Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.582
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Dent Mater ; 40(6): 941-950, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38719709

RESUMO

OBJECTIVE: Bisphenol A glycidyl methacrylate (Bis-GMA) is of great importance for dental materials as the preferred monomer. However, the presence of bisphenol-A (BPA) core in Bis-GMA structure causes potential concerns since it is associated with endocrine diseases, developmental abnormalities, and cancer lesions. Therefore, it is desirable to develop an alternative replacement for Bis-GMA and explore the intrinsic relationship between monomer structure and resin properties. METHODS: Here, the betulin maleic diester derivative (MABet) was synthesized by a facile esterification reaction using plant-derived betulin and maleic anhydride as raw materials. Its chemical structure was confirmed by 1H and 13C NMR spectra, FT-IR spectra, and HR-MS, respectively. The as-synthesized MABet was then used as polymerizable comonomer to partially or completely substitute Bis-GMA in a 50:50 Bis-GMA: TEGDMA resin (5B5T) to formulate dental restorative resins. These were then determined for the viscosity behavior, light transmittance, real-time degree of conversion, residual monomers, mechanical performance, cytotoxicity, and antibacterial activity against Streptococcus mutans (S. mutans) in detail. RESULTS: Among all experimental resins, increasing the MABet concentration to 50 wt% made the resultant 5MABet5T resin have a maximum in viscosity and appear dark yellowish after polymerization. In contrast, the 1MABet4B5T resin with 10 wt% MABet possessed comparable shear viscosity and polymerization conversion (46.6 ± 1.0% in 60 s), higher flexural and compressive strength (89.7 ± 7.8 MPa; 345.5 ± 14.4 MPa) to those of the 5B5T control (48.5 ± 0.6%; 65.7 ± 6.7 MPa; 223.8 ± 57.1 MPa). This optimal resin also had significantly lower S. mutans colony counts (0.35 ×108 CFU/mL) than 5B5T (7.6 ×108 CFU/mL) without affecting cytocompatibility. SIGNIFICANCE: Introducing plant-derived polymerizable MABet monomer into dental restorative resins is an effective strategy for producing antibacterial dental materials with superior physicochemical property.


Assuntos
Antibacterianos , Bis-Fenol A-Glicidil Metacrilato , Teste de Materiais , Streptococcus mutans , Triterpenos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Triterpenos/química , Triterpenos/farmacologia , Streptococcus mutans/efeitos dos fármacos , Bis-Fenol A-Glicidil Metacrilato/química , Viscosidade , Materiais Dentários/química , Materiais Dentários/farmacologia , Materiais Dentários/síntese química , Polimerização , Ácidos Polimetacrílicos/química , Ácidos Polimetacrílicos/farmacologia , Resinas Compostas/química , Resinas Compostas/síntese química , Resinas Compostas/farmacologia , Polietilenoglicóis/química , Espectroscopia de Infravermelho com Transformada de Fourier , Ácido Betulínico
2.
Dent Mater ; 40(7): 1025-1030, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38755042

RESUMO

OBJECTIVES: Resin composites may release bisphenol A (BPA) due to impurities present in the monomers. However, there is a lack of knowledge regarding the leaching characteristics of BPA from resin composites. Therefore, experimental resin composites were prepared with known amounts of BPA. The objective of this study was (1) to determine which amount of BPA initially present in the material leaches out in the short term and, (2) how this release is influenced by the resin composition. METHODS: BPA (0, 0.001, 0.01, or 0.1 wt%) was added to experimental resin composites containing 60 mol% BisGMA, BisEMA(3), or UDMA, respectively, as base monomer and 40 mol% TEGDMA as diluent monomer. Polymerized samples (n = 5) were immersed at 37 °C for 7 days in 1 mL of water, which was collected and refreshed daily. BPA release was quantified with UPLC-MS/MS after derivatization with pyridine-3-sulfonyl chloride. RESULTS: Between 0.47 to 0.67 mol% of the originally added BPA eluted from the resin composites after 7 days. Similar elution trends were observed irrespective of the base monomer. Two-way ANOVA showed a significant effect of the base monomer on BPA release, but the differences were small and not consistent. SIGNIFICANCE: The released amount of BPA was directly proportional to the quantity of BPA present in the resin composite as an impurity. BPA release was mainly diffusion-based, while polymer composition seemed to play a minor role. Our results underscore the importance for manufacturers only to use monomers of the highest purity in dental resin composites to avoid unnecessary BPA exposure in patients.


Assuntos
Compostos Benzidrílicos , Resinas Compostas , Fenóis , Fenóis/análise , Fenóis/química , Compostos Benzidrílicos/química , Resinas Compostas/química , Teste de Materiais , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas em Tandem , Poliuretanos/química , Ácidos Polimetacrílicos/química , Metacrilatos/química , Metacrilatos/análise , Polietilenoglicóis/química , Polimerização
3.
Int J Pharm ; 657: 124177, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697582

RESUMO

We present a promising method for producing amorphous drug particles using a nozzle-free ultrasonic nebulizer with polymers, specifically polyvinylpyrrolidone (PVP), poly(acrylic acid) (PAA), and Eudragit® S 100 (EUD). Model crystalline phase drugs-Empagliflozin, Furosemide, and Ilaprazole-are selected. This technique efficiently produces spherical polymer-drug composite particles and demonstrates enhanced stability against humidity and thermal conditions, compared to the drug-only amorphous particles. The composite particles exhibit improved water dissolution compared to the original crystalline drugs, indicating potential bioavailability enhancements. While there are challenges, including the need for continuous water supply for ultrasonic component cooling, dependency on the solubility of polymers and drugs in volatile organic solvents, and mildly elevated temperatures for solvent evaporation, our method offers significant advantages over traditional approaches. It provides a straightforward, flexible process adaptable to various drug-polymer combinations and consistently yields spherical amorphous solid dispersion (ASD) particles with a narrow size distribution. These attributes make our method a valuable advancement in pharmaceutical drug formulation and delivery.


Assuntos
Nebulizadores e Vaporizadores , Tamanho da Partícula , Polímeros , Polímeros/química , Estabilidade de Medicamentos , Solubilidade , Composição de Medicamentos/métodos , Resinas Acrílicas/química , Povidona/química , Ultrassom , Ácidos Polimetacrílicos/química , Furosemida/química , Química Farmacêutica/métodos
4.
Int J Mol Sci ; 25(7)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38612460

RESUMO

In this study, binary amorphous solid dispersions (ASDs, fisetin-Eudragit®) and ternary amorphous solid inclusions (ASIs, fisetin-Eudragit®-HP-ß-cyclodextrin) of fisetin (FIS) were prepared by the mechanochemical method without solvent. The amorphous nature of FIS in ASDs and ASIs was confirmed using XRPD (X-ray powder diffraction). DSC (Differential scanning calorimetry) confirmed full miscibility of multicomponent delivery systems. FT-IR (Fourier-transform infrared analysis) confirmed interactions that stabilize FIS's amorphous state and identified the functional groups involved. The study culminated in evaluating the impact of amorphization on water solubility and conducting in vitro antioxidant assays: 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-ABTS, 2,2-diphenyl-1-picrylhydrazyl-DPPH, Cupric Reducing Antioxidant Capacity-CUPRAC, and Ferric Reducing Antioxidant Power-FRAP and in vitro neuroprotective assays: inhibition of acetylcholinesterase-AChE and butyrylcholinesterase-BChE. In addition, molecular docking allowed for the determination of possible bonds and interactions between FIS and the mentioned above enzymes. The best preparation turned out to be ASI_30_EPO (ASD fisetin-Eudragit® containing 30% FIS in combination with HP-ß-cyclodextrin), which showed an improvement in apparent solubility (126.5 ± 0.1 µg∙mL-1) and antioxidant properties (ABTS: IC50 = 10.25 µg∙mL-1, DPPH: IC50 = 27.69 µg∙mL-1, CUPRAC: IC0.5 = 9.52 µg∙mL-1, FRAP: IC0.5 = 8.56 µg∙mL-1) and neuroprotective properties (inhibition AChE: 39.91%, and BChE: 42.62%).


Assuntos
Adenoma , Benzotiazóis , Flavonóis , Ácidos Polimetacrílicos , Ácidos Sulfônicos , beta-Ciclodextrinas , Humanos , Acetilcolinesterase , Antioxidantes/farmacologia , Butirilcolinesterase , Simulação de Acoplamento Molecular , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
5.
J Control Release ; 369: 39-52, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38508523

RESUMO

The emergence of multidrug-resistant bacteria along with their resilient biofilms necessitates the development of creative antimicrobial remedies. We designed versatile fluorinated polymer micelles with surface-charge-switchable properties, demonstrating enhanced efficacy against Methicillin-Resistant Staphylococcus Aureus (MRSA) in planktonic and biofilm states. Polymethacrylate diblock copolymers with pendant fluorocarbon chains and carboxyl betaine groups were prepared using reversible addition-fragmentation chain transfer polymerization. Amphiphilic fluorinated copolymers self-assembled into micelles, encapsulating ciprofloxacin in their cores (CIP@FCBMs) for antibacterial and antibiofilm applications. As a control, fluorine-free copolymer micelles loaded with ciprofloxacin (CIP@BCBMs) were prepared. Although both CIP@FCBMs and CIP@BCBMs exhibited pH-responsive surface charges and lipase-triggered drug release, CIP@FCBMs exhibited powerful antimicrobial and antibiofilm activities in vitro and in vivo, attributed to superior serum stability, higher drug loading, enhanced fluorination-facilitated cellular uptake, and lipase-triggered drug release. Collectively, reversing surface charge, on-demand antibiotic release, and fluorination-mediated nanoparticles hold promise for treating bacterial infections and biofilms.


Assuntos
Antibacterianos , Betaína , Biofilmes , Ciprofloxacina , Lipase , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/administração & dosagem , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Lipase/metabolismo , Concentração de Íons de Hidrogênio , Animais , Betaína/química , Betaína/administração & dosagem , Betaína/análogos & derivados , Infecções Estafilocócicas/tratamento farmacológico , Ciprofloxacina/farmacologia , Ciprofloxacina/administração & dosagem , Ciprofloxacina/química , Fluorocarbonos/química , Fluorocarbonos/farmacologia , Micelas , Liberação Controlada de Fármacos , Polímeros/química , Humanos , Ácidos Polimetacrílicos/química
6.
Appl Radiat Isot ; 207: 111256, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38432035

RESUMO

3D printing technology has rapidly spread for decades, allowing the fabrication of medical implants and human phantoms and revolutionizing healthcare. The objective of this study is to evaluate some radiological properties of commercially available 3D printing materials as potential tissue mimicking materials. Among fifteen materials, we compared their properties with nine human tissues. In all materials and tissues, exposure and energy absorption buildup factors were calculated for photon energies between 0.015 and 15 MeV and penetration depths up to 40 mean free path. Furthermore, the Geant4 Monte Carlo toolkit (version 10.5) was used to simulate their percentage depth dose distributions. In addition, equivalent atomic numbers, effective atomic numbers, attenuation coefficients, and CT numbers have been examined. All parameters were considered in calculating the average relative error (σ), which was used as a statistical comparison tool. With σ between 6 and 7, we found that Polylactic Acid (PLA) was capable of simulating eye lenses, blood, soft tissue, lung, muscle, and brain tissues. Moreover, Polymethacrylic Acid (PMAA) material has a σ value of 4 when modeling adipose and breast tissues, respectively. Aside from that, variations in 3D printing materials' infilling percentage can affect their CT numbers. We therefore suggest the PLA for mimicking soft tissue, muscle, brain, eye lens, lung and blood tissues, with an infill of between 92.7 and 94.3 percent. We also suggest an 89 percent infill when simulating breast tissue. Furthermore, with a 96.7 percent infill, the PMAA faithfully replicates adipose tissue. Additionally, we found that a 59 percent infill of Fe-PLA material is comparable to cortical bone. Due to the benefits of creating individualized medical phantoms and equipment, the results might be seen as an added value for both patients and clinicians.


Assuntos
Ácidos Polimetacrílicos , Impressão Tridimensional , Radiometria , Humanos , Raios gama , Poliésteres , Imagens de Fantasmas
7.
Colloids Surf B Biointerfaces ; 237: 113849, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38492413

RESUMO

Oral colonic nano-drug delivery system has received more and more attention in the treatment of colon cancer due to local precision treatment and reduction of drug system distribution. However, the complex and harsh gastrointestinal environment and the retention of nanoparticles in the colon limit its development. To this end, we designed Eudragit S100 (ES) coated nanoparticles (ES@PND-PEG-TPP/DOX). Polydopamine coated nanodiamond (PND) was modified with amino-functionalized polyethylene glycol (NH2-PEG-NH2) and triphenylphosphine (TPP) successively. Due to the high specific surface area of PND, it can efficiently load the model drug doxorubicin hydrochloride (DOX). In addition, PND also has high photothermal conversion efficiency, generating heat to kill cancer cells under near infrared (NIR) laser, realizing the combination of chemotherapy and photothermal therapy (CT-PTT). TPP modification enhanced nanoparticle uptake by colon cancer cells and prolonged preparations retention time at the colon. ES shell protected the drug from being destroyed and prevented the nanoparticles from sticking to the small intestine. Ex vitro fluorescence imaging showed that TPP modification can enhance the residence time of nanoparticles in the colon. In vivo pharmacodynamics demonstrated that CT-PTT group has the greatest inhibitory effect on tumor growth, which means that the nanocarrier has potential clinical value in the in-situ treatment of colon cancer.


Assuntos
Neoplasias do Colo , Nanodiamantes , Nanopartículas , Ácidos Polimetacrílicos , Humanos , Fototerapia/métodos , Doxorrubicina/farmacologia , Neoplasias do Colo/tratamento farmacológico , Linhagem Celular Tumoral
8.
Acta Biochim Biophys Sin (Shanghai) ; 56(3): 393-404, 2024 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-38308473

RESUMO

Resin monomer-induced dental pulp injury presents a pathology related to mitochondrial dysfunction. Melatonin has been regarded as a strong mitochondrial protective bioactive compound from the pineal gland. However, it remains unknown whether melatonin can prevent dental pulp from resin monomer-induced injury. The aim of this study is to investigate the effects of melatonin on apoptosis of mouse preodontoblast cells (mDPC6T) induced by triethylene glycol dimethacrylate (TEGDMA), a major component in dental resin, and to determine whether the JNK/MAPK signaling pathway mediates the protective effect of melatonin. A well-established TEGDMA-induced mDPC6T apoptosis model is adopted to investigate the preventive function of melatonin by detecting cell viability, apoptosis rate, expressions of apoptosis-related proteins, mitochondrial ROS (mtROS) production, mitochondrial membrane potential (MMP) and adenosine triphosphate (ATP) level. Inhibitors of MAPKs are used to explore which pathway is involved in TEGDMA-induced apoptosis. Finally, the role of the JNK/MAPK pathway is verified using JNK agonists and antagonists. Our results show that melatonin attenuates TEGDMA-induced mDPC6T apoptosis by reducing mtROS production and rescuing MMP and ATP levels. Furthermore, mitochondrial dysfunction and apoptosis are alleviated only by the JNK/MAPK inhibitor SP600125 but not by other MAPK inhibitors. Additionally, melatonin downregulates the expression of phosphorylated JNK and counteractes the activating effects of anisomycin on the JNK/MAPK pathway, mimicking the effects of SP600125. Our findings demonstrate that melatonin protects mDPC6T cells against TEGDMA-induced apoptosis partly through JNK/MAPK and the maintenance of mitochondrial function, offering a novel therapeutic strategy for the prevention of resin monomer-induced dental pulp injury.


Assuntos
Antracenos , Melatonina , Doenças Mitocondriais , Polietilenoglicóis , Ácidos Polimetacrílicos , Animais , Camundongos , Melatonina/farmacologia , Sistema de Sinalização das MAP Quinases , Apoptose , Mitocôndrias/metabolismo , Trifosfato de Adenosina/metabolismo
9.
Eur J Nutr ; 63(2): 599-611, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212424

RESUMO

PURPOSE: Cow's milk is the primary source of iodine in the UK, but consumption of plant-based milk alternatives (PBMA) is increasing and these products are often not fortified with iodine. We evaluated the impact that replacing current milk consumption with PBMA would have on iodine intake. METHODS: We used data from the National Diet and Nutrition Survey (2016-2019) for children (1.5-10 years), girls 11-18 years, and women of reproductive age (WRA). We used a dietary modelling approach with scenarios using brand-level iodine-fortification data (0, 13, 22.5, 27.4 and 45 µg/100 mL). Relative to usual diet, we calculated change in iodine intake, and the proportion with intake below the Lower Reference Nutrient Intake (LRNI) or above the upper limit. RESULTS: For all groups, replacement with PBMA, either unfortified or fortified at the lowest concentration, resulted in a meaningful decrease in iodine intake, and increased the proportion with intake < LRNI; compared to usual diet, iodine intake reduced by 58% in children 1.5-3 years (127 vs. 53 µg/day) and the proportion with intake < LRNI increased in girls (11-18 years; 20% to 48%) and WRA (13% to 33%) if an unfortified PBMA was used. Replacement of milk with PBMA fortified at 27.4 µg/100 mL had the lowest impact. CONCLUSION: Replacing milk with commercially available PBMAs has potential to reduce population iodine intake, depending on the fortification level. PBMAs fortified with ≥ 22.5 and < 45 µg iodine/100 mL would be required to minimize the impact on iodine intake. Research is needed on the impact of total dairy replacement.


Assuntos
Iodo , Leite , Ácidos Polimetacrílicos , Criança , Animais , Bovinos , Humanos , Feminino , Dieta , Estado Nutricional , Alimentos Fortificados
10.
Drug Deliv Transl Res ; 14(5): 1239-1252, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38227165

RESUMO

Sepsis represents a complex clinical syndrome that results from a harmful host response to infection. The infections most associated with sepsis are pneumonia, intra-abdominal infection, and urinary tract infection. Tea tree oil (TTO) has shown high antibacterial activity; however, it exhibits low aqueous solubility and high volatility, which have motivated its nanoencapsulation. In this study, the performance of nanoemulsions (NE) and nanocapsules (NC) loaded with TTO was compared. These systems were prepared by spontaneous emulsification and nanoprecipitation methods, respectively. Poly-ε-caprolactone or Eudragit® RS100 were tested as polymers for NCs whereas Tween® 80 or Pluronic® F68 as surfactants in NE preparation. Pluronic® F68 and Eudragit® RS100 resulted in more homogeneous and stable nanoparticles. In accelerated stability studies at 4 and 25 °C, both colloidal suspensions (NC and NE) were kinetically stable. NCs showed to be more stable to photodegradation and less cytotoxic than NEs. After sepsis induction by the cecal ligation and puncture (CLP) model, both NE and NC reduced neutrophil infiltration into peritoneal lavage (PL) and kidneys. Moreover, the systems increased group thiols in the kidney and lung tissue and reduced bacterial growth in PL. Taken together, both systems showed to be effective against injury induced by sepsis; however, NCs should be prioritized due to advantages in terms of cytotoxicity and physicochemical stability.


Assuntos
Melaleuca , Nanocápsulas , Ácidos Polimetacrílicos , Sepse , Óleo de Melaleuca , Óleo de Melaleuca/farmacologia , Poloxâmero , Sepse/tratamento farmacológico
11.
Macromol Rapid Commun ; 45(3): e2300500, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37870940

RESUMO

A facile method based on recyclable nanoscale zero-valent iron (nZVI)-mediated photoinduced reversible deactivation radical polymerization in ionic liquid (IL) leads to the synthesis of narrow disperse poly(tert-butyl methacrylate) (PTBMA), amphiphilic PTBMA-block-poly(poly(ethylene glycol)methacrylate) diblock copolymer and double hydrophilic poly(methacrylic acid)-block-poly(poly(ethylene glycol)methacrylate) (PMAA-b-PPEGMA) diblock copolymers thereof. Stimuli response of the synthesized PMAA-b-PPEGMA diblock copolymer against variation in pH and temperature is assessed. Recyclability of the nZVI (catalyst) and IL (solvent) is established. Polymerization may be switched ON or OFF, simply by turning the UVA light irradiation ON or OFF, offering temporal control. The diblock copolymer self-aggregates into spherical nanoaggregates which are employed for encapsulation of coumarin 102 (C102, a typical hydrophobic dye), describing their potential application in drug delivery applications. The facile synthesis strategy may open up new avenues for the preparation of intelligent functional polymers for engineering and biomedical applications.


Assuntos
Líquidos Iônicos , Polímeros , Polímeros/química , Ácidos Polimetacrílicos/química
12.
Nanomedicine ; 56: 102730, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158146

RESUMO

We synthesized three novel STAT3 inhibitors (S3iD1-S3iD3) possessing oxoheptanoic residue enabling linkage to HPMA copolymer carrier via a pH-sensitive hydrazone bond. HPMA copolymer conjugates bearing doxorubicin (Dox) and our STAT3 inhibitors were synthesized to evaluate the anticancer effect of Dox and STAT3 inhibitor co-delivery into tumors. S3iD1-3 and their copolymer-bound counterparts (P-S3iD1-P-S3iD3) showed considerable in vitro cytostatic activities in five mouse and human cancer cell lines with IC50 ~0.6-7.9 µM and 0.7-10.9 µM, respectively. S3iD2 and S3iD3 were confirmed to inhibit the STAT3 signaling pathway. The combination of HPMA copolymer-bound Dox (P-Dox) and P-S3iD3 at the dosage showing negligible toxicity demonstrated significant antitumor activity in B16F10 melanoma-bearing mice and completely cured 2 out of 15 mice. P-Dox alone had a significantly lower therapeutic activity with no completely cured mice. Thus, polymer conjugates bearing STAT3 inhibitors may be used for the chemosensitization of chemorefractory tumors.


Assuntos
Doxorrubicina , Metacrilatos , Neoplasias , Camundongos , Humanos , Animais , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico , Ácidos Polimetacrílicos , Concentração de Íons de Hidrogênio , Fator de Transcrição STAT3/metabolismo
13.
Dent Mater ; 39(12): 1067-1075, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37821331

RESUMO

OBJECTIVES: The aim was to develop bone composites with similar working times, faster polymerisation and higher final conversion in comparison to Cortoss™. Additionally, low shrinkage/heat generation and improved short and longer-term mechanical properties are desirable. METHODS: Four urethane dimethacrylate based composites were prepared using tri-ethylene-glycol dimethacrylate (TEGDMA) or polypropylene dimethacrylate (PPGDMA) diluent and 0 or 20 wt% fibres in the glass filler particles. FTIR was used to determine reaction kinetics, final degrees of conversions, and polymerisation shrinkage/heat generation at 37 °C. Biaxial flexural strength, Young's modulus and compressive strength were evaluated after 1 or 30 days in water. RESULTS: Experimental materials all had similar inhibition times to Cortoss™ (140 s) but subsequent maximum polymerisation rate was more than doubled. Average experimental composite final conversion (76%) was higher than that of Cortoss™ (58%) but with less heat generation and shrinkage. Replacement of TEGDMA by PPGDMA gave higher polymerisation rates and conversions while reducing shrinkage. Early and aged flexural strengths of Cortoss™ were 93 and 45 MPa respectively. Corresponding compressive strengths were 164 and 99 MPa. Early and lagged experimental composite flexural strengths were 164-186 and 240-274 MPa whilst compressive strengths were 240-274 MPa and 226-261 MPa. Young's modulus for Cortoss™ was 3.3 and 2.2 GPa at 1 day and 1 month. Experimental material values were 3.4-4.8 and 3.0-4.1 GPa, respectively. PPGDMA and fibres marginally reduced strength but caused greater reduction in modulus. Fibres also made the composites quasi-ductile instead of brittle. SIGNIFICANCE: The improved setting and higher strengths of the experimental materials compared to Cortoss™, could reduce monomer leakage from the injection site and material fracture, respectively. Lowering modulus may reduce stress shielding whilst quasi-ductile properties may improve fracture tolerance. The modified dental composites could therefore be a promising approach for future bone cements.


Assuntos
Cimentos Ósseos , Resinas Compostas , Teste de Materiais , Metacrilatos , Ácidos Polimetacrílicos , Polietilenoglicóis , Materiais Dentários , Estresse Mecânico
14.
Dent Mater ; 39(10): 863-871, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37550139

RESUMO

OBJECTIVE: The main aim of the current work was to develop dental acrylic-based composites with protein-repellent and antibacterial properties by using surface-modified silica nanoparticles. The effects of surface modification of silica nanoparticles in protein-repellent and antibacterial activity and mechanical properties of dental composites including flexural strength, flexural modulus, and hardness were discussed. METHODS: The surface of silica nanoparticles was first chemically treated with 3-methacryloxypropyltrimethoxysilane (MPS) as a coupling agent and then with poly(ethylene glycol) (PEG) bonded to MPS. Dental acrylic-based composites were prepared with mass fractions of 10, 15, 20, 30, and 40 % of PEG-modified MPS-silica nanoparticles (PMS). The chemical surface modification of silica nanoparticles with MPS and PEG was confirmed by Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA). RESULTS: The dental composite containing 20 wt% PMS nanoparticles could reduce the protein adsorption by 28 % as compared with a composite containing 20 wt% MPS-modified silica. The antibacterial test indicated that the PMS nanoparticles can significantly reduce the adhesion of Streptococcus mutans and the biofilm formation on the surface of dental composites. It was found that the flexural strength increased by increasing the PMS nanoparticles from 0 to 20 wt% and then decreased by the incorporation of higher percentages of these nanoparticles. Also, with increasing the weight percentage of PMS nanoparticles, the elastic and the flexural modulus and the hardness of resin nanocomposites were increased. SIGNIFICANCE: In the current work, for the first time, dental resin composites containing PEG were prepared with excellent protein-repellent and antibacterial properties.


Assuntos
Resistência à Flexão , Nanocompostos , Polietilenoglicóis/farmacologia , Polietilenoglicóis/química , Resinas Compostas/farmacologia , Resinas Compostas/química , Ácidos Polimetacrílicos/química , Dióxido de Silício/farmacologia , Dióxido de Silício/química , Silanos/farmacologia , Silanos/química , Maleabilidade , Teste de Materiais , Nanocompostos/química , Antibacterianos/farmacologia , Propriedades de Superfície
15.
Int J Pharm ; 641: 123088, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37257795

RESUMO

Ellagic acid is one of the most studied polyphenolic compounds due to its numerous promising therapeutic properties. However, this therapeutic potential remains difficult to exploit owing to its low solubility and low permeability, resulting in low oral bioavailability. In order to allow an effective therapeutic application of EA, it is therefore necessary to develop strategies that sufficiently enhance its solubility, dissolution rate and bioavailability. For this purpose, solid dispersions based on pre-selected polymers such as Eudragit® EPO, Soluplus® and Kollidon® VA 64, with 5% w/w ellagic acid loading were prepared by hot extrusion and characterized by X-ray diffraction, FTIR spectroscopy and in vitro dissolution tests in order to select the most suitable polymer for future investigations. The results showed that Eudragit® EPO was the most promising polymer for ellagic acid solid dispersions development because its extrudates allowed to obtain a solution supersaturated in ellagic acid that was stable for at least 90 min. Moreover, the resulting apparent solubility was 20 times higher than the actual solubility of ellagic acid. The extrudates also showed a high dissolution rate of ellagic acid (96.25% in 15 min), compared to the corresponding physical mixture (6.52% in 15 min) or the pure drug (1.56% in 15 min). Furthermore, increasing the loading rate of ellagic acid up to 12% in extrudates based on this polymer did not negatively influence its release profile through dissolution tests.


Assuntos
Ácido Elágico , Polímeros , Polímeros/química , Química Farmacêutica/métodos , Ácidos Polimetacrílicos/química , Solubilidade , Composição de Medicamentos/métodos , Temperatura Alta , Portadores de Fármacos/química
16.
Dent Mater J ; 42(2): 218-227, 2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-36543192

RESUMO

The objective of this study was to develop a novel resin composite containing yttrium aluminum garnet (Y3Al5O12, YAG) nanoparticles for clear aligner attachments. After the silanization of YAG, their Fourier-transform infrared (FT-IR) and thermogravimetric (TGA) analyses were performed. By conducting flexural and compressive strength measurements, the optimal YAG concentration was selected for the subsequent experiments. Next, Vickers microhardness values, fluidities, attachment volumes, conversion degrees, and volumetric shrinkages of the resin were determined. The obtained FT-IR and TG results revealed that γ-methacryloxypropy ltrimethoxysilane coupling agent was successfully grafted onto the surface of YAG, which enabled their use as inorganic fillers. Furthermore, adding 9 wt% YAG in the resin can increase Vickers hardness and fluidity, reduce polymerization shrinkage, and enhance the restoration of the clear aligner attachment shape on the premise of guarantee proper flexural and compressive strength of the resin, which can help control tooth movement and increase orthodontic efficiency.


Assuntos
Metacrilatos , Aparelhos Ortodônticos Removíveis , Bis-Fenol A-Glicidil Metacrilato , Alumínio , Espectroscopia de Infravermelho com Transformada de Fourier , Ácidos Polimetacrílicos , Resinas Compostas , Ítrio , Teste de Materiais , Propriedades de Superfície
17.
Braz. j. oral sci ; 21: e223816, jan.-dez. 2022. ilus
Artigo em Inglês | BBO - Odontologia, LILACS | ID: biblio-1354701

RESUMO

Direct pulp capping induces a local inflammatory process. Several biomaterials have been used for this procedure. The aim of this study was to compare the dentinal bridge thickness using three different pulp capping biomaterials with the conventional technique (high speed diamond bur) or Er-Yag laser, 1 month after pulp effraction. Materials and Methods: Forty two Class V cavities were prepared on the buccal surface of 4 maxillary incisors and 2 mandibular incisors of New Zealand rabbits. Specimens were divided into 6 treatment groups. Teeth were treated with: In Group 1: Er-Yag laser and Biodentine® (Septodont), in Group 2: Er: Yag laser and calcium hydroxide (Dycal® Dentsply), in Group 3: Er: Yag laser and adhesive system (Prime& Bond® NT Dentsply), in Group 4: high speed diamond bur and Biodentine® (Septodont), in Group 5: high speed diamond bur and calcium hydroxide (Dycal® Dentsply), and in Group 6: high speed diamond bur and adhesive system (Prime& Bond® NT Dentsply). The preparation was done with copious irrigation. The animals were sacrificed at 30 days and the teeth were extracted and prepared for histological analysis. Results: In the group of « laser Er-Yag ¼, iatrogenic pulpal wounds treated with Biodentine® were covered with a thick hard tissue barrier after 1 month. The difference was not significant with the groups of Dycal® used with Er: Yag laser and high speed diamond bur. Prime& Bond® NT Dentsply specimens showed a thin dentinal bridge layer. Conclusion: At 1 month, Er-Yag laser proved to be useful with Biodentine® for direct pulp capping procedures


Assuntos
Animais , Coelhos , Ácidos Polimetacrílicos , Hidróxido de Cálcio , Silicatos , Compostos de Cálcio , Capeamento da Polpa Dentária , Lasers de Estado Sólido
18.
Int J Mol Sci ; 23(19)2022 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-36233071

RESUMO

Rutin, also called quercetin-3-rhamnosyl glucoside, is a natural flavonol glycoside present in many plants. Rutin is used to treat various diseases, such as inflammation, diabetes, and cancer. For polymeric biomaterials, triethylene glycol dimethacrylate (TEGDMA) is the most commonly used monomer and serves as a restorative resin, a dentin bonding agent and sealant, and a bone cement component. Overall, TEGDMA induces various toxic effects in macrophages, including cytotoxicity, apoptosis, and genotoxicity. The aim of this study was to investigate the protective mechanism of rutin in alleviating TEGDMA-induced toxicity in RAW264.7 macrophages. After treatment with rutin, we assessed the cell viability and apoptosis of TEGDMA-induced RAW264.7 macrophages using an methylthiazol tetrazolium (MTT) assay and Annexin V-FITC/propidium iodide assay, respectively. Subsequently, we assessed the level of genotoxicity using comet and micronucleus assays, assessed the cysteinyla aspartate specific proteinases (caspases) and antioxidant enzyme (AOE) activity using commercial kits, and evaluated the generation of reactive oxygen species (ROS) using a dichlorodihydrofluorescein diacetate (DCFH-DA) assay. We evaluated the expression of heme oxygenase (HO)-1, the expression of nuclear factor erythroid 2 related factor (Nrf-2), and phosphorylation of AMP activated protein kinase (AMPK) using the Western blot assay. The results indicated that rutin substantially reduced the level of cytotoxicity, apoptosis, and genotoxicity of TEGDMA-induced RAW264.7 macrophages. Rutin also blocked the activity of caspase-3, caspase-8, and caspase-9 in TEGDMA-stimulated RAW264.7 macrophages. In addition, it decreased TEGDMA-induced ROS generation and AOE deactivation in macrophages. Finally, we found that TEGDMA-inhibited slightly the HO-1 expression, Nrf-2 expression, and AMPK phosphorylation would be revered by rutin. In addition, the HO-1 expression, Nrf-2 expression, and AMPK phosphorylation was enhanced by rutin. These findings indicate that rutin suppresses TEGDMA-induced caspase-mediated toxic effects through ROS generation and antioxidative system deactivation through the Nrf-2/AMPK pathway. Therefore, rutin has the potential to serve as a novel antitoxicity agent for TEGDMA in RAW264.7 macrophages.


Assuntos
Proteínas Quinases Ativadas por AMP , Rutina , Proteínas Quinases Ativadas por AMP/metabolismo , Antioxidantes/farmacologia , Apoptose , Ácido Aspártico , Materiais Biocompatíveis/farmacologia , Cimentos Ósseos/farmacologia , Caspase 3/metabolismo , Caspase 8/metabolismo , Caspase 9/metabolismo , Caspases/metabolismo , Adesivos Dentinários , Glucosídeos/farmacologia , Glicosídeos/farmacologia , Macrófagos/metabolismo , Polietilenoglicóis , Ácidos Polimetacrílicos , Propídio , Quercetina/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Rutina/farmacologia
19.
Indian J Ophthalmol ; 70(10): 3693-3697, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36190075

RESUMO

The shortage of donor corneal tissue worldwide has led to extensive research for alternate corneal equivalents utilizing tissue engineering methods. We conducted experiments using Poly D, L lactic acid polymer along with a copolymer (Eudragit) in varying concentrations to create a biodegradable scaffold suitable for in vitro growth of corneal epithelial stem cells. It was found that stable, spherical, and porous microparticles can be prepared by combining PDLLA and Eudragit RL100 polymers in the ratio of 90:10 and 70:30. The microparticles can then be fused to form scaffold membranes with porous architecture and good water retention capacity at room temperature using methanol, which can withstand handling during transplantation procedures. The scaffolds made using a 70:30 ratio were found to be suitable for the promotion of growth of laboratory corneal epithelial stem cell lines (SIRC cell lines). This innovation can pave way for further developments in corneal stem cell research and growth, thus providing for viable laboratory-derived corneal substitutes.


Assuntos
Metanol , Alicerces Teciduais , Células Epiteliais , Humanos , Ácido Láctico , Polímeros , Ácidos Polimetacrílicos , Água
20.
Biomed Pharmacother ; 153: 113410, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36076536

RESUMO

Biodegradable polymeric nanocapsules (NC) present incredible characteristics as drug nanocarriers that optimize drug targeting. However, However, a more detailed isolated effect of polymer-based nanoparticles as drug carriers is required. This work aimed to evaluate the per se effect of blank-NC (NC-B) with different surface characteristics both in vitro and in vivo toxicity. NC1-B (Polysorbate 80 coated poly(ɛ-caprolactone) NC), NC2-B (polyethylene glycol 6000 coated poly(ɛ-caprolactone) NC), NC3-B (chitosan-coated poly(ɛ-caprolactone) NC) and NC4-B (Eudragit® RS100 NC) were prepared by nanoprecipitation method. Formulations were characterized by particle size, zeta potential, and pH. The in vitro cytotoxicity tests against tumor cell lines were performed (HepG2 and MCF-7). Antiviral activity was evaluated by MTT in Vero cells infected with HSV-1 (KOS strain). In vivo evaluation was performed in apomorphine-induced stereotypy in Wistar rats and locomotor activity distance, head movements, and rearing behavior were measured. NC1-B, NC2-B, NC3-B, and NC4-B had a diameter under 350 nm. The pH and zeta potential of formulations varied according to their coating. For in vitro evaluation of antitumor activity and antiviral activity, one-way ANOVA showed no significant differences in cell viability. In vivo tests showed low neurological effects. In conclusion, different surface characteristics of NC-B did not demonstrate toxicity against the evaluated cell lines HepG2 and MCF-7, antiviral effect against HSV-1, and the neurological effects in a stereotyping model were low and may be attributed to the per se effect of NC-B.


Assuntos
Nanocápsulas , Nanopartículas , Animais , Antivirais , Chlorocebus aethiops , Nanocápsulas/química , Tamanho da Partícula , Poliésteres , Polímeros/química , Ácidos Polimetacrílicos , Ratos , Ratos Wistar , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA