Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Chem Inf Model ; 64(10): 4002-4008, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38798191

RESUMO

Transcription factors (TFs) are important regulatory elements for vital cellular activities, and the identification of transcription factor binding sites (TFBS) can help to explore gene regulatory mechanisms. Research studies have proved that cfDNA (cell-free DNA) shows relatively higher coverage at TFBS due to the protection by TF from degradation by nucleases and short fragments of cfDNA are enriched in TFBS. However, there are still great difficulties in the noninvasive identification of TFBSs from experimental techniques. In this study, we propose a deep learning-based approach that can noninvasively predict TFBSs of cfDNA by learning sequence information from known TFBSs through convolutional neural networks. Under the addition of long short-term memory, our model achieved an area under the curve of 84%. Based on this model to predict cfDNA, we found consistent motifs in cfDNA fragments and lower coverage occurred upstream and downstream of these cfDNA fragments, which is consistent with a previous study. We also found that the binding sites of the same TF differ in different cell lines. TF-specific target genes were detected from cfDNA and were enriched in cancer-related pathways. In summary, our method of locating TFBSs from plasma has the potential to reflect the intrinsic regulatory mechanism from a noninvasive perspective and provide technical guidance for dynamic monitoring of disease in clinical practice.


Assuntos
Ácidos Nucleicos Livres , Aprendizado Profundo , Fatores de Transcrição , Fatores de Transcrição/metabolismo , Fatores de Transcrição/química , Sítios de Ligação , Humanos , Ácidos Nucleicos Livres/metabolismo , Ácidos Nucleicos Livres/química , DNA/metabolismo , DNA/química
2.
Science ; 383(6680): 260-261, 2024 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-38236970
3.
J Clin Lab Anal ; 36(12): e24771, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36378551

RESUMO

OBJECTIVE: Long noncoding RNA MALAT1 (lnc-MALAT1) modulates atherosclerotic progression, myocardial ischemia injury, and systematic inflammation, which may be closely involved in acute myocardial infarction (AMI) pathogenesis. Thus, the current study intended to explore the relationship of lnc-MALAT1 to disease risk, features, cytokines, and prognostication in AMI patients. METHODS: This multicenter study consecutively enrolled 160 newly diagnosed AMI patients and 50 controls (angina pectoris patients). Their peripheral blood mononuclear cells were obtained to measure lnc-MALAT1 by RT-qPCR. Serum cytokines in AMI patients were detected by ELISA. In addition, AMI patients were followed up for major adverse cardiovascular event (MACE) risk evaluation. RESULTS: Lnc-MALAT1 was higher in AMI patients than in controls (median: 2.245 vs. 0.996, p = 0.004), and it also presented a good capacity for differentiating AMI patients from controls with an area under the curve of 0.823. Lnc-MALAT1 was positively related to C-reactive protein (p = 0.005), low-density lipoprotein cholesterol (p = 0.022), cardiac troponin I (p = 0.021), and infarct size (p = 0.007), but not other biochemical indexes in AMI patients. Meanwhile, lnc-MALAT1 was positively associated with tumor necrosis factor-alpha (p = 0.001), interleukin (IL)-6 (p = 0.031), IL-17A (p = 0.042), vascular cell adhesion molecule-1 (p = 0.004), and intercellular adhesion molecule-1 (p = 0.021) among AMI patients. Importantly, after categorization, lnc-MALAT1 high (vs. low) was related to an elevated MACE accumulation rate (p = 0.035); furthermore, a higher lnc-MALAT1 quartile showed a trend to be linked with an increased MACE accumulation rate (p = 0.092). CONCLUSION: Lnc-MALAT1 may serve as a biomarker for AMI risk, infarct size, inflammation and prognosis, but further validation by large-scale studies is needed.


Assuntos
Ácidos Nucleicos Livres , Infarto do Miocárdio , RNA Longo não Codificante , Humanos , Biomarcadores , Citocinas , Inflamação , Interleucina-6 , Leucócitos Mononucleares/metabolismo , Infarto do Miocárdio/diagnóstico , Infarto do Miocárdio/genética , RNA Longo não Codificante/sangue , RNA Longo não Codificante/genética , Ácidos Nucleicos Livres/química , Ácidos Nucleicos Livres/genética
4.
Clin Chem Lab Med ; 60(10): 1518-1524, 2022 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-35786439

RESUMO

Pleural effusion (PE) is a common sign caused by various disorders. Microbiology, histology and cytology are reference standards for these disorders. However, these diagnostic tools have limitations, including invasiveness, high cost, long turnaround time, and observer-dependent. Soluble biomarkers in pleural fluid (PF) are promising diagnostic tools because they are mininvasive, economical, and objective. Recent studies have revealed that some cell-free nucleic acids (e.g., DNA, mRNA, microRNA, and lncRNA) in PF are potential diagnostic markers for many disorders. Here, we review the performance of PF cell-free nucleic acids for differentiating and stratification of PE.


Assuntos
Ácidos Nucleicos Livres , Derrame Pleural Maligno , Derrame Pleural , Biomarcadores , Ácidos Nucleicos Livres/química , Exsudatos e Transudatos , Humanos , Derrame Pleural/diagnóstico , Derrame Pleural/metabolismo , Derrame Pleural Maligno/diagnóstico , Derrame Pleural Maligno/metabolismo
5.
Mol Oncol ; 15(9): 2377-2389, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34133846

RESUMO

Circulating cell-free DNA (cfDNA) fragmentomics, which encompasses the measurement of cfDNA length and short nucleotide motifs at the ends of cfDNA molecules, is an emerging field for cancer diagnosis. The utilization of cfDNA fragmentomics for the diagnosis of patients with hepatocellular carcinoma (HCC) caused by hepatitis B virus (HBV) is currently limited. In this study, we utilized whole-genome sequencing data of cfDNA in samples from patients with HCC (n = 197) and HBV (n = 187) to analyze the association of fragment size selection (< 150 bp) with tumor fraction (TF), copy number variation (CNV) alterations and the change in the proportion of 4-mer end motifs in HCC and HBV samples. Our analyses identified five typical CNV markers (i.e. loss in chr1p, chr4q and chr8p, and gain in chr1q and chr8q) in cfDNA with a cumulatively positive rate of ˜ 95% in HCC samples. Size selection (< 150 bp) significantly enhanced TF and CNV signals in HCC samples. Additionally, three 4-mer end motifs (CCCA, CCTG and CCAG) were identified as preferred end motifs in HCC samples. We identified 139 end motifs significantly associated with fragment size that showed similar patterns of associations between patients with HCC and HBV, suggesting that end motifs might be inherently coupled with fragment size by a ubiquitous mechanism. Here we conclude that CNV markers, fragment size selection and end-motif pattern in cfDNA have potential for effective detection of patients with HCC.


Assuntos
Carcinoma Hepatocelular/diagnóstico , Ácidos Nucleicos Livres/sangue , Variações do Número de Cópias de DNA , Biópsia Líquida/métodos , Neoplasias Hepáticas/diagnóstico , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/virologia , Ácidos Nucleicos Livres/química , Hepacivirus/genética , Hepacivirus/isolamento & purificação , Vírus da Hepatite B/genética , Vírus da Hepatite B/isolamento & purificação , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/virologia , Sequenciamento Completo do Genoma/métodos
6.
Genomics ; 113(1 Pt 1): 79-87, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33221518

RESUMO

Diabetic retinopathy (DR) is a common microvascular complication that may cause severe visual impairment and blindness in patients with type 2 diabetes mellitus (T2DM). Early detection of DR will expand the range of potential treatment options and enable better control of disease progression. Epigenetic dysregulation has been implicated in the pathogenesis of microvascular complications in patients with T2DM. We sought to explore the diagnostic value of 5-hydroxymethylcytosines (5hmC) in circulating cell-free DNA (cfDNA) for DR, taking advantage of a highly sensitive technique, the 5hmC-Seal. The genome-wide 5hmC profiles in cfDNA samples from 35 patients diagnosed with DR and 35 age-, gender-, diabetic duration-matched T2DM controls were obtained using the 5hmC-Seal, followed by a case-control analysis and external validation. The genomic distribution of 5hmC in cfDNA from patients with DR reflected potential gene regulatory relevance, showing co-localization with histone modification marks for active expression (e.g., H3K4me1). A three-gene signature (MESP1, LY6G6D, LINC01556) associated with DR was detected using the elastic net regularization on the multivariable logistic regression model, showing high accuracy to distinguish patients with DR from T2DM controls (AUC [area under curve] = 91.4%; 95% CI [confidence interval], 84.3- 98.5%), achieving a sensitivity of 88.6% and a specificity of 91.4%. In an external testing set, the 5hmC model detected 5 out of 6 DR patients and predicted 7 out of 8 non-DR patients with other microvascular complications. Circulating cfDNA from patients with DR contained 5hmC information that could be exploited for DR detection. As a novel non-invasive approach, the 5hmC-Seal holds the promise to be an integrated part of patient care and surveillance tool for T2DM patients.


Assuntos
5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Livres/genética , Diabetes Mellitus Tipo 2/complicações , Retinopatia Diabética/genética , 5-Metilcitosina/metabolismo , Adulto , Idoso , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Biomarcadores/sangue , Ácidos Nucleicos Livres/química , Retinopatia Diabética/sangue , Retinopatia Diabética/etiologia , Retinopatia Diabética/patologia , Feminino , Humanos , Imunoglobulinas/genética , Masculino , Pessoa de Meia-Idade , RNA Longo não Codificante/genética
7.
Anal Chem ; 92(17): 11771-11778, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32809797

RESUMO

Biosensor working in a self-powered mode has been widely concerned because it produces a signal when the bias potential is 0 V. However, the self-powered mode is used only when the materials have self-powered properties. Conversion of non-self-powered to self-powered through molecular regulation can solve this problem effectively. Here, we fabricated a self-powered photoelectrochemical mode based on co-regulation of electron acceptors methylene blue (MB) and p-nitrophenol (p-NP). AuNPs@ZnSe nanosheet-modified gold electrode (AuNPs@ZnSeNSs/GE) gave a small photocurrent at 0 V. In the presence of MB and p-NP, AuNPs@ZnSeNSs/GE gave the strongest photocurrent at 0 V. Accordingly, an electron acceptor co-regulated self-powered photoelectrochemical assay was fabricated. As proof-of-concept demonstrations, this assay was applied for prostate cancer circulating tumor nucleic acid biomarker, KLK2 and PCA3, detection combined with in situ recombinase polymerase amplification strategy. This assay generated a strong photocurrent and was sensitive to the variation of KLK2 and PCA3 concentration. The limits of detection were 30 and 32 aM, respectively. We anticipate this electron acceptor co-regulated self-powered photoelectrochemical mode to pave a new way for the development of self-powered sensing.


Assuntos
Técnicas Biossensoriais/métodos , Ácidos Nucleicos Livres/química , Técnicas Eletroquímicas/métodos , Recombinases/química , Humanos , Técnicas de Amplificação de Ácido Nucleico/métodos
8.
Nanoscale Horiz ; 5(11): 1476-1486, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32853302

RESUMO

The spontaneous adsorption of biomolecules onto the surface of nanoparticles (NPs) in complex physiological biofluids has been widely investigated over the last decade. Characterisation of the protein composition of the 'biomolecule corona' has dominated research efforts, whereas other classes of biomolecules, such as nucleic acids, have received no interest. Scarce, speculative statements exist in the literature about the presence of nucleic acids in the biomolecule corona, with no previous studies attempting to describe the contribution of genomic content to the blood-derived NP corona. Herein, we provide the first experimental evidence of the interaction of circulating cell-free DNA (cfDNA) with lipid-based NPs upon their incubation with human plasma samples, obtained from healthy volunteers and ovarian carcinoma patients. Our results also demonstrate an increased amount of detectable cfDNA in patients with cancer. Proteomic analysis of the same biomolecule coronas revealed the presence of histone proteins, suggesting an indirect, nucleosome-mediated NP-cfDNA interaction. The finding of cfDNA as part of the NP corona, offers a previously unreported new scope regarding the chemical composition of the 'biomolecule corona' and opens up new possibilities for the potential exploitation of the biomolecule corona for the enrichment and analysis of blood-circulating nucleic acids.


Assuntos
Ácidos Nucleicos Livres/química , Lipídeos/química , Nanopartículas/química , Adsorção , Idoso , Idoso de 80 Anos ou mais , Feminino , Histonas , Humanos , Pessoa de Meia-Idade , Neoplasias Ovarianas , Plasma , Proteômica
9.
Biomolecules ; 10(7)2020 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-32664541

RESUMO

Extracellular DNA, also called cell-free DNA, released from dying cells or activated immune cells can be recognized by the immune system as a danger signal causing or enhancing inflammation. The cleavage of extracellular DNA is crucial for limiting the inflammatory response and maintaining homeostasis. Deoxyribonucleases (DNases) as enzymes that degrade DNA are hypothesized to play a key role in this process as a determinant of the variable concentration of extracellular DNA. DNases are divided into two families-DNase I and DNase II, according to their biochemical and biological properties as well as the tissue-specific production. Studies have shown that low DNase activity is both, a biomarker and a pathogenic factor in systemic lupus erythematosus. Interventional experiments proved that administration of exogenous DNase has beneficial effects in inflammatory diseases. Recombinant human DNase reduces mucus viscosity in lungs and is used for the treatment of patients with cystic fibrosis. This review summarizes the currently available published data about DNases, their activity as a potential biomarker and methods used for their assessment. An overview of the experiments with systemic administration of DNase is also included. Whether low-plasma DNase activity is involved in the etiopathogenesis of diseases remains unknown and needs to be elucidated.


Assuntos
Ácidos Nucleicos Livres/química , Fibrose Cística/metabolismo , Desoxirribonucleases/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Biomarcadores/metabolismo , Fibrose Cística/genética , Humanos , Lúpus Eritematoso Sistêmico/genética , Especificidade de Órgãos
10.
Clin Biochem ; 83: 65-73, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32526228

RESUMO

BACKGROUND: Lung cancer is one of the most common malignancies, and it has extremely high incidence and mortality rates. Although there have been many studies focused on lung cancer biomarkers, few have reported the extracellular RNA profiles of lung cancer. In this study, we used RNA-seq technology to analyze extracellular RNAs in low volume peripheral blood plasma; we compared the differentially expressed genes from the plasma of non-small cell lung cancer (NSCLC) patients with that of healthy controls. METHODS: We used RNA-seq technology and bioinformatics to analyze the extracellular RNA (exRNA) sequences of 12 human plasma samples (500 µl per sample), 6 from NSCLC patients and 6 from healthy controls. Subsequently, we used gene ontology (GO) enrichment, KEGG analysis and coexpression experiments to compare the differentially expressed genes (DEGs) and identify tumor biomarkers that were highly correlated with NSCLC. These DEGs were further verified by quantitative PCR. RESULTS: Approximately 20 million clean reads were produced for each plasma sample; 50-80% of the reads aligned to the human references, and hundreds of thousands of reads were counted in each plasma sample. In addition, a total of 640 genes (368 upregulated and 272 downregulated) were differentially expressed between NSCLC plasma and normal plasma. Further, we identified 7 key DEGs that are highly correlated with lung tumorigenesis: COX1, COX2, COX3, ND1, ND2, ND4L, and ATP6. CONCLUSION: exRNA-seq from a small amount (400-500 µl) of plasma opens new possibilities for exploring lung cancer biomarkers in the plasma.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/sangue , Carcinoma Pulmonar de Células não Pequenas/genética , Ácidos Nucleicos Livres/sangue , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Estudos de Casos e Controles , Ácidos Nucleicos Livres/química , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Ontologia Genética , Humanos , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Mapeamento de Interação de Proteínas , RNA-Seq
11.
Magy Onkol ; 64(1): 70-72, 2020 Mar 17.
Artigo em Húngaro | MEDLINE | ID: mdl-32181765

RESUMO

During colorectal cancer (CRC) development, in addition to genetic alterations, several epigenetic changes, including DNA methylation in the promoter regions accumulate in tumor cells. Cell-free DNA (cfDNA) in the circulatory system can originate also from tumor tissue; therefore the evaluation of methylated cfDNA in the plasma can be a promising method for early cancer screening. In my Ph.D., I have investigated the rate of cfDNA's release and stability using animal models. I aimed to compile an epigenetic marker panel, which contains genes with altered DNA methylation patterns in the healthy-colorectal adenoma-cancer sequence. I have found that the methylation level of SFRP1, SFRP2, SDC2, and PRIMA1 gene promoters has already increased in adenoma stages in both tissue and plasma samples. Immunohistochemistry analyses indicated decreasing protein expression in parallel with elevated methylation. According to our results, cfDNA amount and the methylation have been influenced by DNA isolation and blood collection methods.


Assuntos
Biomarcadores Tumorais/sangue , Ácidos Nucleicos Livres/química , Neoplasias Colorretais/sangue , Neoplasias Colorretais/genética , Metilação de DNA , DNA/química , Animais , Biomarcadores Tumorais/química , Biomarcadores Tumorais/genética , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , DNA/sangue , DNA/genética , Humanos , Regiões Promotoras Genéticas/genética
12.
Int J Mol Sci ; 21(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075053

RESUMO

We studied genomic alterations in 19 inflammatory breast cancer (IBC) patients with advanced disease using samples of tissue and paired blood serum or plasma (cell-free DNA, cfDNA) by targeted next generation sequencing (NGS). At diagnosis, the disease was triple negative (TN) in eleven patients (57.8%), ER+ Her2- IBC in six patients (31.6%), ER+ Her2+ IBC in one patient (5.3%), and ER- Her2+ IBC in one other patient (5.3%). Pathogenic or likely pathogenic variants were frequently detected in TP53 (47.3%), PMS2 (26.3%), MRE11 (26.3%), RB1 (10.5%), BRCA1 (10.5%), PTEN (10.5%) and AR (10.5%); other affected genes included PMS1, KMT2C, BRCA2, PALB2, MUTYH, MEN1, MSH2, CHEK2, NCOR1, PIK3CA, ESR1 and MAP2K4. In 15 of the 19 patients in which tissue and paired blood were collected at the same time point, 80% of the variants detected in tissue were also detected in the paired cfDNA. Higher concordance between tissue and cfDNA was found for variants with higher allele fraction in tissue (AFtissue ≥ 5%). Furthermore, 86% of the variants detected in cfDNA were also detected in paired tissue. Our study suggests that the genetic profile measured in blood cfDNA is complementary to that of tumor tissue in IBC patients.


Assuntos
Neoplasias da Mama/diagnóstico , Ácidos Nucleicos Livres/genética , Variação Genética , Adulto , Idoso , Alelos , Proteína BRCA2/genética , Neoplasias da Mama/sangue , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Ácidos Nucleicos Livres/química , Feminino , Frequência do Gene , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pessoa de Meia-Idade , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Estadiamento de Neoplasias , Proteína Supressora de Tumor p53/genética
13.
Nat Commun ; 11(1): 525, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31988276

RESUMO

Liquid biopsies are providing new opportunities for detection of residual disease in cell-free DNA (cfDNA) after surgery but may be confounded through identification of alterations arising from clonal hematopoiesis. Here, we identify circulating tumor-derived DNA (ctDNA) alterations through ultrasensitive targeted sequencing analyses of matched cfDNA and white blood cells from the same patient. We apply this approach to analyze samples from patients in the CRITICS trial, a phase III randomized controlled study of perioperative treatment in patients with operable gastric cancer. After filtering alterations from matched white blood cells, the presence of ctDNA predicts recurrence when analyzed within nine weeks after preoperative treatment and after surgery in patients eligible for multimodal treatment. These analyses provide a facile method for distinguishing ctDNA from other cfDNA alterations and highlight the utility of ctDNA as a predictive biomarker of patient outcome to perioperative cancer therapy and surgical resection in patients with gastric cancer.


Assuntos
Ácidos Nucleicos Livres/química , DNA de Neoplasias/análise , Leucócitos/química , Recidiva Local de Neoplasia/diagnóstico , Análise de Sequência de DNA , Neoplasias Gástricas/diagnóstico , DNA de Neoplasias/química , Hematopoese , Humanos , Prognóstico , Estudo de Prova de Conceito , Ensaios Clínicos Controlados Aleatórios como Assunto , Neoplasias Gástricas/genética , Análise de Sobrevida
14.
Clin Epigenetics ; 12(1): 17, 2020 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-31964422

RESUMO

BACKGROUND: The 5-hydroxymethylcytosine (5hmC) DNA modification is an epigenetic marker involved in a range of biological processes. Its function has been studied extensively in tumors, neurodegenerative diseases, and atherosclerosis. Studies have reported that 5hmC modification is closely related to the phenotype transformation of vascular smooth muscle cells and endothelial dysfunction. However, its role in coronary artery disease (CAD) has not been fully studied. RESULTS: To investigate whether 5hmC modification correlates with CAD pathogenesis and whether 5hmC can be used as a biomarker, we used a low-input whole-genome sequencing technology based on selective chemical capture (hmC-Seal) to firstly generate the 5hmC profiles in the circulating cell-free DNA(cfDNA) of CAD patients, including stable coronary artery disease (sCAD) patients and acute myocardial infarction (AMI) patients. We detected a significant difference of 5hmC enrichment in gene bodies from CAD patients compared with normal coronary artery (NCA) individuals. Our results showed that CAD patients can be well separated from NCA individuals by 5hmC markers. The prediction performance of the model established by differentially regulated 5hmc modified genes were superior to common clinical indicators for the diagnosis of CAD (AUC = 0.93) and sCAD (AUC = 0.93). Specially, we found that 5hmC markers in cfDNA showed prediction potential for AMI (AUC = 0.95), which was superior to that of cardiac troponin I, muscle/brain creatine kinase, and myoglobin. CONCLUSIONS: Our results suggest that 5hmC markers derived from cfDNA can serve as effective epigenetic biomarkers for minimally noninvasive diagnosis and prediction of CAD.


Assuntos
5-Metilcitosina/análogos & derivados , Ácidos Nucleicos Livres/química , Doença da Artéria Coronariana/diagnóstico , 5-Metilcitosina/análise , Adulto , Idoso , Biomarcadores/análise , Ácidos Nucleicos Livres/sangue , Doença da Artéria Coronariana/sangue , Doença da Artéria Coronariana/genética , DNA/sangue , DNA/química , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Infarto do Miocárdio/genética
15.
Clin Chem ; 66(1): 207-216, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31551312

RESUMO

BACKGROUND: Noninvasive prenatal diagnosis (NIPD) for monogenic disorders has a high uptake by families. Since 2013, our accredited public health service laboratory has offered NIPD for monogenic disorders, predominantly for de novo or paternally dominantly inherited mutations. Here we describe the extension of this service to include definitive NIPD for a recessive condition, cystic fibrosis (CF). METHODS: Definitive NIPD for CF was developed using next-generation sequencing. Validation was performed on 13 cases from 10 families before implementation. All cases referred for CF NIPD were reviewed to determine turnaround times, genotyping results, and pregnancy outcomes. RESULTS: Of 38 referrals, 36 received a result with a mean turnaround of 5.75 days (range, 3-11 days). Nine cases were initially inconclusive, with 3 reported unaffected because the low-risk paternal allele was inherited and 4 cases in which the high-risk paternal allele was inherited, receiving conclusive results following repeat testing. One case was inconclusive owing to a paternal recombination around the mutation site, and one case was uninformative because of no heterozygosity. Before 2016, 3 invasive referrals for CF were received annually compared with 38 for NIPD in the 24 months since offering a definitive NIPD service. CONCLUSIONS: Timely and accurate NIPD for definitive prenatal diagnosis of CF is possible in a public health service laboratory. The method detects recombinations, and the service is well-received as evidenced by the significant increase in referrals. The bioinformatic approach is gene agnostic and will be used to expand the range of conditions tested for.


Assuntos
Fibrose Cística/diagnóstico , Teste Pré-Natal não Invasivo/métodos , Ácidos Nucleicos Livres/química , Ácidos Nucleicos Livres/metabolismo , Feminino , Genótipo , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Polimorfismo de Nucleotídeo Único , Gravidez
16.
Clin Chem ; 66(1): 188-198, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31811000

RESUMO

BACKGROUND: Current noninvasive assays for urothelial carcinoma (UC) lack clinical sensitivity and specificity. Given the utility of plasma cell-free DNA (cfDNA) biomarkers, the development of urinary cfDNA biomarkers may improve the diagnostic sensitivity. METHODS: We assessed copy number alterations (CNAs) by shallow genome-wide sequencing of urinary cfDNA in 95 cancer-free individuals and 65 patients with UC, 58 with kidney cancer, and 45 with prostate cancer. We used a support vector machine to develop a diagnostic classifier based on CNA profiles to detect UC (UCdetector). The model was further validated in an independent cohort (52 patients). Genome sequencing data of tumor specimens from 90 upper tract urothelial cancers (UTUCs) and CNA data for 410 urothelial carcinomas of bladder (UCBs) from The Cancer Genome Atlas were used to validate the classifier. Genome sequencing data for urine sediment from 32 patients with UC were compared with cfDNA. To monitor the treatment efficacy, we collected cfDNA from 7 posttreatment patients. RESULTS: Urinary cfDNA was a more sensitive alternative to urinary sediment. The UCdetector could detect UC at a median clinical sensitivity of 86.5% and specificity of 94.7%. UCdetector performed well in an independent validation data set. Notably, the CNA features selected by UCdetector were specific markers for both UTUC and UCB. Moreover, CNA changes in cfDNA were consistent with the treatment effects. Meanwhile, the same strategy could localize genitourinary cancers to tissue of origin in 70.1% of patients. CONCLUSIONS: Our findings underscore the potential utility of urinary cfDNA CNA profiles as a basis for noninvasive UC detection and surveillance.


Assuntos
Carcinoma/patologia , Ácidos Nucleicos Livres/urina , Variações do Número de Cópias de DNA , Neoplasias Urológicas/patologia , Área Sob a Curva , Biomarcadores Tumorais/genética , Carcinoma/genética , Ácidos Nucleicos Livres/química , Ácidos Nucleicos Livres/metabolismo , Humanos , Neoplasias Renais/diagnóstico , Neoplasias Renais/genética , Biópsia Líquida , Masculino , Recidiva Local de Neoplasia , Neoplasias da Próstata/diagnóstico , Neoplasias da Próstata/genética , Curva ROC , Máquina de Vetores de Suporte , Neoplasias Urológicas/genética , Sequenciamento Completo do Genoma
17.
Clin Chem ; 66(1): 149-160, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31628139

RESUMO

BACKGROUND: In cancer patients, circulating cell-free DNA (ccfDNA) can contain tumor-derived DNA (ctDNA), which enables noninvasive diagnosis, real-time monitoring, and treatment susceptibility testing. However, ctDNA fractions are highly variable, which challenges downstream applications. Therefore, established preanalytical work flows in combination with cost-efficient and reproducible reference materials for ccfDNA analyses are crucial for analytical validity and subsequently for clinical decision-making. METHODS: We describe the efforts of the Innovative Medicines Initiative consortium CANCER-ID (http://www.cancer-id.eu) for comparing different technologies for ccfDNA purification, quantification, and characterization in a multicenter setting. To this end, in-house generated mononucleosomal DNA (mnDNA) from lung cancer cell lines carrying known TP53 mutations was spiked in pools of plasma from healthy donors generated from 2 different blood collection tubes (BCTs). ccfDNA extraction was performed at 15 partner sites according to their respective routine practice. Downstream analysis of ccfDNA with respect to recovery, integrity, and mutation analysis was performed centralized at 4 different sites. RESULTS: We demonstrate suitability of mnDNA as a surrogate for ccfDNA as a process quality control from nucleic acid extraction to mutation detection. Although automated extraction protocols and quantitative PCR-based quantification methods yielded the most consistent and precise results, some kits preferentially recovered spiked mnDNA over endogenous ccfDNA. Mutated TP53 fragments derived from mnDNA were consistently detected using both next-generation sequencing-based deep sequencing and droplet digital PCR independently of BCT. CONCLUSIONS: This comprehensive multicenter comparison of ccfDNA preanalytical and analytical work flows is an important contribution to establishing evidence-based guidelines for clinically feasible (pre)analytical work flows.


Assuntos
Ácidos Nucleicos Livres/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Coleta de Amostras Sanguíneas , Linhagem Celular Tumoral , Ácidos Nucleicos Livres/química , Ácidos Nucleicos Livres/normas , DNA Tumoral Circulante/sangue , Análise Mutacional de DNA , Sequenciamento de Nucleotídeos em Larga Escala/normas , Humanos , Neoplasias/genética , Neoplasias/patologia , Nucleossomos/genética , Polimorfismo de Nucleotídeo Único , Fase Pré-Analítica , Reação em Cadeia da Polimerase em Tempo Real/normas , Padrões de Referência , Proteína Supressora de Tumor p53/genética
18.
PLoS One ; 14(10): e0224338, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31652288

RESUMO

BACKGROUND: Methylation patterns in circulating cell-free DNA are potential biomarkers for cancer and other pathologies. Currently, bisulfite treatment underpins most DNA methylation analysis methods, however, it is known to fragment DNA. Circulating DNA is already short, and further fragmentation during bisulfite treatment is of concern, as it would potentially reduce the sensitivity of downstream assays. METHODS: We used high molecular weight genomic DNA to compare fragmentation and recovery following bisulfite treatment with 2 commercially available kits (Qiagen). The bisulfite treated DNA was visualised on an agarose gel and quantified by qPCR. We also bisulfite treated, visualised and quantitated circulating DNA from plasma. RESULTS: There was no difference in DNA fragmentation between the two kits tested, however, the Epitect Fast kit gave better recovery than the standard Epitect kit, with the same conversion efficiency. We also found that bisulfite treated circulating DNA migrates as distinct bands on agarose gels, suggesting that, in contrast to genomic DNA, it remains largely intact following treatment. Bisulfite treatment of 129 and 234 base PCR products confirmed that this was due to the short length of the circulating DNA fragments. Compared to double stranded DNA, bisulfite treated single stranded DNA gives a very weak signal on gel electrophoresis. CONCLUSIONS: DNA fragmentation during bisulfite treatment does not contribute to loss of sensitivity in methylation analysis of circulating DNA. The absence of DNA fragments below approximately 170 bases from agarose gel images of purified circulating DNA raises the possibility that these fragments are single stranded following the DNA extraction step.


Assuntos
Ácidos Nucleicos Livres/química , Ácidos Nucleicos Livres/genética , Fragmentação do DNA/efeitos dos fármacos , Genoma Humano/genética , Sulfitos/farmacologia , Adulto , Ácidos Nucleicos Livres/sangue , Feminino , Humanos , Pessoa de Meia-Idade , Peso Molecular , Adulto Jovem
19.
Nat Commun ; 10(1): 4666, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31604930

RESUMO

Deregulation of transcription factors (TFs) is an important driver of tumorigenesis, but non-invasive assays for assessing transcription factor activity are lacking. Here we develop and validate a minimally invasive method for assessing TF activity based on cell-free DNA sequencing and nucleosome footprint analysis. We analyze whole genome sequencing data for >1,000 cell-free DNA samples from cancer patients and healthy controls using a bioinformatics pipeline developed by us that infers accessibility of TF binding sites from cell-free DNA fragmentation patterns. We observe patient-specific as well as tumor-specific patterns, including accurate prediction of tumor subtypes in prostate cancer, with important clinical implications for the management of patients. Furthermore, we show that cell-free DNA TF profiling is capable of detection of early-stage colorectal carcinomas. Our approach for mapping tumor-specific transcription factor binding in vivo based on blood samples makes a key part of the noncoding genome amenable to clinical analysis.


Assuntos
Neoplasias da Mama/genética , Ácidos Nucleicos Livres/química , Neoplasias do Colo/genética , Neoplasias da Próstata/genética , Fatores de Transcrição/fisiologia , Sítios de Ligação , Neoplasias da Mama/sangue , Neoplasias da Mama/diagnóstico , Neoplasias do Colo/sangue , Neoplasias do Colo/diagnóstico , Biologia Computacional , Fragmentação do DNA , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Masculino , Nucleossomos/química , Neoplasias da Próstata/sangue , Neoplasias da Próstata/diagnóstico
20.
Biotechniques ; 67(4): 188-191, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31502470

RESUMO

Genomic analysis of circulating, cell-free DNA (cfDNA) is being used extensively for molecular diagnostics. Many approaches rely on the construction of cfDNA genomic libraries, targeted retrieval of specific genomic regions and analysis by next-generation DNA sequencing. Several steps during sample preparation require isolation of DNA fragments within a particular size range. In this Benchmark article, two related methods for size-selective DNA fragment enrichment are described.


Assuntos
Ácidos Nucleicos Livres/isolamento & purificação , Sequenciamento de Nucleotídeos em Larga Escala , Biópsia Líquida , Ácidos Nucleicos Livres/química , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA