Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.495
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38731861

RESUMO

The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM) is called NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and aggressive clinical status. Thus, it is important to select a proper drug to block tumor cell migration during clinical treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a better candidate for inhibiting NCAM polysialylation when compared with CMP and low-molecular-weight heparin (LMWH), which were determined based on our NMR studies. Furthermore, neutrophil extracellular traps (NETs) represent the most dramatic stage in the cell death process, and the release of NETs is related to the pathogenesis of autoimmune and inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis, and vascular disorders. In this study, the molecular mechanisms involved in the inhibition of NET release using LFcinB11 as an inhibitor were also determined. Based on these results, LFcinB11 is proposed as being a bifunctional inhibitor for inhibiting both NCAM polysialylation and the release of NETs.


Assuntos
Armadilhas Extracelulares , Lactoferrina , Moléculas de Adesão de Célula Nervosa , Ácidos Siálicos , Lactoferrina/farmacologia , Lactoferrina/metabolismo , Humanos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/efeitos dos fármacos , Moléculas de Adesão de Célula Nervosa/metabolismo , Ácidos Siálicos/metabolismo , Neutrófilos/metabolismo , Neutrófilos/efeitos dos fármacos , Heparina de Baixo Peso Molecular/farmacologia
2.
Int J Biol Macromol ; 266(Pt 2): 131341, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38574922

RESUMO

Sialic acids are negatively charged carbohydrates that are components of saccharide chains covalently linked to macromolecules. Sialylated glycoproteins are important for most biological processes, including reproduction, where they are associated with spermatogenesis, sperm motility, immune responses, and fertilization. Changes in the glycoprotein profile or sialylation in glycoproteins are likely to affect the quality of ejaculate. The aim of this study was to determine differences in the degree of sialylation between normozoospermic ejaculates and ejaculates with a pathological spermiogram using two lectins, Sambucus nigra (SNA) and Maackia amurensis (MAL II/MAA) recognizing α-2,6 or α-2,3 linkage of Sia to galactosyl residues. Our results show a close relationship between seminal plasma (SP) sialoproteins and the presence of anti-sperm antibodies in the ejaculate, apoptotic spermatozoa, and ejaculate quality. Using mass spectrometry, we identified SP sialoproteins such as, semenogelins, glycodelin, prolactin-inducible protein, lactotransferrin, and clusterin that are associated with spermatozoa and contribute to the modulation of the immune response and sperm apoptosis. Our findings suggest a correlation between the degree of SP glycoprotein sialylation and the existence of possible pathological states of spermatozoa and reproductive organs. Glycoproteins sialylation represents a potential parameter reflecting the overall quality of ejaculate and could potentially be utilised in diagnostics.


Assuntos
Sêmen , Espermatozoides , Masculino , Humanos , Sêmen/metabolismo , Sêmen/química , Espermatozoides/metabolismo , Motilidade dos Espermatozoides , Glicoproteínas/metabolismo , Glicodelina/metabolismo , Proteínas Secretadas pela Vesícula Seminal/metabolismo , Análise do Sêmen/métodos , Clusterina/metabolismo , Lectinas/metabolismo , Lectinas/química , Ejaculação , Ácidos Siálicos/metabolismo , Proteínas de Plasma Seminal/metabolismo , Lactoferrina/metabolismo , Apoptose
3.
J Virol ; 98(5): e0195923, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38634598

RESUMO

The role of Culex mosquitoes in the transmission of Japanese encephalitis virus (JEV) is crucial, yet the mechanisms of JEV infection in these vectors remain unclear. Previous research has indicated that various host factors participate in JEV infection. Herein, we present evidence that mosquito sialic acids enhance JEV infection both in vivo and in vitro. By treating mosquitoes and C6/36 cells with neuraminidase or lectin, the function of sialic acids is effectively blocked, resulting in significant inhibition of JEV infection. Furthermore, knockdown of the sialic acid biosynthesis genes in Culex mosquitoes also leads to a reduction in JEV infection. Moreover, our research revealed that sialic acids play a role in the attachment of JEV to mosquito cells, but not in its internalization. To further explore the mechanisms underlying the promotion of JEV attachment by sialic acids, we conducted immunoprecipitation experiments to confirm the direct binding of sialic acids to the last α-helix in JEV envelope protein domain III. Overall, our study contributes to a molecular comprehension of the interaction between mosquitoes and JEV and offers potential strategies for preventing the dissemination of flavivirus in natural environments.IMPORTANCEIn this study, we aimed to investigate the impact of glycoconjugate sialic acids on mosquito infection with Japanese encephalitis virus (JEV). Our findings demonstrate that sialic acids play a crucial role in enhancing JEV infection by facilitating the attachment of the virus to the cell membrane. Furthermore, our investigation revealed that sialic acids directly bind to the final α-helix in the JEV envelope protein domain III, thereby accelerating virus adsorption. Collectively, our results highlight the significance of mosquito sialic acids in JEV infection within vectors, contributing to a better understanding of the interaction between mosquitoes and JEV.


Assuntos
Culex , Vírus da Encefalite Japonesa (Espécie) , Encefalite Japonesa , Mosquitos Vetores , Ácidos Siálicos , Ligação Viral , Vírus da Encefalite Japonesa (Espécie)/fisiologia , Vírus da Encefalite Japonesa (Espécie)/metabolismo , Animais , Culex/virologia , Culex/metabolismo , Encefalite Japonesa/virologia , Encefalite Japonesa/metabolismo , Mosquitos Vetores/virologia , Ácidos Siálicos/metabolismo , Linhagem Celular , Proteínas do Envelope Viral/metabolismo , Proteínas do Envelope Viral/genética , Internalização do Vírus , Camundongos , Neuraminidase/metabolismo , Neuraminidase/genética
4.
Cell Mol Biol Lett ; 29(1): 46, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561669

RESUMO

BACKGROUND: Small extracellular vesicles (sEV) are closely associated with the development and metastasis of many types of mammalian cancer. Glycoconjugates are highly expressed on sEV and play important roles in sEV biogenesis and their interaction with other cells. However, the study on vesicular glycoconjugates are far behind proteins and nucleic acids. Especially, the functions of sialic acids which are the terminal components of glycoconjugates, are poorly understood in sEV. METHODS: Sialic acid levels on sEV from plasma and bladder cancer cells were determined by ELISA and lectin blotting. Effects of sialylation on sEV uptake were determined by flow cytometry. Vesicular glycoproteins bearing sialic acids responsible for sEV uptake was identified by proteomics and density gradient centrifugation, and their site-specific sialylation functions were assayed by N-glycosylation site mutation. Effects of integrin ß1 bearing sialic acids on the pro-metastatic function of sEV in vivo were explored using Balb/c nu/nu mice. RESULTS: (1) Increased sialic acid levels were observed in sEV from malignant bladder cancer cells. (2) Elimination of sialic acids on sEV impaired sEV uptake by recipient cells. (3) Vesicular integrin ß1 bearing sialic acids was identified to play a key role in sEV uptake. (4) Desialylation of the hybrid domain of vesicular integrin ß1 inhibited its binding to matrix fibronectin, and reduced sEV entry into recipient cells. (5) Sialylation on integrin ß1 affected pro-metastatic function of sEV in Balb/c nu/nu mice. CONCLUSIONS: Taken together, our findings indicate important functional roles of sialic acids in sEV uptake and reprogramming plasticity of surrounding normal epithelial cells.


Assuntos
Vesículas Extracelulares , Neoplasias da Bexiga Urinária , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Glicoconjugados , Integrina beta1/metabolismo , Mamíferos , Ácido N-Acetilneuramínico/metabolismo , Ácidos Siálicos/metabolismo
5.
Glycobiology ; 34(5)2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38489772

RESUMO

Polysialic acid (polySia) is a linear polymer of α2,8-linked sialic acid residues that is of fundamental biological interest due to its pivotal roles in the regulation of the nervous, immune, and reproductive systems in healthy human adults. PolySia is also dysregulated in several chronic diseases, including cancers and mental health disorders. However, the mechanisms underpinning polySia biology in health and disease remain largely unknown. The polySia-specific hydrolase, endoneuraminidase NF (EndoN), and the catalytically inactive polySia lectin EndoNDM, have been extensively used for studying polySia. However, EndoN is heat stable and remains associated with cells after washing. When studying polySia in systems with multiple polysialylated species, the residual EndoN that cannot be removed confounds data interpretation. We developed a strategy for site-specific immobilization of EndoN on streptavidin-coated magnetic beads. We showed that immobilizing EndoN allows for effective removal of the enzyme from samples, while retaining hydrolase activity. We used the same strategy to immobilize the polySia lectin EndoNDM, which enabled the enrichment of polysialylated proteins from complex mixtures such as serum for their identification via mass spectrometry. We used this methodology to identify a novel polysialylated protein, QSOX2, which is secreted from the breast cancer cell line MCF-7. This method of site-specific immobilization can be utilized for other enzymes and lectins to yield insight into glycobiology.


Assuntos
Neuraminidase , Ácidos Siálicos , Adulto , Humanos , Ácidos Siálicos/química , Neuraminidase/metabolismo , Lectinas , Oxirredutases atuantes sobre Doadores de Grupo Enxofre
6.
J Physiol Biochem ; 80(2): 363-379, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38393636

RESUMO

The insulin receptor (IR) plays an important role in insulin signal transduction, the defect of which is believed to be the root cause of type 2 diabetes. In 3T3-L1 adipocytes as in other cell types, the mature IR is a heterotetrameric cell surface glycoprotein composed of two α subunits and two ß subunits. Our objective in our study, is to understand how the desialylation of N-glycan chains, induced by elastin-derived peptides, plays a major role in the function of the IR. Using the 3T3-L1 adipocyte line, we show that removal of the sialic acid from N-glycan chains (N893 and N908), induced by the elastin receptor complex (ERC) and elastin derived-peptides (EDPs), leads to a decrease in the autophosphorylation activity of the insulin receptor. We demonstrate by molecular dynamics approaches that the absence of sialic acids on one of these two sites is sufficient to generate local and general modifications of the structure of the IR. Biochemical approaches highlight a decrease in the interaction between insulin and its receptor when ERC sialidase activity is induced by EDPs. Therefore, desialylation by EDPs is synonymous with a decrease of IR sensitivity in adipocytes and could thus be a potential source of insulin resistance associated with diabetic conditions.


Assuntos
Células 3T3-L1 , Adipócitos , Elastina , Insulina , Receptor de Insulina , Receptores de Superfície Celular , Ácidos Siálicos , Animais , Receptor de Insulina/metabolismo , Camundongos , Adipócitos/metabolismo , Insulina/metabolismo , Elastina/metabolismo , Ácidos Siálicos/metabolismo , Fosforilação , Resistência à Insulina , Simulação de Dinâmica Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Peptídeos/química , Ácido N-Acetilneuramínico/metabolismo , Transdução de Sinais
7.
ACS Biomater Sci Eng ; 10(1): 139-148, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36946521

RESUMO

Metabolic glycoengineering involves the stimulation of cells with functionalized monosaccharides. Glucosamine, galactosamine, and mannosamine derivatives are commercially available, but their application may lead to undirected (i.e., chemical) incorporation into proteins. However, sialic acids are attached to the ends of complex sugar chains of glycoproteins, which might be beneficial for cell surface modification via click chemistry. Thus, we studied the incorporation of chemically synthesized unnatural alkyne modified sialic acid (SiaNAl) into glycoproteins of human telomerase-immortalized mesenchymal stromal cells (hMSC-TERT) and we show that SiaNAl can be efficiently incorporated in glycoproteins involved in signal transduction and cell junction.


Assuntos
Glicoproteínas , Células-Tronco Mesenquimais , Humanos , Glicoproteínas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Ácidos Siálicos/metabolismo , Células-Tronco Mesenquimais/metabolismo
8.
Trends Cancer ; 10(3): 230-241, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38160071

RESUMO

Advances in immunotherapy have revolutionized cancer treatment, yet many patients do not show clinical responses. While most immunotherapies target T cells, myeloid cells are the most abundant cell type in solid tumors and are key orchestrators of the immunosuppressive tumor microenvironment (TME), hampering effective T cell responses. Therefore, unraveling the immune suppressive pathways within myeloid cells could unveil new avenues for cancer immunotherapy. Over the past decade, Siglec receptors and their ligand, sialic acids, have emerged as a novel immune checkpoint on myeloid cells. In this review, we highlight key findings on how sialic acids modify immunity in the TME through engagement of Siglec-7/9/10/15 expressed on myeloid cells, and how the sialic acid-Siglec axis can be targeted for future cancer immunotherapies.


Assuntos
Imunoterapia , Neoplasias , Humanos , Ligantes , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/genética , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Ácidos Siálicos , Células Mieloides/metabolismo , Neoplasias/terapia
9.
J Biol Chem ; 300(1): 105564, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103644

RESUMO

The polysialyltransferases ST8SIA2 and ST8SIA4 and their product, polysialic acid (polySia), are known to be related to cancers and mental disorders. ST8SIA2 and ST8SIA4 have conserved amino acid (AA) sequence motifs essential for the synthesis of the polySia structures on the neural cell adhesion molecule. To search for a new motif in the polysialyltransferases, we adopted the in silico Individual Meta Random Forest program that can predict disease-related AA substitutions. The Individual Meta Random Forest program predicted a new eight-amino-acids sequence motif consisting of highly pathogenic AA residues, thus designated as the pathogenic (P) motif. A series of alanine point mutation experiments in the pathogenic motif (P motif) showed that most P motif mutants lost the polysialylation activity without changing the proper enzyme expression levels or localization in the Golgi. In addition, we evaluated the enzyme stability of the P motif mutants using newly established calculations of mutation energy, demonstrating that the subtle change of the conformational energy regulates the activity. In the AlphaFold2 model, we found that the P motif was a buried ß-strand underneath the known surface motifs unique to ST8SIA2 and ST8SIA4. Taken together, the P motif is a novel buried ß-strand that regulates the full activity of polysialyltransferases from the inside of the molecule.


Assuntos
Mutação , Sialiltransferases , Humanos , Motivos de Aminoácidos/genética , Substituição de Aminoácidos , Simulação por Computador , Complexo de Golgi/enzimologia , Complexo de Golgi/metabolismo , Moléculas de Adesão de Célula Nervosa/química , Moléculas de Adesão de Célula Nervosa/metabolismo , Mutação Puntual , Conformação Proteica em Folha beta , Transporte Proteico , Algoritmo Florestas Aleatórias , Ácidos Siálicos/metabolismo , Sialiltransferases/química , Sialiltransferases/genética , Sialiltransferases/metabolismo
10.
J Immunother Cancer ; 11(11)2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37940346

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest cancers. Despite the successful application of immune checkpoint blockade in a range of human cancers, immunotherapy in PDAC remains unsuccessful. PDAC is characterized by a desmoplastic, hypoxic and highly immunosuppressive tumor microenvironment (TME), where T-cell infiltration is often lacking (immune desert), or where T cells are located distant from the tumor islands (immune excluded). Converting the TME to an immune-inflamed state, allowing T-cell infiltration, could increase the success of immunotherapy in PDAC. METHOD: In this study, we use the KPC3 subcutaneous PDAC mouse model to investigate the role of tumor-derived sialic acids in shaping the tumor immune landscape. A sialic acid deficient KPC3 line was generated by genetic knock-out of the CMAS (cytidine monophosphate N-acetylneuraminic acid synthetase) enzyme, a critical enzyme in the synthesis of sialic acid-containing glycans. The effect of sialic acid-deficiency on immunotherapy efficacy was assessed by treatment with anti-programmed cell death protein 1 (PD-1) and agonistic CD40. RESULT: The absence of sialic acids in KPC3 tumors resulted in increased numbers of CD4+ and CD8+ T cells in the TME, and reduced frequencies of CD4+ regulatory T cells (Tregs) within the T-cell population. Importantly, CD8+ T cells were able to infiltrate the tumor islands in sialic acid-deficient tumors. These favorable alterations in the immune landscape sensitized sialic acid-deficient tumors to immunotherapy, which was ineffective in sialic acid-expressing KPC3 tumors. In addition, high expression of sialylation-related genes in human pancreatic cancer correlated with decreased CD8+ T-cell infiltration, increased presence of Tregs, and poorer survival probability. CONCLUSION: Our results demonstrate that tumor-derived sialic acids mediate T-cell exclusion within the PDAC TME, thereby impairing immunotherapy efficacy. Targeting sialic acids represents a potential strategy to enhance T-cell infiltration and improve immunotherapy outcomes in PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Camundongos , Animais , Humanos , Linfócitos T CD8-Positivos , Ácidos Siálicos/farmacologia , Ácido N-Acetilneuramínico/farmacologia , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Imunoterapia/métodos , Microambiente Tumoral
11.
Angew Chem Int Ed Engl ; 62(52): e202312609, 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-37955317

RESUMO

The percentage of low response and adaptive resistance to current antibody-based immune checkpoint blockade (ICB) therapy requires the development of novel immunotherapy strategies. Here, we developed an aptamer-assisted immune checkpoint blockade (Ap-ICB) against sialic acid-binding immunoglobulin-like lectin-15 (Siglec-15), a novel immune suppressor broadly upregulated on cancer cells and tumor infiltrating myeloid cells, which is mutually exclusive of programmed cell death ligand 1 (PD-L1). Using protein aptamer selection, we identified WXY3 aptamer with high affinity against Siglec-15 protein/Siglec-15 positive cells. We demonstrated that WXY3 aptamer rescued antigen-specific T cell responses in vitro and in vivo. Importantly, the WXY3 Ap-ICB against Siglec-15 amplified anti-tumor immunity in the tumor microenvironment and inhibited tumor growth/metastasis in syngeneic mouse model, which may result from enhanced macrophage and T cell functionality. In addition, by using aptamer-based spherical nucleic acids, we developed a synergetic ICB strategy of multivalent binding and steric hindrance, which further improves the in vivo anti-tumor effect. Taken together, our results support Ap-ICB targeted Siglec-15 as a potential strategy for normalization cancer immunotherapy.


Assuntos
Inibidores de Checkpoint Imunológico , Neoplasias , Camundongos , Animais , Neoplasias/tratamento farmacológico , Imunoterapia/métodos , Imunoglobulinas/farmacologia , Imunoglobulinas/uso terapêutico , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/farmacologia , Ácidos Siálicos/farmacologia , Microambiente Tumoral , Proteínas de Membrana
12.
Bioconjug Chem ; 34(10): 1719-1726, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37767911

RESUMO

Lipid raft-specific glycosylation has been implicated in many biological processes, including intracellular trafficking, cell adhesion, signal transduction, and host-pathogen interactions. The major predicament in lipid raft-specific glycosylation research is the unavailability of tools for tracking and manipulating glycans on lipid rafts at the microstructural level. To overcome this challenge, we developed a multifunctional proximity labeling (MPL) platform that relies on cholera toxin B subunit to localize horseradish peroxidase on lipid rafts. In addition to the prevailing electron-rich amino acids, modified sialic acid was included in the horseradish peroxidase-mediated proximity labeling substrate via purposefully designed chemical transformation reactions. In combination with sialic acid editing, the self-renewal of lipid raft-specific sialic acid was visualized. The MPL method enabled tracking of lipid raft dynamics under methyl-ß-cyclodextrin and mevinolin treatments; in particular, the alteration of lipid rafts markedly affected cell migration. Furthermore, we embedded functional molecules into the method and implemented raft-specific sialic acid gradient engineering. Our novel strategy presents opportunities for tailoring lipid raft-specific sialic acids, thereby regulating interactions associated with lipid raft regions (such as cell-virus and cell-microenvironment interactions), and can aid in the development of lipid raft-based therapeutic regimens for tumors.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Movimento Celular , Ácidos Siálicos/metabolismo , Microdomínios da Membrana/metabolismo , Peroxidase do Rábano Silvestre/metabolismo
13.
Carbohydr Res ; 531: 108892, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37429229

RESUMO

Sialic acid, a monosaccharide containing nine carbon atoms, is widely distributed in eukaryotic cells. The bound sialic acids are mainly present at the glycan ends of glycoconjugates via α2-3 or α2-6 glycosidic bonds, and alterations in their expression levels and linkage types are associated with the progress of many diseases and tumors. The present study provides a new strategy for quantification of α2,3- and α2,6-linked sialic acids in sialylated glycoproteins. In fact, quantification of α2,3-linked sialic acids were based on the difference of the bound sialic acids in the sample before and after treatment with α2-3 neuraminidase, whereas the α2,6-linked sialic acids were equal to the bound sialic acids in the α2-3 neuraminidase-treated sample. Subsequently, α2,3/6-linked sialic acids in salivary glycoproteins from healthy volunteers and diabetic patients were quantified in accordance with this method. This work provides an accurate method for the quantification of α2,3- and α2,6-linked sialic acids in the sialoglycoproteins, which is more instructive for understanding the biological roles of α2,3/6-linked sialic acid in sialoglycoproteins.


Assuntos
Ácido N-Acetilneuramínico , Ácidos Siálicos , Humanos , Ácidos Siálicos/química , Ácido N-Acetilneuramínico/metabolismo , Neuraminidase/metabolismo , Glicoproteínas/metabolismo , Sialoglicoproteínas
14.
Neuro Oncol ; 25(11): 1963-1975, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37288604

RESUMO

BACKGROUND: In glioblastoma (GBM), the effects of altered glycocalyx are largely unexplored. The terminal moiety of cell coating glycans, sialic acid, is of paramount importance for cell-cell contacts. However, sialic acid turnover in gliomas and its impact on tumor networks remain unknown. METHODS: We streamlined an experimental setup using organotypic human brain slice cultures as a framework for exploring brain glycobiology, including metabolic labeling of sialic acid moieties and quantification of glycocalyx changes. By live, 2-photon and high-resolution microscopy we have examined morphological and functional effects of altered sialic acid metabolism in GBM. By calcium imaging we investigated the effects of the altered glycocalyx on a functional level of GBM networks. RESULTS: The visualization and quantitative analysis of newly synthesized sialic acids revealed a high rate of de novo sialylation in GBM cells. Sialyltrasferases and sialidases were highly expressed in GBM, indicating that significant turnover of sialic acids is involved in GBM pathology. Inhibition of either sialic acid biosynthesis or desialylation affected the pattern of tumor growth and lead to the alterations in the connectivity of glioblastoma cells network. CONCLUSIONS: Our results indicate that sialic acid is essential for the establishment of GBM tumor and its cellular network. They highlight the importance of sialic acid for glioblastoma pathology and suggest that dynamics of sialylation have the potential to be targeted therapeutically.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Ácido N-Acetilneuramínico/metabolismo , Ácidos Siálicos/metabolismo , Transdução de Sinais , Linhagem Celular Tumoral
15.
Chem Commun (Camb) ; 59(50): 7815-7818, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37272281

RESUMO

This work designs a functional dendrimer probe to conveniently identify newly generated sialic acid groups in vivo with a dual-color imaging strategy, which achieves in situ semiquantitative evaluation of the sialylation difference between tumor and normal tissues to reveal sialylation-related biological events and promote clinical tumor diagnosis.


Assuntos
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Ácidos Siálicos
16.
Int Immunopharmacol ; 120: 110410, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37270929

RESUMO

Accumulating evidence suggests that sialic acids is closely related to atherosclerosis. However, the effects and underlying mechanisms of sialic acids in atherosclerosis have been not defined. Macrophages are one of the most important cells during plaque progression. In this study, we investigated the role of sialic acids in the M1 macrophage polarization and pathogenesis of atherosclerosis. Here we found that sialic acids can promote the polarization of RAW264.7 cells to the M1 phenotype, thereby promoting the expression of proinflammatory cytokines in vitro. The proinflammatory effect of sialic acids may result from the inhibition of LKB1-AMPK-Sirt3 signaling pathway to upregulate intracellular ROS and impairing autophagy-lysosome system to block autophagic flux. In the APOE-/- mice, sialic acids in plasma increased during the development of atherosclerosis. Moreover, exogenous supplement of sialic acids can promote plaque progression in aortic arch and aortic sinus being accompanied by the differentiation of macrophages into M1 type in peripheral tissues. These studies demonstrated that sialic acids can promote macrophage polarization toward the M1 phenotype to accentuate atherosclerosis via inducing mitochondrial ROS and blocking autophagy, thus providing clue to a novel therapeutic strategy for atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Camundongos , Animais , Espécies Reativas de Oxigênio/metabolismo , Ácidos Siálicos/metabolismo , Ácidos Siálicos/farmacologia , Ácidos Siálicos/uso terapêutico , Aterosclerose/metabolismo , Macrófagos , Autofagia
17.
Front Immunol ; 14: 1178817, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37346044

RESUMO

Upregulation of surface expressed sialoglycans on tumor cells is one of the mechanisms which promote tumor growth and progression. Specifically, the interactions of sialic acids with sialic acid-binding immunoglobulin-like lectins (Siglecs) on lymphoid or myeloid cells transmit inhibitory signals and lead to suppression of anti-tumor responses. Here, we show that neutrophils express among others Siglec-9, and that EGFR and HER2 positive breast tumor cells express ligands for Siglec-9. Treatment of tumor cells with neuraminidases or a sialyl transferase inhibitor significantly reduced binding of a soluble recombinant Siglec-9-Fc fusion protein, while EGFR and HER2 expression remained unchanged. Importantly, the cytotoxic activity of neutrophils driven by therapeutic EGFR or HER2 antibodies in vitro was increased by blocking the sialic acid/Siglec interaction, either by reducing tumor cell sialylation or by a Siglec-9 blocking antibody containing an effector silenced Fc domain. In vivo a short-term xenograft mouse model confirmed the improved therapeutic efficacy of EGFR antibodies against sialic acid depleted, by a sialyltransferase inhibitor, tumor cells compared to untreated cells. Our studies demonstrate that sialic acid/Siglec interactions between tumor cells and myeloid cells can impair antibody dependent tumor cell killing, and that Siglec-9 on polymorphonuclear cells (PMN) is critically involved. Considering that PMN are often a highly abundant cell population in the tumor microenvironment, Siglec-9 constitutes a promising target for myeloid checkpoint blockade to improve antibody-based tumor immunotherapy.


Assuntos
Ácido N-Acetilneuramínico , Neoplasias , Humanos , Camundongos , Animais , Ácido N-Acetilneuramínico/metabolismo , Neutrófilos/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Anticorpos , Ácidos Siálicos/metabolismo , Receptores ErbB , Microambiente Tumoral
18.
Rejuvenation Res ; 26(4): 139-146, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37166369

RESUMO

Acarbose (ACA), a well-studied and effective inhibitor of α-amylase and α-glucosidase, is a postprandial-acting antidiabetic medicine. The membrane of the erythrocyte is an excellent tool for analyzing different physiological and biochemical activities since it experiences a range of metabolic alterations throughout aging. It is uncertain if ACA modulates erythrocyte membrane activities in an age-dependent manner. As a result, the current study was conducted to explore the influence of ACA on age-dependent deteriorated functions of transporters/exchangers, disrupted levels of various biomarkers such as lipid hydroperoxides (LHs), protein carbonyl (PCO), sialic acid (SA), total thiol (-SH), and erythrocyte membrane osmotic fragility. In addition to a concurrent increase in Na+/H+ exchanger activity and concentration of LH, PCO, and osmotic fragility, we also detected a considerable decrease in membrane-linked activities of Ca2+-ATPase (PMCA) and Na+/K+-ATPase (NKA), as well as concentrations of SA and -SH in old-aged rats. The aging-induced impairment of the activities of membrane-bound ATPases and the changed levels of redox biomarkers were shown to be effectively restored by ACA treatment.


Assuntos
Acarbose , Envelhecimento , Membrana Eritrocítica , Inibidores de Glicosídeo Hidrolases , ATPases Transportadoras de Cálcio da Membrana Plasmática , ATPase Trocadora de Sódio-Potássio , Acarbose/farmacologia , Inibidores de Glicosídeo Hidrolases/farmacologia , Membrana Eritrocítica/química , Membrana Eritrocítica/efeitos dos fármacos , Membrana Eritrocítica/enzimologia , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Peróxidos Lipídicos/análise , Ácidos Siálicos/análise , Carbonilação Proteica/efeitos dos fármacos , Compostos de Sulfidrila/análise , Fragilidade Osmótica/efeitos dos fármacos , Animais , Ratos , Masculino , Ratos Wistar , ATPases Transportadoras de Cálcio da Membrana Plasmática/análise , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , ATPase Trocadora de Sódio-Potássio/análise , ATPase Trocadora de Sódio-Potássio/metabolismo , Oxirredução/efeitos dos fármacos , Biomarcadores/análise , Biomarcadores/metabolismo
19.
Glycoconj J ; 40(4): 473-492, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37247156

RESUMO

Every eukaryotic cell is covered with a thick layer of complex carbohydrates with essential roles in their social life. In Deuterostoma, sialic acids present at the outermost positions of glycans of glycoconjugates are known to be key players in cellular interactions including host-pathogen interactions. Their negative charge and hydrophilic properties enable their roles in various normal and pathological states and their expression is altered in many diseases including cancers. Sialylation of glycoproteins and glycolipids is orchestrated by the regulated expression of twenty sialyltransferases in human tissues with distinct enzymatic characteristics and preferences for substrates and linkages formed. However, still very little is known on the functional organization of sialyltransferases in the Golgi apparatus and how the sialylation machinery is finely regulated to provide the ad hoc sialome to the cell. This review summarizes current knowledge on sialyltransferases, their structure-function relationships, molecular evolution, and their implications in human biology.


Assuntos
Ácidos Siálicos , Sialiltransferases , Animais , Humanos , Sialiltransferases/metabolismo , Ácidos Siálicos/metabolismo , Vertebrados/metabolismo , Glicoproteínas/química , Evolução Molecular
20.
Anal Chem ; 95(19): 7475-7486, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37126482

RESUMO

Sialic acid isomers attached in either α2,3 or α2,6 linkage to glycan termini confer distinct chemical, biological, and pathological properties, but they cannot be distinguished by mass differences in traditional mass spectrometry experiments. Multiple derivatization strategies have been developed to stabilize and facilitate the analysis of sialic acid isomers and their glycoconjugate carriers by high-performance liquid chromatography, capillary electrophoresis, and mass spectrometry workflows. Herein, a set of novel derivatization schemes are described that result in the introduction of bioorthogonal click chemistry alkyne or azide groups into α2,3- and α2,8-linked sialic acids. These chemical modifications were validated and structurally characterized using model isomeric sialic acid conjugates and model protein carriers. Use of an alkyne-amine, propargylamine, as the second amidation reagent effectively introduces an alkyne functional group into α2,3-linked sialic acid glycoproteins. In tissues, serum, and cultured cells, this allows for the detection and visualization of N-linked glycan sialic acid isomers by imaging mass spectrometry approaches. Formalin-fixed paraffin-embedded prostate cancer tissues and pancreatic cancer cell lines were used to characterize the numbers and distribution of alkyne-modified α2,3-linked sialic acid N-glycans. An azide-amine compound with a poly(ethylene glycol) linker was evaluated for use in histochemical staining. Formalin-fixed pancreatic cancer tissues were amidated with the azide amine, reacted with biotin-alkyne and copper catalyst, and sialic acid isomers detected by streptavidin-peroxidase staining. The direct chemical introduction of bioorthogonal click chemistry reagents into sialic acid-containing glycans and glycoproteins provides a new glycomic tool set to expand approaches for their detection, labeling, visualization, and enrichment.


Assuntos
Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Humanos , Ácidos Siálicos/química , Polissacarídeos/química , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA