Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 885
Filtrar
1.
Anal Chem ; 96(19): 7470-7478, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696229

RESUMO

MicroRNAs (miRNAs) are endogenous and noncoding single-stranded RNA molecules with a length of approximately 18-25 nucleotides, which play an undeniable role in early cancer screening. Therefore, it is very important to develop an ultrasensitive and highly specific method for detecting miRNAs. Here, we present a bottom-up assembly approach for modifying glass microtubes with silica nanowires (SiNWs) and develop a label-free sensing platform for miRNA-21 detection. The three-dimensional (3D) networks formed by SiNWs make them abundant and highly accessible sites for binding with peptide nucleic acid (PNA). As a receptor, PNA has no phosphate groups and exhibits an overall electrically neutral state, resulting in a relatively small repulsion between PNA and RNA, which can improve the hybridization efficiency. The SiNWs-filled glass microtube (SiNWs@GMT) sensor enables ultrasensitive, label-free detection of miRNA-21 with a detection limit as low as 1 aM at a detection range of 1 aM-100 nM. Noteworthy, the sensor can still detect miRNA-21 in the range of 102-108 fM in complex solutions containing 1000-fold homologous interference of miRNAs. The high anti-interference performance of the sensor enables it to specifically recognize target miRNA-21 in the presence of other miRNAs and distinguish 1-, 3-mismatch nucleotide sequences. Significantly, the sensor platform is able to detect miRNA-21 in the lysate of breast cancer cell lines (e.g., MCF-7 cells and MDA-MB-231 cells), indicating that it has good potential in the screening of early breast cancers.


Assuntos
Vidro , MicroRNAs , Nanofios , Ácidos Nucleicos Peptídicos , Dióxido de Silício , MicroRNAs/análise , Ácidos Nucleicos Peptídicos/química , Dióxido de Silício/química , Humanos , Nanofios/química , Vidro/química , Técnicas Biossensoriais/métodos , Limite de Detecção
2.
Molecules ; 29(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542953

RESUMO

The international peptide community rejoiced when one of its most distinguished members, Morten Meldal of Denmark, shared the 2022 Nobel Prize in Chemistry. In fact, the regiospecific solid-phase "copper(I)-catalyzed 1,3-dipolar cycloaddition of terminal alkynes to azides" (CuACC) reaction-that formed the specific basis for Meldal's recognition-was reported first at the 17th American Peptide Symposium held in San Diego in June 2001. The present perspective outlines intertwining conceptual and experimental threads pursued concurrently in Copenhagen and Minneapolis, sometimes by the same individuals, that provided context for Meldal's breakthrough discovery. Major topics covered include orthogonality in chemistry; the dithiasuccinoyl (Dts) protecting group for amino groups in α-amino acids, carbohydrates, and monomers for peptide nucleic acids (PNA); and poly(ethylene glycol) (PEG)-based solid supports such as PEG-PS, PEGA, and CLEAR [and variations inspired by them] for solid-phase peptide synthesis (SPPS), solid-phase organic synthesis (SPOS), and combinatorial chemistry that can support biological assays in aqueous media.


Assuntos
Ácidos Nucleicos Peptídicos , Peptídeos , Humanos , Peptídeos/química , Ácidos Nucleicos Peptídicos/química , Aminoácidos , Azidas/química , Alcinos/química , Química Click
3.
ACS Biomater Sci Eng ; 10(4): 2041-2061, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526408

RESUMO

In tropical and developing countries, mosquito-borne diseases by flaviviruses pose a serious threat to public health. Early detection is critical for preventing their spread, but conventional methods are time-consuming and require skilled technicians. Biosensors have been developed to address this issue, but cross-reactivity with other flaviviruses remains a challenge. Peptides are essentially biomaterials used in diagnostics that allow virological and serological techniques to identify flavivirus selectively. This biomaterial originated as a small protein consisting of two to 50 amino acid chains. They offer flexibility in chemical modification and can be easily synthesized and applied to living cells in the engineering process. Peptides could potentially be developed as robust, low-cost, sensitive, and selective receptors for detecting flaviviruses. However, modification and selection of the receptor agents are crucial to determine the effectiveness of binding between the targets and the receptors. This paper addresses two potential peptide nucleic acids (PNAs) and affinity peptides that can detect flavivirus from another target-based biosensor as well as the potential peptide behaviors of flaviviruses. The PNAs detect flaviviruses based on the nucleotide base sequence of the target's virological profile via Watson-Crick base pairing, while the affinity peptides sense the epitope or immunological profile of the targets. Recent developments in the functionalization of peptides for flavivirus biosensors are explored in this Review by division into electrochemical, optical, and other detection methods.


Assuntos
Flavivirus , Ácidos Nucleicos Peptídicos , Animais , Flavivirus/química , Peptídeos/química
4.
RNA ; 30(6): 624-643, 2024 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-38413166

RESUMO

Antisense oligomer (ASO)-based antibiotics that target mRNAs of essential bacterial genes have great potential for counteracting antimicrobial resistance and for precision microbiome editing. To date, the development of such antisense antibiotics has primarily focused on using phosphorodiamidate morpholino (PMO) and peptide nucleic acid (PNA) backbones, largely ignoring the growing number of chemical modalities that have spurred the success of ASO-based human therapy. Here, we directly compare the activities of seven chemically distinct 10mer ASOs, all designed to target the essential gene acpP upon delivery with a KFF-peptide carrier into Salmonella. Our systematic analysis of PNA, PMO, phosphorothioate (PTO)-modified DNA, 2'-methylated RNA (RNA-OMe), 2'-methoxyethylated RNA (RNA-MOE), 2'-fluorinated RNA (RNA-F), and 2'-4'-locked RNA (LNA) is based on a variety of in vitro and in vivo methods to evaluate ASO uptake, target pairing and inhibition of bacterial growth. Our data show that only PNA and PMO are efficiently delivered by the KFF peptide into Salmonella to inhibit bacterial growth. Nevertheless, the strong target binding affinity and in vitro translational repression activity of LNA and RNA-MOE make them promising modalities for antisense antibiotics that will require the identification of an effective carrier.


Assuntos
Antibacterianos , Oligonucleotídeos Antissenso , Ácidos Nucleicos Peptídicos , Antibacterianos/farmacologia , Antibacterianos/química , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/química , Oligonucleotídeos Antissenso/farmacologia , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/genética , Morfolinos/química , Morfolinos/farmacologia , Morfolinos/genética , Peptídeos/farmacologia , Peptídeos/química , Peptídeos/genética , Humanos
5.
Biosensors (Basel) ; 14(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38391998

RESUMO

MicroRNAs are small ribonucleotides that act as key gene regulators. Their altered expression is often associated with the onset and progression of several human diseases, including cancer. Given their potential use as biomarkers, there is a need to find detection methods for microRNAs suitable for use in clinical setting. Field-effect-transistor-based biosensors (bioFETs) appear to be valid tools to detect microRNAs, since they may reliably quantitate the specific binding between the immobilized probe and free target in solution through an easily detectable electrical signal. We have investigated the detection of human microRNA 155 (miR-155) using an innovative capturing probe constituted by a synthetic peptide nucleic acid (PNA), which has the advantage to form a duplex even at ionic strengths approaching the physiological conditions. With the aim to develop an optimized BioFET setup, the interaction kinetics between miR-155 and the chosen PNA was preliminarily investigated by using surface plasmon resonance (SPR). By exploiting both these results and our custom-made bioFET system, we were able to attain a low-cost, real-time, label-free and highly specific detection of miR-155 in the nano-molar range.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Humanos , Ressonância de Plasmônio de Superfície , Técnicas Biossensoriais/métodos , Peptídeos
6.
Cell Rep Med ; 5(1): 101354, 2024 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-38183981

RESUMO

Targeting oncogenes at the genomic DNA level can open new avenues for precision medicine. Significant efforts are ongoing to target oncogenes using RNA-targeted and protein-targeted platforms, but no progress has been made to target genomic DNA for cancer therapy. Here, we introduce a gamma peptide nucleic acid (γPNA)-based genomic DNA-targeted platform to silence oncogenes in vivo. γPNAs efficiently invade the mixed sequences of genomic DNA with high affinity and specificity. As a proof of concept, we establish that γPNA can inhibit c-Myc transcription in multiple cell lines. We evaluate the in vivo efficacy and safety of genomic DNA targeting in three pre-clinical models. We also establish that anti-transcription γPNA in combination with histone deacetylase inhibitors and chemotherapeutic drugs results in robust antitumor activity in cell-line- and patient-derived xenografts. Overall, this strategy offers a unique therapeutic platform to target genomic DNA to inhibit oncogenes for cancer therapy.


Assuntos
Neoplasias , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Humanos , DNA/genética , Ácidos Nucleicos Peptídicos/farmacologia , Ácidos Nucleicos Peptídicos/genética , RNA , Neoplasias/tratamento farmacológico , Neoplasias/genética
7.
Trends Biochem Sci ; 49(4): 283-285, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38238217

RESUMO

Two reports by Dhuri et al. and Oyaghire et al., respectively, show that, through installing chiral centers at the backbone of the artificial nucleic acid, peptide nucleic acid (PNA), enhanced miRNA targeting and genome modification can be achieved, with important implications in fighting cancers and ß-thalassemia.


Assuntos
MicroRNAs , Ácidos Nucleicos Peptídicos , MicroRNAs/genética
8.
Eur J Pharm Sci ; 195: 106708, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262570

RESUMO

With the first reports on the possibility of genome editing by Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas)9 surfacing in 2005, the enthusiasm for protein silencing via nucleic acid delivery experienced a resurgence following a period of diminished enthusiasm due to challenges in delivering small interfering RNAs (siRNA), especially in vivo. However, delivering the components necessary for this approach into the nucleus is challenging, maybe even more than the cytoplasmic delivery of siRNA. We previously reported the birth of peptide/lipid-associated nucleic acids (PLANAs) for siRNA delivery. This project was designed to investigate the efficiency of these nanoparticles for in vitro delivery of CRISPR/Cas9 ribonucleoproteins. Our initial experiments indicated higher toxicity for PLANAs with the more efficient reverse transfection method. Therefore, polyethylene glycol (PEG) was added to the composition for PEGylation of the nanoparticles by partially replacing two of the lipid components with the PEG-conjugated counterparts. The results indicated a more significant reduction in the toxicity of the nanoparticle, less compromise in encapsulation efficiency and more PEGylation of the surface of the nanoparticles using DOPE-PEG2000 at 50 % replacement of the naïve lipid. The cell internalization and transfection efficiency showed a comparable efficiency for the PEGylated and non-PEGylated PLANAs and the commercially available Lipofectamine™ CRISPRMAX™. Next Generation Sequencing of the cloned cells showed a variety of indels in the transfected cell population. Overall, our results indicate the efficiency and safety of PEGylated PLANAs for in vitro transfection with CRISPR/Cas9 ribonucleoproteins. PEGylation has been studied extensively for in vivo delivery, and PEGylated PLANAs will be candidates for future in vivo studies.


Assuntos
Sistemas CRISPR-Cas , Ácidos Nucleicos Peptídicos , Ribonucleoproteínas/genética , RNA Interferente Pequeno , Polietilenoglicóis , Lipídeos , Peptídeos
9.
Angew Chem Int Ed Engl ; 63(4): e202313507, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38057633

RESUMO

Herein, peptide nucleic acids (PNAs) are employed in the design of a participatory duplex PNA-peptide crosslinking agent. Biophysical and mechanical studies show that crosslinkers present during peptide assembly leading to hydrogelation participate in the formation of fibrils while simultaneously installing crosslinks into the higher-order network that constitutes the peptide gel. The addition of 2 mol % crosslinker into the assembling system results in a ~100 % increase in mechanical stiffness without affecting the rate of peptide assembly or the local morphology of fibrils within the gel network. Stiffness enhancement is realized by only affecting change in the elastic component of the viscoelastic gel. A synthesis of the PNA-peptide duplex crosslinkers is provided that allows facile variation in peptide composition and addresses the notorious hydrophobic content of PNAs. This crosslinking system represents a new tool for modulating the mechanical properties of peptide-based hydrogels.


Assuntos
Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , Hidrogéis/química
10.
Biopolymers ; 115(2): e23567, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37792292

RESUMO

Peptide nucleic acid (PNA) is a unique combination of peptides and nucleic acids. PNA can exhibit hydrogen bonding interactions with complementary nucleobases like DNA/RNA. Also, its polyamide backbone allows easy incorporation of biomolecules like peptides and proteins to build hybrid molecular constructs. Because of chimeric structural properties, PNA has lots of potential to build diverse nanostructures. However, progress in the PNA material field is still immature compared with its massive applications in antisense oligonucleotide research. Examples of well-defined molecular assemblies have been reported with PNA amphiphiles, self-assembling guanine-PNA monomers/dimers, and PNA-decorated nucleic acids/ polymers/ peptides. All these works indicate the great potential of PNA to be used as bionanomaterials. The review summarizes the recent reports on PNA-based nanostructures and their versatile applications. Additionally, this review shares a perspective to promote a better understanding of controlling molecular assembly by the systematic structural modifications of PNA monomers.


Assuntos
Nanoestruturas , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Ácidos Nucleicos Peptídicos/metabolismo , DNA/química , Nanoestruturas/química , Peptídeos
11.
Biomolecules ; 13(11)2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-38002358

RESUMO

The use of template molecules as chemical scaffolds that significantly influence the course of the reaction has recently been intensively studied. Peptide nucleic acids (PNA) are molecules that mimic natural nucleic acids. They are a promising matrix in such reactions because they possess high affinity and specificity in their interactions. The manner of PNA interaction is predictable based on sequence complementarity. Recently, we report the visible light-induced metathesis reaction in peptides containing a diselenide bond. Herein, we present an efficient and straightforward method of the visible light-driven diselenide-based metathesis of peptide-nucleic acid conjugates. Compared to a similar photochemical transformation in peptides, a significant increase in the metathesis efficiency was obtained due to the template effect.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Peptídeos/química , Luz
12.
FEMS Microbiol Ecol ; 99(12)2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-38012113

RESUMO

Studies of plant-microbe interactions, including mutualistic, antagonistic, parasitic, or commensal microbes, have greatly benefited our understanding of ecosystem functioning. New molecular identification tools have increasingly revealed the association patterns between microorganisms and plants. Here, we integrated long-read PacBio single-molecule sequencing technology with a blocking protein-nucleic acid (PNA) approach to minimise plant amplicons in a survey of plant-eukaryotic microbe relationships in roots and leaves of different aquatic and terrestrial plants to determine patterns of organ, host, and habitat preferences. The PNA approach reduced the samples' relative amounts of plant reads and did not distort the fungal and other microeukaryotic composition. Our analyses revealed that the eukaryotic microbiomes associated with leaves and roots of aquatic plants exhibit a much larger proportion of non-fungal microorganisms than terrestrial plants, and leaf and root microbiomes are similar. Terrestrial plants had much stronger differentiation of leaf and root microbiomes and stronger partner specificity than aquatic plants.


Assuntos
Microbiota , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Plantas/microbiologia , Folhas de Planta/microbiologia , Peptídeos , Raízes de Plantas/microbiologia
13.
Chem Commun (Camb) ; 59(88): 13223-13226, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37855716

RESUMO

A sophisticated high-order framework nucleic acid (FNA) was engineered for the targeted delivery and responsive release of environment tolerant antisense peptide nucleic acids (asPNAs). The dendritic FNA-asPNAs system was constructed via simple one-pot modular assembly and demonstrated a good synergistic effect with chemotherapy on drug resistant cancer cells.


Assuntos
Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/farmacologia , Oligonucleotídeos Antissenso/farmacologia , Peptídeos , Resistência a Medicamentos
14.
Bioorg Chem ; 141: 106860, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37748328

RESUMO

Nucleic acid represents the ideal drug candidate for protein targets that are hard to target or against which drug development is not easy. Peptide nucleic acids (PNAs) are synthesized by attaching modified peptide backbones generally derived from repetitive N-2-aminoethyl glycine units in place of the regular phosphodiester backbone and represent synthetic impersonator of nucleic acids that offers an exciting research field due to their fascinating spectrum of biotechnological, diagnostic and potential therapeutic applications. The semi-rigid peptide nucleic acid backbone serves as a nearly-perfect template for attaching complimentary base pairs on DNA or RNA in a sequence-dependent manner as described by Watson-Crick models. PNAs and their analogues are endowed with exceptionally high affinity and specificity for receptor sites, essentially due to their polyamide backbone's uncharged and flexible nature. The present review compiled various strategies to modify the polypeptide backbone for improving the target selectivity and stability of the PNAs in the body. The investigated biological activities carried out on PNAs have also been summarized in the present review.


Assuntos
Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/farmacologia , RNA , DNA , Peptídeos/farmacologia , Sítios de Ligação
15.
Org Biomol Chem ; 21(40): 8125-8135, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37772422

RESUMO

Peptide Nucleic Acids (PNAs) are an intriguing class of synthetic biomolecules with great potential in medicine. Although PNAs could be considered analogs of oligonucleotides, their synthesis is more like that of peptides. In both cases, a Solid-Phase Synthesis (SPS) approach is used. Herein, the advantage using Boc as a temporal protecting group has been demonstrated to be more favored than Fmoc. In this context, a new PNA SPS strategy has been developed based on a safety-catch protecting group scheme for the exocyclic nitrogen of the side-chain bases and the linker. Sulfinyl (sulfoxide)-containing moieties are fully stable to the trifluoroacetic acid (TFA) used to remove the Boc group, but they can be reduced to the corresponding sulfide derivatives, which are labile in the presence of TFA. The efficiency of this novel synthetic strategy has been demonstrated in the synthesis of the PNA pentamer H-PNA(TATCT)-ßAla-OH.


Assuntos
Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Peptídeos/química
16.
PLoS One ; 18(9): e0291666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37733671

RESUMO

The R132H isocitrate dehydrogenase one (IDH1) mutation is a prognostic biomarker present in a subset of gliomas and is associated with heightened survival when paired with aggressive surgical resection. In this study, we establish proof-of-principle for rapid colorimetric detection of the IDH1-R132H mutation in tumor samples in under 1 hour without the need for a nucleic acid extraction. Colorimetric peptide nucleic acid loop-mediated isothermal amplification (CPNA-LAMP) utilizes 4 conventional LAMP primers, a blocking PNA probe complementary to the wild-type sequence, and a self-annealing loop primer complementary to the single nucleotide variant to only amplify the DNA sequence containing the mutation. This assay was evaluated using IDH1-WT or IDH1-R132H mutant synthetic DNA, wild-type or IDH1-R132H mutant U87MG cell lysates, and tumor lysates from archived patient samples in which the IDH1 status was previously determined using immunohistochemistry (IHC). Reactions were performed using a hot water bath and visually interpreted as positive by a pink-to-yellow color change. Results were subsequently verified using agarose gel electrophoresis. CPNA-LAMP successfully detected the R132H single nucleotide variant, and results from tumor lysates yielded 100% concordance with IHC results, including instances when the single nucleotide variant was limited to a portion of the tumor. Importantly, when testing the tumor lysates, there were no false positive or false negative results.


Assuntos
Glioma , Ácidos Nucleicos Peptídicos , Humanos , Isocitrato Desidrogenase/genética , Colorimetria , Glioma/diagnóstico , Glioma/genética , Mutação
17.
Anal Chem ; 95(38): 14209-14218, 2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37696750

RESUMO

Monitoring diseases caused by pathogens or by mutations in DNA sequences requires accurate, rapid, and sensitive tools to detect specific nucleic acid sequences. Here, we describe a new peptide nucleic acid (PNA)-based nucleic acid detection toolkit, termed PNA-powered diagnostics (PNA-Pdx). PNA-Pdx employs PNA probes that bind specifically to a target and are then detected in lateral flow assays. This can precisely detect a specific pathogen or genotype genomic sequence. PNA probes can also be designed to invade double-stranded DNAs (dsDNAs) to produce single-stranded DNAs for precise CRISPR-Cas12b-based detection of genomic SNPs without requiring the protospacer-adjacent motif (PAM), as Cas12b requires PAM sequences only for dsDNA targets. PNA-Pdx identified target nucleic acid sequences at concentrations as low as 2 copies/µL and precisely detected the SARS-CoV-2 genome in clinical samples in 40 min. Furthermore, the specific dsDNA invasion by the PNA coupled with CRISPR-Cas12b precisely detected genomic SNPs without PAM restriction. Overall, PNA-Pdx provides a novel toolkit for nucleic acid and SNP detection as well as highlights the benefits of engineering PNA probes for detecting nucleic acids.


Assuntos
COVID-19 , Ácidos Nucleicos , Ácidos Nucleicos Peptídicos , Humanos , Ácidos Nucleicos Peptídicos/genética , Polimorfismo de Nucleotídeo Único , SARS-CoV-2 , Peptídeos
18.
Cancer Genomics Proteomics ; 20(4): 375-382, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37400147

RESUMO

BACKGROUND/AIM: Epidermal growth factor receptor (EGFR) signaling inhibitors are potent therapeutic agents for EGFR-mutant non-small-cell lung cancer, but the effects of such inhibitors on the localization of EGFR mutations in tumor tissues remain to be elucidated. Thus, a simple and efficient technology for the detection of mutations in tumor tissue specimens needs to be developed. MATERIALS AND METHODS: Using an EGFR mutation-specific peptide nucleic acid (PNA)-DNA probe, the EGFR mutation-positive part of whole NSCLC tissues was visualized by immunofluorescence. Formalin-fixed paraffin-embedded sections obtained from A549, NCI-H1975, HCC827 and PC-9 tumors transplanted into nude mice were subjected to staining using PNA-DNA probes specific for the mRNA sequences producing the L858R, del E746-A750 and T790M mutations. RESULTS: The probes for the L858R mutation showed intense positive staining in H1975 cells, and the probe for the del E746-A750 mutation exhibited positive staining specifically in HCC827 and PC-9 tumors. On the other hand, A549 tumors without EGFR mutation did not show any significant staining for any PNA-DNA probe. In combination staining, the addition of cytokeratin stain increased the positive staining rate of each PNA-DNA probe. In addition, the positive staining rate of the probes for the L858R mutation was comparable to that of the antibody to EGFR L858R mutated protein. CONCLUSION: PNA-DNA probes specific for EGFR mutations might be useful tools to detect heterogeneous mutant EGFR expression in cancer tissues and efficiently evaluate the effect of EGFR signaling inhibitors on tissues of EGFR-mutant cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Ácidos Nucleicos Peptídicos , Animais , Humanos , Camundongos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , DNA , Sondas de DNA/genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Nus , Mutação , Ácidos Nucleicos Peptídicos/genética , Inibidores de Proteínas Quinases/uso terapêutico
19.
Bioconjug Chem ; 34(8): 1429-1438, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37486977

RESUMO

Peptide nucleic acids and their conjugates to peptides can self-assemble and generate complex architectures. In this work, we explored the self-assembly of PNA dimers conjugated to the dipeptide WW. Our studies suggest that the indole ring of tryptophan promotes aggregation of the conjugates. The onset of fluorescence is observed upon self-assembly. The structure of self-assembled WWgc is concentration-dependent, being spherical at low concentrations and fibrous at high concentrations. As suggested by molecular modeling studies, fibers are stabilized by stacking interactions between tryptophans and Watson-Crick hydrogen bonds between nucleobases.


Assuntos
Ácidos Nucleicos Peptídicos , Triptofano , Ácidos Nucleicos Peptídicos/química , Dipeptídeos/química , Peptídeos , Modelos Moleculares
20.
Chembiochem ; 24(15): e202300291, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37321971

RESUMO

Triple-helical recognition of any sequence of double-stranded RNA requires high affinity Hoogsteen hydrogen binding to pyrimidine interruptions of polypurine tracts. Because pyrimidines have only one hydrogen bond donor/acceptor on Hoogsteen face, their triple-helical recognition is a formidable problem. The present study explored various five-membered heterocycles and linkers that connect nucleobases to backbone of peptide nucleic acid (PNA) to optimize formation of X•C-G and Y•U-A triplets. Molecular modeling and biophysical (UV melting and isothermal titration calorimetry) results revealed a complex interplay between the heterocyclic nucleobase and linker to PNA backbone. While the five-membered heterocycles did not improve pyrimidine recognition, increasing the linker length by four atoms provided promising gains in binding affinity and selectivity. The results suggest that further optimization of heterocyclic bases with extended linkers to PNA backbone may be a promising approach to triple-helical recognition of RNA.


Assuntos
Ácidos Nucleicos Peptídicos , Ácidos Nucleicos Peptídicos/química , Conformação de Ácido Nucleico , RNA de Cadeia Dupla , Pirimidinas , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA