effectively antagonized by inhibition of PI3K signaling. Cell-free nucleic acids (cfDNA) significantly impaired CAMP gene expression, whereas synthetic agonistic and antagonistic TLR9 ligands had no effect. CAMP and TLR9 gene expression were correlated positively in murine and human subcutaneous but not in intra-abdominal/visceral adipose tissues. Male TLR9 knockout mice exhibited lower systemic CAMP concentrations than wildtype mice. CAMP gene expression levels in primary adipocytes did not significantly differ between wildtype and TLR9 KO mice. These findings suggest a regulatory role of inflammatory mediators, such as TNFα and cfDNA, in adipocytic CAMP expression as a novel putative molecular mechanism in adipose tissue innate immunity.


Assuntos
Ácidos Nucleicos Livres , Receptor Toll-Like 9 , Masculino , Camundongos , Humanos , Animais , Receptor Toll-Like 9/genética , Receptor Toll-Like 9/metabolismo , Catelicidinas/genética , Catelicidinas/farmacologia , Catelicidinas/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Adipócitos/metabolismo , Inflamação/metabolismo , Obesidade/genética , Obesidade/metabolismo , Expressão Gênica , Ácidos Nucleicos Livres/metabolismo , Regulação da Expressão Gênica , Células 3T3-L1
9.
Biomaterials ; 303: 122366, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37948854

RESUMO

Osteoarthritis (OA) is a common and complex inflammatory disorder that is frequently compounded by cartilage degradation, synovial inflammation, and osteophyte formation. Damaged chondrocytes release multiple danger mediators that exacerbate synovial inflammation and accelerate the progression to OA. Conventional treatments targeting only a single mediator of OA have failed to achieve a strong therapeutic effect. Addressing the crucial role of multiple danger mediators in OA progression, we prepared polyethylenimine (PEI)-functionalized diselenide-bridged mesoporous silica nanoparticles (MSN-PEI) with cell-free DNA (cfDNA)-binding and anti-oxidative properties. In models of surgery-induced and collagenase-induced arthritis, we showed that these cationic nanoparticles attenuated cartilage degradation and provided strong chondroprotection against joint damage. Mechanistically, multiple target blockades alleviated oxidative stress and dampened cfDNA-induced inflammation by suppressing the M1 polarization of macrophages. This study suggests a beneficial direction for targeting multiple danger mediators in the treatment of intractable arthritis.


Assuntos
Ácidos Nucleicos Livres , Nanopartículas , Osteoartrite , Humanos , Dióxido de Silício/uso terapêutico , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Condrócitos/metabolismo , Nanopartículas/química , Ácidos Nucleicos Livres/metabolismo , Ácidos Nucleicos Livres/farmacologia , Ácidos Nucleicos Livres/uso terapêutico
10.
Int J Mol Sci ; 24(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37569782

RESUMO

Colorectal cancer (CRC) is the most frequently occurring malignancy in the world. However, the mortality from CRC can be reduced through early diagnostics, selection of the most effective treatment, observation of the therapy success, and the earliest possible diagnosis of recurrences. A comprehensive analysis of genetic and epigenetic factors contributing to the CRC development is needed to refine diagnostic, therapeutic, and preventive strategies and to ensure appropriate decision making in managing specific CRC cases. The liquid biopsy approach utilizing circulating markers has demonstrated its good performance as a tool to detect the changes in the molecular pathways associated with various cancers. In this review, we attempted to brief the main tendencies in the development of circulating DNA and RNA-based markers in CRC such as cancer-associated DNA mutations, DNA methylation changes, and non-coding RNA expression shifts. Attention is devoted to the existing circulating nucleic acid-based CRC markers, the possibility of their application in clinical practice today, and their future improvement. Approaches to the discovery and verification of new markers are described, and the existing problems and potential solutions for them are highlighted.


Assuntos
Ácidos Nucleicos Livres , Neoplasias Colorretais , Humanos , Transcriptoma , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Metilação de DNA , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/metabolismo , Genômica , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo
11.
Mol Carcinog ; 62(12): 1832-1845, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37560880

RESUMO

Aberrant DNA methylation is a critical regulator of gene expression in the development and progression of glioblastoma (GBM). However, the impact of methylation-driven gene PCDHB4 changes on GBM occurrence and progression remains unclear. Therefore, this study aimed to identify the PCDHB4 gene for early diagnosis and prognostic evaluation and clarify its functional role in GBM. Methylation-driven gene PCDHB4 was selected for GBM using the multi-omics integration method based on publicly available data sets. The diagnostic capabilities of PCDHB4 methylation and 5-hydroxymethylcytosines were validated in tissue and blood cell-free DNA (cfDNA) samples, respectively. Combined survival analysis of PCDHB4 methylation and immune infiltration cells evaluated the prognostic predictive performance of GBM patients. We identified that the PCDHB4 gene achieved high discriminative capabilities for GBM and normal tissues with an area under the curve value of 0.941. PCDHB4 hypermethylation was observed in cfDNA blood samples from GBM patients. Compared with GBM patients with PCDHB4 hypermethylation level, patients with PCDHB4 hypomethylation level had significantly poorer overall survival (p = 0.035). In addition, GBM patients with PCDHB4 hypermethylation and high infiltration of CD4+ T cell activation level had a favorable survival (p = 0.026). Moreover, we demonstrated that mRNA expression of PCDHB4 was downregulated in GBM tissues and upregulated in GBM cell lines with PCDHB4 demethylation, and PCDHB4 overexpression inhibited GBM cell proliferation and migration. In summary, we discovered a novel methylation-driven gene PCDHB4 for the diagnosis and prognosis of GBM and demonstrated that PCDHB4 is a tumor suppressor in vitro experiments.


Assuntos
Neoplasias Encefálicas , Ácidos Nucleicos Livres , Glioblastoma , Humanos , Metilação de DNA , Glioblastoma/diagnóstico , Glioblastoma/genética , Glioblastoma/metabolismo , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Genes Supressores de Tumor , Ácidos Nucleicos Livres/metabolismo , Regulação Neoplásica da Expressão Gênica
12.
JCI Insight ; 8(14)2023 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-37318863

RESUMO

Radiation therapy is an effective cancer treatment, although damage to healthy tissues is common. Here we analyzed cell-free, methylated DNA released from dying cells into the circulation to evaluate radiation-induced cellular damage in different tissues. To map the circulating DNA fragments to human and mouse tissues, we established sequencing-based, cell-type-specific reference DNA methylation atlases. We found that cell-type-specific DNA blocks were mostly hypomethylated and located within signature genes of cellular identity. Cell-free DNA fragments were captured from serum samples by hybridization to CpG-rich DNA panels and mapped to the DNA methylation atlases. In a mouse model, thoracic radiation-induced tissue damage was reflected by dose-dependent increases in lung endothelial and cardiomyocyte methylated DNA in serum. The analysis of serum samples from patients with breast cancer undergoing radiation treatment revealed distinct dose-dependent and tissue-specific epithelial and endothelial responses to radiation across multiple organs. Strikingly, patients treated for right-sided breast cancers also showed increased hepatocyte and liver endothelial DNA in the circulation, indicating the impact on liver tissues. Thus, changes in cell-free methylated DNA can uncover cell-type-specific effects of radiation and provide a readout of the biologically effective radiation dose received by healthy tissues.


Assuntos
Ácidos Nucleicos Livres , Metilação de DNA , Humanos , Animais , Camundongos , Fígado/metabolismo , Hepatócitos , DNA/metabolismo , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/metabolismo
13.
Clin Sci (Lond) ; 137(2): 163-180, 2023 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-36598778

RESUMO

Cigarette smoking is a major risk factor for atherosclerosis. We previously reported that DNA damage was accumulated in atherosclerotic plaque, and was increased in human mononuclear cells by smoking. As vascular endothelial cells are known to modulate inflammation, we investigated the mechanism by which smoking activates innate immunity in endothelial cells focusing on DNA damage. Furthermore, we sought to characterize the plasma level of cell-free DNA (cfDNA), a result of mitochondrial and/or genomic DNA damage, as a biomarker for atherosclerosis. Cigarette smoke extract (CSE) increased DNA damage in the nucleus and mitochondria in human endothelial cells. Mitochondrial damage induced minority mitochondrial outer membrane permeabilization, which was insufficient for cell death but instead led to nuclear DNA damage. DNA fragments, derived from the nucleus and mitochondria, were accumulated in the cytosol, and caused a persistent increase in IL-6 mRNA expression via the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway. cfDNA, quantified with quantitative PCR in culture medium was increased by CSE. Consistent with in vitro results, plasma mitochondrial cfDNA (mt-cfDNA) and nuclear cfDNA (n-cfDNA) were increased in young healthy smokers compared with age-matched nonsmokers. Additionally, both mt-cfDNA and n-cfDNA were significantly increased in patients with atherosclerosis compared with the normal controls. Our multivariate analysis revealed that only mt-cfDNA predicted the risk of atherosclerosis. In conclusion, accumulated cytosolic DNA caused by cigarette smoke and the resultant activation of the cGAS-STING pathway may be a mechanism of atherosclerosis development. The plasma level of mt-cfDNA, possibly as a result of DNA damage, may be a useful biomarker for atherosclerosis.


Assuntos
Aterosclerose , Ácidos Nucleicos Livres , Fumar Cigarros , Humanos , Aterosclerose/metabolismo , Ácidos Nucleicos Livres/metabolismo , DNA Mitocondrial/metabolismo , Células Endoteliais/metabolismo , Mitocôndrias/metabolismo , Nucleotidiltransferases/genética , Dano ao DNA
14.
Nat Biotechnol ; 41(2): 212-221, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36076083

RESUMO

The analysis of cell-free DNA (cfDNA) in plasma provides information on pathological processes in the body. Blood cfDNA is in the form of nucleosomes, which maintain their tissue- and cancer-specific epigenetic state. We developed a single-molecule multiparametric assay to comprehensively profile the epigenetics of plasma-isolated nucleosomes (EPINUC), DNA methylation and cancer-specific protein biomarkers. Our system allows for high-resolution detection of six active and repressive histone modifications and their ratios and combinatorial patterns on millions of individual nucleosomes by single-molecule imaging. In addition, our system provides sensitive and quantitative data on plasma proteins, including detection of non-secreted tumor-specific proteins, such as mutant p53. EPINUC analysis of a cohort of 63 colorectal cancer, 10 pancreatic cancer and 33 healthy plasma samples detected cancer with high accuracy and sensitivity, even at early stages. Finally, combining EPINUC with direct single-molecule DNA sequencing revealed the tissue of origin of colorectal, pancreatic, lung and breast tumors. EPINUC provides multilayered information of potential clinical relevance from limited (<1 ml) liquid biopsy material.


Assuntos
Ácidos Nucleicos Livres , Neoplasias , Nucleossomos , Humanos , Biomarcadores Tumorais , Ácidos Nucleicos Livres/metabolismo , Metilação de DNA/genética , Epigênese Genética/genética , Proteínas de Neoplasias/genética , Neoplasias/diagnóstico , Neoplasias/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Imagem Individual de Molécula
15.
Biomol Biomed ; 23(1): 176-186, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036057

RESUMO

High prevalence and mortality of prostate cancer (PCa) are well known global health issues. Novel biomarkers for better identifying patients with PCa are the subject of extensive research. Prostate specific antigen (PSA) shows low specificity in screening and diagnostics, leading to unnecessary biopsies and health costs. Eighty patients with PCa and benign prostate hyperplasia (BPH) were included in the study. We analyzed CAV1 gene expression and methylation in tissue. CAV1 cfDNA methylation from blood and seminal plasma was accessed as a potential PCa biomarker. Although methylation in blood plasma did not differ between PCa and BPH patients, methylation in seminal plasma showed better PCa biomarker performances than tPSA (AUC 0.63 vs. AUC 0.52). Discrimination of BPH and Gleason grade group 1 PCa patients from patients with higher Gleason grade groups revealed very good performance as well (AUC 0.72). CAV1 methylation is useful biomarker with potential for further seminal plasma cfDNA research, but its diagnostic accuracy should be improved, as well as general knowledge about cfDNA in seminal plasma.


Assuntos
Ácidos Nucleicos Livres , Hiperplasia Prostática , Neoplasias da Próstata , Masculino , Humanos , Metilação , Ácidos Nucleicos Livres/metabolismo , Caveolina 1/genética , Neoplasias da Próstata/diagnóstico , Biomarcadores/metabolismo
16.
Cell Transplant ; 31: 9636897221143363, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36503307

RESUMO

Myelodysplastic syndromes (MDS) are a group of malignant clonal diseases presenting abnormal development of acquired hematopoietic progenitor/stem cell myeloid differentiation. MDS have been clinically divided into different types. There is a lack of clear gold standard, which makes the diagnosis of MDS with clinical signs and laboratory examination difficult. Cell-free DNA (cfDNA) is a resource of DNA fragments from apoptotic or necrotic cells, and has been considered as a measurement with ample sensitive, specific, and effective traits for auxiliary diagnosis. In this study, we collected 25 cases of relatively high-risk MDS (HRM), 22 cases of low-risk MDS (LRM), and 15 cases of benign blood diseases (control) and conducted reduced representation bisulfite sequencing (RRBS) to investigate the variants and DNA methylation of cfDNA in serum of three cases of each group. We observed increased single-nucleotide polymorphisms (SNPs) particularly distributed in intergenic and intronic regions in HRM compared with LRM and control. Moreover, HRM presented more nonsynonymous and harmful variants that would affect amino acid sequence. Meanwhile, we also observed that global DNA methylation on non-CpG sites (CHG and CHH) in HRM was obviously higher than that in LRM and control. Finally, we picked up the candidate genes with specific variants and abnormal methylation at the promoter in HRM and LRM, and combined to examine the specificity and sensitivity of HRM and LRM diagnosis in our collection. We found that FANCM with T49G mutation at first exon and promoter hypermethylation (-835 to transcription start site [TSS]) was indicated as the most confident factor with the highest area under curve (AUC) value (0.9271) for HRM. Similarly, ICAM1 with C1211T mutation at sixth exon and promoter hypermethylation (-282 to TSS) was suggested to identify LRM (AUC = 0.9338). Taken together, our study characterized the variants and methylation pattern of cfDNA in MDS, and provided the potential biomarkers for HRM and LRM identification.


Assuntos
Ácidos Nucleicos Livres , Síndromes Mielodisplásicas , Humanos , Ácidos Nucleicos Livres/metabolismo , Síndromes Mielodisplásicas/diagnóstico , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Metilação de DNA/genética , Regiões Promotoras Genéticas/genética , DNA Helicases/genética , DNA Helicases/metabolismo
17.
Genes (Basel) ; 13(12)2022 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-36553550

RESUMO

Oxidized in vitro genomic DNA (gDNA) is known to launch an adaptive response in human cell cultures. The cfDNA extracted from the plasma of schizophrenic patients (sz-cfDNA) and healthy controls (hc-cfDNA) contains increased amounts of 8-oxodG, a DNA-oxidation marker. The aim of the research was answering a question: can the human cfDNA isolated from blood plasma stimulate the adaptive response in human cells? In vitro responses of ten human skin fibroblasts (HSFs) and four peripheral blood mononuclear cell (PBMC) lines after 1-24 h of incubation with sz-cfDNA, gDNA and hc-cfDNA containing different amounts of 8-oxodG were examined. Expressions of RNA of eight genes (NOX4, NFE2L2, SOD1, HIF1A, BRCA1, BRCA2, BAX and BCL2), six proteins (NOX4, NRF2, SOD1, HIF1A, γH2AX and BRCA1) and DNA-oxidation marker 8-oxodG were analyzed by RT-qPCR and flow cytometry (when analyzing the data, a subpopulation of lymphocytes (PBL) was identified). Adding hc-cfDNA or sz-cfDNA to HSFs or PBMC media in equal amounts (50 ng/mL, 1-3 h) stimulated transient synthesis of free radicals (ROS), which correlated with an increase in the expressions of NOX4 and SOD1 genes and with an increase in the levels of the markers of DNA damage γH2AX and 8-oxodG. ROS and DNA damage induced an antioxidant response (expression of NFE2L2 and HIF1A), DNA damage response (BRCA1 and BRCA2 gene expression) and anti-apoptotic response (changes in BAX and BCL2 genes expression). Heterogeneity of cells of the same HSFs or PBL population was found with respect to the type of response to (sz,hc)-cfDNA. Most cells responded to oxidative stress with an increase in the amount of NRF2 and BRCA1 proteins along with a moderate increase in the amount of NOX4 protein and a low amount of 8-oxodG oxidation marker. However, upon the exposure to (sz,hc)-cfDNA, the size of the subpopulation with apoptosis signs (high DNA damage degree, high NOX4 and low NRF2 and BRCA1 levels) also increased. No significant difference between the responses to sz-cfDNA and hc-cfDNA was observed. Sz-cfDNA and hc-cfDNA showed similarly high bioactivity towards fibroblasts and lymphocytes. Conclusion: In cultured human cells, hc-cfDNA and sz-cfDNA equally stimulated an adaptive response aimed at launching the antioxidant, repair, and anti-apoptotic processes. The mediator of the development of the adaptive response are ROS produced by, among others, NOX4 and SOD1 enzymes.


Assuntos
Ácidos Nucleicos Livres , Esquizofrenia , Humanos , Leucócitos Mononucleares/metabolismo , 8-Hidroxi-2'-Desoxiguanosina , Antioxidantes , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Superóxido Dismutase-1 , Proteína X Associada a bcl-2 , DNA , Esquizofrenia/genética , Ácidos Nucleicos Livres/genética , Ácidos Nucleicos Livres/metabolismo , Plasma/metabolismo
18.
Front Immunol ; 13: 993720, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341409

RESUMO

Pathogenesis of lung injury in COVID-19 is not completely understood, leaving gaps in understanding how current treatments modulate the course of COVID-19. Neutrophil numbers and activation state in circulation have been found to correlate with COVID-19 severity, and neutrophil extracellular traps (NETs) have been found in the lung parenchyma of patients with acute respiratory distress syndrome (ARDS) in COVID-19. Targeting the pro-inflammatory functions of neutrophils may diminish lung injury in COVID-19 and ARDS. Neutrophils were isolated from peripheral blood of healthy donors, treated ex vivo with dexamethasone, tocilizumab and intravenous immunoglobulin (IVIG) and NET formation, oxidative burst, and phagocytosis were assessed. Plasma from critically ill COVID-19 patients before and after clinical treatment with IVIG and from healthy donors was assessed for neutrophil activation-related proteins. While dexamethasone and tocilizumab did not affect PMA- and nigericin-induced NET production ex vivo, IVIG induced a dose-dependent abrogation of NET production in both activation models. IVIG also reduced PMA-elicited reactive oxygen species production, but did not alter phagocytosis. COVID-19 patients were found to have elevated levels of cell-free DNA, neutrophil elastase and IL-8 as compared to healthy controls. Levels of both cell-free DNA and neutrophil elastase were lower 5 days after 4 days of daily treatment with IVIG. The lack of impact of dexamethasone or tocilizumab on these neutrophil functions suggests that these therapeutic agents may not act through suppression of neutrophil functions, indicating that the door might still be open for the addition of a neutrophil modulator to the COVID-19 therapeutic repertoire.


Assuntos
Tratamento Farmacológico da COVID-19 , Ácidos Nucleicos Livres , Lesão Pulmonar , Síndrome do Desconforto Respiratório , Humanos , Neutrófilos/metabolismo , Imunoglobulinas Intravenosas/uso terapêutico , Imunoglobulinas Intravenosas/farmacologia , Elastase de Leucócito/metabolismo , Lesão Pulmonar/metabolismo , Ácidos Nucleicos Livres/metabolismo , Dexametasona
19.
Hepatol Commun ; 6(12): 3311-3323, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36264206

RESUMO

Nonalcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in children and adolescents, increasing the risk of its progression toward nonalcoholic steatohepatitis (NASH), cirrhosis, and cancer. There is an urgent need for noninvasive early diagnostic and prognostic tools such as epigenetic marks (epimarks), which would replace liver biopsy in the future. We used plasma samples from 67 children with biopsy-proven NAFLD, and as controls we used samples from 20 children negative for steatosis by ultrasound. All patients were genotyped for patatin-like phospholipase domain containing 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), membrane bound O-acyltransferase domain containing 7 (MBOAT7), and klotho-ß (KLB) gene variants, and data on anthropometric and biochemical parameters were collected. Furthermore, plasma cell-free DNA (cfDNA) methylation was quantified using a commercially available kit, and ImageStream(X) was used for the detection of free circulating histone complexes and variants. We found a significant enrichment of the levels of histone macroH2A1.2 in the plasma of children with NAFLD compared to controls, and a strong correlation between cfDNA methylation levels and NASH. Receiver operating characteristic curve analysis demonstrated that combination of cfDNA methylation, PNPLA3 rs738409 variant, coupled with either high-density lipoprotein cholesterol or alanine aminotransferase levels can strongly predict the progression of pediatric NAFLD to NASH with area under the curve >0.87. Conclusion: Our pilot study combined epimarks and genetic and metabolic markers for a robust risk assessment of NAFLD development and progression in children, offering a promising noninvasive tool for the consistent diagnosis and prognosis of pediatric NAFLD. Further studies are necessary to identify their pathogenic origin and function.


Assuntos
Ácidos Nucleicos Livres , Hepatopatia Gordurosa não Alcoólica , Adolescente , Humanos , Criança , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Histonas/genética , Projetos Piloto , Lipase/genética , Ácidos Nucleicos Livres/metabolismo , Metilação de DNA/genética , Proteínas de Membrana/genética
20.
Asian Pac J Cancer Prev ; 23(10): 3253-3259, 2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36308346

RESUMO

BACKGROUND: Cytochrome P4502E1 (CYP2E1) metabolizes environmental toxins, however, compound metabolism can produce oxidative stress, causing in-cell toxicity and sometimes transformation. AIM: To evaluate CYP2E1 gene expression and its effects in antioxidant defenses, and cell toxicity in printing workers. METHODS: The hierarchical method of health and chemical risk was used to evaluate chemical exposure in workplace. Blood samples and buccal epithelial cells were obtained from printing workers, and workers without any history of occupational exposure to chemicals (control group). Gene expression of CYP2E1, and antioxidant enzymes Superoxide dismutase (SOD) and Catalase (CAT) from leukocytes were evaluated. Hematic analysis and cell-free DNA from plasma were analyzed. Frequencies of cells with micronuclei (MN) and nuclear abnormalities from buccal epithelial cells were explored. RESULTS: Evaluation of chemical exposure in working place demonstrated that ethyl alcohol, isopropyl alcohol, and isophorone represent 91% of the accumulated potential risk. CYP2E1 expression showed a 2.5-fold overexpression in the printing workers compared to the control group. SOD expression showed a 0.5-fold lower level in the printing workers than the control group, and CAT expression showed no differences between groups. Lower red blood cell and platelet values were detected in the printing workers than in the control group, and cell-free DNA plasma concentration was 3-fold higher in the printing workers than in the control group. The printing workers showed a higher frequency of cells with MN and nuclear anomalies than the control group. CONCLUSION: CYP2E1 overexpression triggers antioxidant defenses and toxic cell effects in printing workers.


Assuntos
Ácidos Nucleicos Livres , Exposição Ocupacional , Citocromo P-450 CYP2E1/genética , Antioxidantes/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo , Estresse Oxidativo/genética , Exposição Ocupacional/efeitos adversos , Exposição Ocupacional/análise , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ácidos Nucleicos Livres/metabolismo , Impressão Tridimensional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA