Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 899
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Geochem Health ; 46(6): 183, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38696054

RESUMO

Pollution of water resources with nitrate is currently one of the major challenges at the global level. In order to make macro-policy decisions in water safety plans, it is necessary to carry out nitrate risk assessment in underground water, which has not been done in Fars province for all urban areas. In the current study, 9494 drinking water samples were collected in four seasons in 32 urban areas of Fars province in Iran, between 2017 and 2021 to investigate the non-carcinogenic health risk assessment. Geographical distribution maps of hazard quotient were drawn using geographical information system software. The results showed that the maximum amount of nitrate in water samples in 4% of the samples in 2021, 2.5% of the samples in 2020 and 3% of the samples in 2019 were more than the standard declared by World Health Organization guidelines (50 mg/L). In these cases, the maximum amount of nitrate was reported between 82 and 123 mg/L. The HQ values for infants did not exceed 1 in any year, but for children (44% ± 10.8), teenagers (10.8% ± 8.4), and adults (3.2% ± 1.7) exceeded 1 in cities, years, and seasons, indicating that three age groups in the studied area are at noticeably significant non-carcinogenic risk. The results of the Monte Carlo simulation showed that the average value of non-carcinogenic risk was less than 1 for all age groups. Moreover, the maximum HQ values (95%) were higher than 1 for both children and teenager, indicating a significant non-carcinogenic risk for the two age groups.


Assuntos
Água Potável , Sistemas de Informação Geográfica , Método de Monte Carlo , Nitratos , Poluentes Químicos da Água , Nitratos/análise , Medição de Risco , Irã (Geográfico) , Água Potável/química , Água Potável/análise , Poluentes Químicos da Água/análise , Humanos , Adolescente , Cidades , Lactente , Criança , Adulto , Monitoramento Ambiental/métodos
2.
J Water Health ; 22(4): 757-772, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38678428

RESUMO

This study investigates groundwater contamination by arsenic and iron and its health implications within the Sylhet district in Bangladesh. Utilizing geographic information system (GIS) and inverse distance weighting (IDW) methods, hazard maps have been developed to evaluate contamination risk across various upazilas. The findings show significant arsenic and iron pollution, particularly in the northwestern part of the district. In about 50% of the area, especially in Jaintiapur, Zakiganj, Companiganj, and Kanaighat where arsenic levels surpass 0.05 mg/L which is the standard limit of Bangladesh. Iron levels peak at 13.83 mg/L, severely impacting 45% of the region, especially in Gowainghat, northeastern Jaintiapur, Zakigonj, and Golabganj. The study employs USEPA health risk assessment methods to calculate the hazard quotient (HQ) and hazard index (HI) for both elements via oral and dermal exposure. Results indicate that children face greater noncarcinogenic and carcinogenic risks than adults, with oral HI showing significant risk in Balagonj and Bishwanath. Dermal adsorption pathways exhibit comparatively lower risks. Cancer risk assessments demonstrate high carcinogenic risks from oral arsenic intake in all areas. This comprehensive analysis highlights the urgent need for effective groundwater management and policy interventions in the Sylhet district to mitigate these health risks and ensure safe drinking water.


Assuntos
Arsênio , Água Subterrânea , Ferro , Poluentes Químicos da Água , Água Subterrânea/análise , Água Subterrânea/química , Arsênio/análise , Bangladesh , Poluentes Químicos da Água/análise , Ferro/análise , Medição de Risco , Humanos , Monitoramento Ambiental/métodos , Sistemas de Informação Geográfica , Água Potável/análise , Água Potável/química
3.
Environ Health ; 23(1): 42, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627679

RESUMO

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are associated with many adverse health conditions. Among the main effects is carcinogenicity in humans, which deserves to be further clarified. An evident association has been reported for kidney cancer and testicular cancer. In 2013, a large episode of surface, ground and drinking water contamination with PFAS was uncovered in three provinces of the Veneto Region (northern Italy) involving 30 municipalities and a population of about 150,000. We report on the temporal evolution of all-cause mortality and selected cause-specific mortality by calendar period and birth cohort in the local population between 1980 and 2018. METHODS: The Italian National Institute of Health pre-processed and made available anonymous data from the Italian National Institute of Statistics death certificate archives for residents of the provinces of Vicenza, Padua and Verona (males, n = 29,629; females, n = 29,518) who died between 1980 and 2018. Calendar period analysis was done by calculating standardised mortality ratios using the total population of the three provinces in the same calendar period as reference. The birth cohort analysis was performed using 20-84 years cumulative standardised mortality ratios. Exposure was defined as being resident in one of the 30 municipalities of the Red area, where the aqueduct supplying drinking water was fed by the contaminated groundwater. RESULTS: During the 34 years between 1985 (assumed as beginning date of water contamination) and 2018 (last year of availability of cause-specific mortality data), in the resident population of the Red area we observed 51,621 deaths vs. 47,731 expected (age- and sex-SMR: 108; 90% CI: 107-109). We found evidence of raised mortality from cardiovascular disease (in particular, heart diseases and ischemic heart disease) and malignant neoplastic diseases, including kidney cancer and testicular cancer. CONCLUSIONS: For the first time, an association of PFAS exposure with mortality from cardiovascular disease was formally demonstrated. The evidence regarding kidney cancer and testicular cancer is consistent with previously reported data.


Assuntos
Ácidos Alcanossulfônicos , Doenças Cardiovasculares , Água Potável , Fluorocarbonos , Neoplasias Renais , Neoplasias Embrionárias de Células Germinativas , Neoplasias Testiculares , Masculino , Feminino , Humanos , Água Potável/análise , Itália/epidemiologia
4.
Wei Sheng Yan Jiu ; 53(2): 316-331, 2024 Mar.
Artigo em Chinês | MEDLINE | ID: mdl-38604970

RESUMO

OBJECTIVE: To establishe an analysis and identification method for 2-methylisoborneol(2-MIB) and geosmin(GSM) in water using purge and trap-gas chromatography-mass spectrometry. METHODS: The samples were enriched and analyzed using a purge and trap system, followed by the separation on a DB-624(30 m×0.25 mm, 1.4 µm) chromatographic column. Quantification was performed using gas chromatography-mass spectrometry with the selected ion monitoring and internal standard calibration. RESULTS: The calibration curves for 2-MIB and GSM showed an excellent linearity in the range of 1 to 100 ng/L with R~2 values greater than 0.999. The detection limit and quantification limit for both 2-MIB and GSM were 0.33 ng/L and 1.0 ng/L, respectively. Spike recovery experiments were further carried on the source water and drinking water at three concentration levels. It showed that the average recoveries were from 82.0% to 111.0% for 2-MIB while 84.0% to 110% for GSM. Additionally, the test precision of 2-MIB and GSM ranged from 1.9% to 7.3% and 1.9% to 5.0%(n=6), respectively. The analysis of multiple samples including the local source water, treated water and distribution network water confirmed the existence of 2-MIB and GSM. CONCLUSION: Compared to the national standard(GB/T 5750.8-2023), the proposed method enables fully automated sample introduction and analysis without the extra pre-treatment. It provides the advantages of simplicity, good repeatability and high accuracy.


Assuntos
Água Potável , Naftóis , Poluentes Químicos da Água , Água/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Água Potável/análise , Canfanos/análise , Poluentes Químicos da Água/análise , Odorantes/análise
6.
Sci Rep ; 14(1): 6042, 2024 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-38472226

RESUMO

Geospatial methods, such as GIS and remote sensing, map radon levels, pinpoint high-risk areas and connect geological traits to radon presence. These findings direct health planning, focusing tests, mitigation, and policies where radon levels are high. Overall, geospatial analyses offer vital insights, shaping interventions and policies to reduce health risks from radon exposure. There is a formidable threat to human well-being posed by the naturally occurring carcinogenic radon (222Rn) gas due to high solubility in water. Under the current scenario, it is crucial to assess the extent of 222Rn pollution in our drinking water sources across various regions and thoroughly investigate the potential health hazards it poses. In this regard, the present study was conducted to investigate the concentration of 222Rn in groundwater samples collected from handpumps and wells and to estimate health risks associated with the consumption of 222Rn-contaminated water. For this purpose, groundwater samples (n = 30) were collected from handpumps, and wells located in the Mulazai area, District Peshawar. The RAD7 radon detector was used as per international standards to assess the concentration of 222Rn in the collected water samples. The results unveiled that the levels of 222Rn in the collected samples exceeded the acceptable thresholds set by the US Environmental Protection Agency (US-EPA) of 11.1 Bq L-1. Nevertheless, it was determined that the average annual dose was below the recommended limit of 0.1 mSv per year, as advised by both the European Union Council and the World Health Organization. In order to avoid the harmful effects of such excessive 222Rn concentrations on human health, proper ventilation and storage of water in storage reservoirs for a long time before use is recommended to lower the 222Rn concentration.


Assuntos
Água Potável , Água Subterrânea , Monitoramento de Radiação , Radônio , Poluentes Radioativos da Água , Humanos , Água Potável/análise , Monitoramento de Radiação/métodos , Radônio/análise , Paquistão , Poluentes Radioativos da Água/análise , Água Subterrânea/análise , Poluição da Água/análise
7.
Pol J Vet Sci ; 27(1): 95-105, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38511628

RESUMO

Arsenic is an important metalloid that can cause poisoning in humans and domestic animals. Exposure to arsenic causes cell damage, increasing the production of reactive oxygen species. Chitosan is a biopolymer obtained by deacetylation of chitin with antioxidant and metal ion chelating properties. In this study, the protective effect of chitosan on arsenic-induced nephrotoxicity and oxidative damage was investigated. 32 male Wistar-albino rats were divided into 4 groups of 8 rats each as control group (C), chitosan group (CS group), arsenic group (AS group), and arsenic+chitosan group (AS+CS group). The C group was given distilled water by oral gavage, the AS group was given 100 ppm/day Na-arsenite ad libitum with drinking water, the CS group was given 200 mg/kg/day chitosan dissolved in saline by oral gavage, the AS+CS group was given 100 ppm/day Na-arsenite ad libitum with drinking water and 200 mg/kg/day chitosan dissolved in saline by oral gavage for 30 days. At the end of the 30-day experimental period, 90 mg/kg ketamine was administered intraperitoneally to all rats, and blood samples and kidney tissues were collected. Urea, uric acid, creatinine, P, Mg, K, Ca, Na, Cystatin C (CYS-C), Neutrophil Gelatinase Associated Lipocalin (NGAL) and Kidney Injury Molecule 1 (KIM-1) levels were measured in serum samples. Malondialdehyde (MDA), Glutathione (GSH), Catalase (CAT) and Superoxide dismutase (SOD) levels in the supernatant obtained from kidney tissue were analyzed by ELISA method. Compared with AS group, uric acid and creatinine levels of the AS+CS group were significantly decreased (p<0.001), urea, KIM-1, CYS-C, NGAL, and MDA levels were numerically decreased and CAT, GSH, and SOD levels were numerically increased (p>0.05). In conclusion, based on both biochemical and histopathological-immunohistochemical- immunofluorescence findings, it can be concluded that chitosan attenuates kidney injury and protects the kidney.


Assuntos
Arsênio , Arsenitos , Quitosana , Água Potável , Insuficiência Renal , Doenças dos Roedores , Humanos , Ratos , Masculino , Animais , Arsênio/toxicidade , Arsênio/análise , Arsênio/metabolismo , Lipocalina-2/análise , Lipocalina-2/metabolismo , Lipocalina-2/farmacologia , Quitosana/farmacologia , Quitosana/análise , Quitosana/metabolismo , Arsenitos/análise , Arsenitos/metabolismo , Arsenitos/farmacologia , Ácido Úrico/análise , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia , Creatinina , Água Potável/análise , Água Potável/metabolismo , Ratos Wistar , Rim , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Insuficiência Renal/veterinária , Glutationa/metabolismo , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Ureia/metabolismo , Doenças dos Roedores/metabolismo
8.
PLoS One ; 19(3): e0282386, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38530775

RESUMO

There is currently a growing interest in the so-called emerging pollutants, such as pesticides, pharmaceuticals, personal hygiene care products, drugs, etc., whose presence in natural ecosystems is not necessarily recent, but the development in latest years of new and more sensitive methods of analysis has allowed their detection. They can be present in the natural environment, food, and many products of everyday origin, which suggests that human exposure to them is massive and universal. Therefore, the study of this type of substances is becoming one of the priority lines of research of the main agencies dedicated to the protection of public and environmental health, such as the World Health Organization (WHO), United States Environmental Protection Agency (USEPA) or European Union (EU). In this sense, it is of vital importance to know the nature and quantity of this type of contaminants, to establish preventive mechanisms that minimize its presence in aquatic systems, with special requirements for human consumption. This study aimed to describe a protocol for a systematic review and meta-analysis to assess the status of pesticides in European waters. We will search for original studies in the PubMed/Medline, Scopus, Web of Science, EMBASE, ScienceDirect databases. Prevalence studies of emerging contaminants (pesticides) in water resources (watersheds, aquifers, rivers, marine and springs), wastewaters (influent and effluent), and drinking water should be included. Two reviewers will independently screen and assess the included studies, with any disagreements being resolved by a third reviewer. We will summarize the findings using a narrative approach and, if possible, conduct a quantitative synthesis (meta-analysis). We will conduct the protocol following the Preferred Reporting Items for Systematic Review and Meta-Analyses Protocols (PRISMA-P) guidelines. The review will summarize the current evidence on the presence of pesticides in European waters such as glyphosate, chlorpyrifos, pyrethroid pesticides, neonicotinoid pesticides, and/or fungicides, in samples of different water resources like wastewaters and drinking water. We expect that this systematic review will establish preventive mechanisms that minimize the presence of pesticides in water in the environment.


Assuntos
Água Potável , Praguicidas , Humanos , Praguicidas/análise , Ecossistema , Água Potável/análise , Águas Residuárias , Prevalência , Revisões Sistemáticas como Assunto , Metanálise como Assunto
9.
Environ Pollut ; 348: 123857, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38537794

RESUMO

Microplastics in drinking water captured widespread attention following reports of widespread detection around the world. Concerns have been raised about the potential adverse effects of microplastics in drinking water on human health. Given the widespread interest in this research topic, there is an urgent need to compile existing data and assess current knowledge. This paper provides a systematic review of studies on microplastics in drinking water, their evidence, key findings, knowledge gaps, and research needs. The data collected show that microplastics are widespread in drinking water, with large variations in reported concentrations. Standardized methodologies of sampling and analysis are urgently needed. There were more fibrous and fragmented microplastics, with the majority being <10 µm in size and composed of polyester, polyethylene, polypropylene, and polystyrene. Little attention has been paid to the color of microplastics. More research is needed to understand the occurrence and transfer of microplastics throughout the water supply chain and the treatment efficiency of drinking water treatment plants (DWTPs). Methods capable of analyzing microplastics <10 µm and nanoplastics are urgently needed. Potential ecological assessment models for microplastics currently in use need to be improved to take into account the complexity and specificity of microplastics.


Assuntos
Água Potável , Poluentes Químicos da Água , Humanos , Microplásticos/análise , Plásticos/análise , Água Potável/análise , Poluentes Químicos da Água/análise , Monitoramento Ambiental
10.
Environ Geochem Health ; 46(4): 112, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38472659

RESUMO

N-nitrosamines in reservoir water have drawn significant attention because of their carcinogenic properties. Karst reservoirs containing dissolved organic matter (DOM) are important drinking water sources and are susceptible to contamination because of the fast flow of various contaminants. However, it remains unclear whether N-nitrosamines and their precursor, DOM, spread in karst reservoirs. Therefore, this study quantitatively investigated the occurrence and sources of N-nitrosamines based on DOM properties in three typical karst reservoirs and their corresponding tap water. The results showed that N-nitrosamines were widely spread, with detection frequencies > 85%. Similar dominant compounds, including N-nitrosodimethylamine, N-nitrosomethylethylamine, N-nitrosopyrrolidine, and N-nitrosodibutylamine, were observed in reservoirs and tap water, with average concentrations of 4.7-8.9 and 2.8-6.7 ng/L, respectively. The average carcinogenic risks caused by these N-nitrosamines were higher than the risk level of 10-6. Three-dimensional fluorescence excitation-emission matrix modeling revealed that DOM was composed of humus-like component 1 (C1) and protein-like component 2 (C2). Fluorescence indicators showed that DOM in reservoir water was mainly affected by exogenous pollution and algal growth, whereas in tap water, DOM was mainly affected by microbial growth with strong autopoietic properties. In the reservoir water, N-nitrosodiethylamine and N-nitrosopiperidine were significantly correlated with C2 and biological indicators, indicating their endogenously generated sources. Based on the principal component analysis and multiple linear regression methods, five sources of N-nitrosamines were identified: agricultural pollution, microbial sources, humus sources, degradation processes, and other factors, accounting for 46.8%, 36.1%, 7.82%, 8.26%, and 0.96%, respectively. For tap water, two sources, biological reaction processes, and water distribution systems, were identified, accounting for 75.7% and 24.3%, respectively. Overall, this study presents quantitative information on N-nitrosamines' sources based on DOM properties in typical karst reservoirs and tap water, providing a basis for the safety of drinking water for consumers.


Assuntos
Água Potável , Nitrosaminas , Poluentes Químicos da Água , Humanos , Água Potável/análise , Poluentes Químicos da Água/análise , Nitrosaminas/análise , Carcinógenos/análise , Solo , China , Carcinogênese
11.
Public Health ; 228: 82-84, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38330736

RESUMO

OBJECTIVES: Nitrate is a probable carcinogen regulated in drinking water by the US Environmental Protection Agency (EPA) to a maximum contaminant level (MCL) of 10 mg/L nitrate-nitrogen (NO3-N; equivalent to 44.3 mg/L NO3). We aimed to determine the association of US drinking water nitrate levels with overall as well as cardiovascular, cancer, and other cause mortality. STUDY DESIGN: This study used a population-based retrospective cohort design. METHODS: We analyzed data from 2029 participants of the 2005-2006 National Health and Nutrition Examination Survey followed for mortality until 2019 for a median of 13.9 years. We used Cox proportional hazards regression to estimate the hazard ratio (HR) and 95% confidence interval (CI) for mortality associated with drinking water nitrate, adjusting for covariates that included socio-economic factors and pack-years of cigarette smoking. RESULTS: Drinking water nitrate was detected in 50.8 % of the samples, had a median concentration of 0.77 mg/L NO3, and was above US EPA MCL in 0.4 % of participants. In adjusted analysis, drinking water nitrate detection was associated with 73 % higher cancer mortality (HR: 1.73, 95% CI: 1.19-2.51), whereas a 10-fold increase in drinking water nitrate levels was associated with 69 % higher cancer mortality (HR: 1.69, 95% CI: 1.24-2.31) and 21 % higher overall mortality (HR: 1.21, 95% CI: 1.00-1.46). Drinking water nitrate below EPA MCL was still associated with higher cancer mortality (HR: 1.61, 95% CI: 1.07-2.43 per 10-fold increase and HR: 1.61, 95% CI: 1.08-2.42 for detection). CONCLUSIONS: Levels of drinking water nitrate may be an overlooked contributor to cancer mortality in the United States.


Assuntos
Água Potável , Neoplasias , Estados Unidos/epidemiologia , Humanos , Nitratos/análise , Água Potável/análise , Inquéritos Nutricionais , Estudos Retrospectivos
12.
Environ Pollut ; 346: 123598, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38369088

RESUMO

Microplastics (MPs) contamination has been reported in all environmental compartments, but very limited information is available at higher-altitude lakes. Nainital Lake, located at a high altitude in the Indian Himalayas, has various ecosystem services and is the major source of water for Nainital town, but the MP abundance is still unknown. This study presents the first evidence of the abundance and distribution of MP in Nainital Lake. Surface water and sediment samples were analysed from 16 different sites in and around the catchment area of Nainital Lake. The MP were observed in all the samples, and their abundance in surface water was 8.6-56.0 particles L-1 in the lake and 2.4-88.0 particles L-1 in hotspot sites. In the surface sediment, MP abundance ranged from 0.4-10.6 particles g-1, while in the hotspot sediment, the mean abundance was 0.6 ± 0.5 particles g-1. Fibers were the dominant MP, while 0.02-1 mm were the predominant size of MP particles. The results of chemical characterization showed the presence of six polymers, among which high-density polyethylene was the most abundant. The Polymer Hazard Index assessment classified the identified polymers as low-to high-risk categories, with a higher abundance of low- (polypropylene) and medium- (polyethylene)-risk polymers. Tourist activities and run-off catchments can be considered the major sources of MP, which can affect the ecosystem. Minimal concentrations of MP were observed in the tube well and drinking water, which depicts the direct risks to humans and, thus, the need for remedial measures to prevent MP contamination in drinking water. This study improves the knowledge of MP contamination in the higher-altitude freshwater lake, which can be the major pathway for the transport of MP to the rivers, and also emphasizes the need for waste management in Nainital town.


Assuntos
Água Potável , Poluentes Químicos da Água , Humanos , Microplásticos/análise , Plásticos/análise , Lagos/química , Ecossistema , Água Potável/análise , Altitude , Sedimentos Geológicos/química , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Polietileno/análise , Índia
13.
Environ Sci Pollut Res Int ; 31(13): 20222-20233, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38369658

RESUMO

Exposure to heavy metals through drinking water can cause significant adverse health effects. The aim of the present study was to investigate the concentration, spatial distribution, and assessment of non-carcinogenic risk attributed to exposure to arsenic (As), chromium (Cr), cadmium (Cd), and lead (Pb) in rural areas of eight cities of the West Azerbaijan province of Iran. Eighty-five water samples were taken from randomly selected drinking water wells in the rural areas, and the concentration of the heavy metals was measured by using standard methods. The concentration distribution maps were drawn, and the non-carcinogenic health risks for ingestion and dermal exposure pathways were calculated in four age groups (including infants, children, teenagers, and adults). According to the obtained results, arsenic is considered as the most worrying pollutant among the investigated heavy metals. The maximum measured concentration for arsenic was 371.9 µg/L, which is 37 times the maximum permissible limit. The results of the health risk assessment illustrate that exposure to heavy metals via dermal contact do not pose significant non-carcinogenic risks. However, the calculated non-carcinogenic risks for oral exposure to arsenic were very high and concerning. The highest hazard quotient for oral exposure to arsenic was related to rural of city G (82.64). It is recommended to take the necessary measures as soon as possible regarding the supply of safe drinking water in the studied areas.


Assuntos
Arsênio , Água Potável , Metais Pesados , Adulto , Criança , Lactente , Adolescente , Humanos , Arsênio/análise , Cádmio , Água Potável/análise , Cromo , Chumbo , Cidades , Irã (Geográfico) , Metais Pesados/análise , Medição de Risco/métodos , Monitoramento Ambiental
14.
Water Res ; 252: 121233, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38330719

RESUMO

Long-term consumption of groundwater containing elevated levels of arsenic (As) can have severe health consequences, including cancer. To effectively remove As, conventional treatment technologies require expensive chemical oxidants to oxidise neutral arsenite (As(III)) in groundwater to negatively charged arsenate (As(V)), which is more easily removed. Rapid sand filter beds used in conventional aeration-filtration to treat anaerobic groundwater can naturally oxidise As(III) through biological processes but require an additional step to remove the generated As(V), adding complexity and cost. This study introduces a novel approach where As(V), produced through biological As(III) oxidation in a sand filter, is effectively removed within the same filter by embedding and operating an iron electrocoagulation (FeEC) system inside the filter. Operating FeEC within the biological filter achieved higher As(III) removal (81 %) compared to operating FeEC in the filter supernatant (67 %). This performance was similar to an analogous embedded-FeEC system treating As(V)-contaminated water (85 %), confirming the benefits of incorporating FeEC in a biological bed for comparable As(III) and As(V) removal. However, operating FeEC in the sand matrix consumed more energy (14 Wh/m3) compared to FeEC operated in a water matrix (7 Wh/m3). The efficiency of As removal increased and energy requirements decreased in such embedded-FeEC systems by deep-bed infiltration of Fe(III)-precipitates, which can be controlled by adjusting flow rate and pH. This study is one of the first to demonstrate the feasibility of embedding FeEC systems in sand filters for groundwater arsenic removal. Such systems capitalise on biological As(III) oxidation in aeration-filtration, effectively eliminating As(V) within the same setup without the need for chemicals or major modifications.


Assuntos
Arsênio , Água Potável , Água Subterrânea , Poluentes Químicos da Água , Purificação da Água , Compostos Férricos , Arsênio/análise , Poluentes Químicos da Água/análise , Água Potável/análise , Eletrocoagulação
15.
Sci Rep ; 14(1): 5029, 2024 02 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424133

RESUMO

Metals are significant contributors to water pollution, posing serious threats to human health. This study aims to assess the carcinogenic and non-carcinogenic health risks associated with metals in Isfahan drinking water. Eighty water samples were randomly collected from the city's distribution network between January and March 2020-2021. Inductively coupled plasma Optical Emission Spectrometry was used to measure toxic metals, namely Pb, Cr, Cd, Ni, and As concentrations. Results revealed that the mean concentration of Ni (70.03 µg/L) exceeded the WHO reference value (70 µg/L), while the other metals were below the standard values. The average chronic daily intake order of toxic metals was Ni > Cr > Pb > As > Cd. Non-carcinogenic risk assessment through hazard quotient (HQ) and hazard index (HI) demonstrated that both THI for adults (HQingestion + HQdermal = 4.02E-03) and THI for children (HIingestion + HIdermal = 3.83E-03) were below the acceptable limit (less than 1). This indicated no non-carcinogenic risk to residents through water ingestion or dermal exposure. However, findings indicated that the ingestion route was the primary exposure pathway, with HQ values for ingestion exceeding HQ values for dermal adsorption. Carcinogenic risk assessment showed that the risk associated with As metal exceeded the acceptable limit (1 × 10-6). Therefore, implementing treatment improvement programs and appropriate control measures is essential to safeguard the health of Isfahan City residents.


Assuntos
Água Potável , Metais Pesados , Adulto , Criança , Humanos , Metais Pesados/toxicidade , Metais Pesados/análise , Água Potável/análise , Monitoramento Ambiental/métodos , Carcinógenos/toxicidade , Carcinógenos/análise , Irã (Geográfico) , Cádmio/análise , Chumbo/análise , Medição de Risco , China
16.
Food Chem Toxicol ; 185: 114492, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38325637

RESUMO

The consumption of bottled water has witnessed substantial global expansion in recent times. This study aimed to quantitatively evaluate the concentrations of eight heavy metals (As, Ba, Cd, Cr, Mn, Mo, Ni, and Zn) in 71 high-consumption bottled water brands in Iran. Non-carcinogenic and carcinogenic risk assessments were conducted using both deterministic and probabilistic approaches. Point estimation utilizing the Hazard Quotient (HQ) formula and sensitivity analysis employing the Monte Carlo Simulation (MCS) method through 10,000 repetitions in Oracle Crystal Ball® was used to ascertain the health risks associated with heavy metal exposure. Heavy metal concentrations were quantified through Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). HQ point estimation results indicated that Cr exhibited the highest mean HQ value, whereas Cd demonstrated the lowest. In the probabilistic approach, the highest 95 percentile values were observed for Cr and Mo at 3.9E-01, while the lowest values were recorded for Cr and Mn at 1.10E-02. Heavy metal concentrations emerged as critical factors influencing non-carcinogenic and carcinogenic risks across all groups in the sensitivity analysis. The findings highlight the need for ongoing monitoring, research, and targeted regulations to address health risks from heavy metal exposure in bottled water and ensure public well-being.


Assuntos
Água Potável , Metais Pesados , Água Potável/análise , Método de Monte Carlo , Cádmio/análise , Monitoramento Ambiental , Metais Pesados/toxicidade , Metais Pesados/análise , Medição de Risco , China
17.
Environ Sci Process Impacts ; 26(3): 470-482, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38282562

RESUMO

N-Nitrosamines, nitroso compounds with strong carcinogenic effects on humans, have been frequently detected in natural waters. In agricultural areas, there is typically a lack of drinking water treatment processes and distribution systems. As a result, residents often consume groundwater as drinking water which may contain N-nitrosamines, necessitating the investigation of the occurrence, sources, and carcinogenic risk of N-nitrosamines within the groundwater of agricultural areas. This study identified eight N-nitrosamines in groundwater and river water in the Jianghan Plain, a famous agricultural region in central China. N-Nitrosodimethylamine (NDMA), N-nitrosodiethylamine (NDEA), N-nitrosomorpholine (NMOR), N-nitrosopyrrolidine (NPYR), and N-nitrosodi-n-butylamine (NDBA) were detected in groundwater, with NDMA being the main compound detected (up to 52 ng L-1). Comparable concentrations of these N-nitrosamines were also found in river water. From laboratory experiments, we found a tremendous potential for the formation of N-nitrosamines in groundwater. Principal component analysis and multiple linear regression analysis results showed that the primary sources of N-nitrosamines in groundwater were the uses of nitrogen fertilizers and pesticides carrying specific N-nitrosamines such as NPYR. The average total carcinogenic risk values of detected N-nitrosamines were higher than the acceptable risk level (10-5), suggesting a potential carcinogenic risk of groundwater. Further research is urgently needed to minimize N-nitrosamine levels in the groundwater of agricultural areas, particularly in those where pesticides and fertilizers are heavily used.


Assuntos
Água Potável , Nitrosaminas , Praguicidas , Humanos , Água Potável/análise , Fertilizantes/análise , Dimetilnitrosamina/análise , Carcinógenos/análise , Praguicidas/análise
18.
Environ Sci Process Impacts ; 26(2): 451-460, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38289156

RESUMO

Microplastic (<5 mm) pollution has become a pressing environmental concern in recent years. The present study investigated the occurrence characteristics and assessed the ecological risk of microplastics in the surface water and sediment of the Chitian Reservoir, a drinking water source in Hainan province (China). The results indicated that microplastics were detected in the surface water and sediment of the Chitian Reservoir and its surrounding areas. The overall abundance of microplastics in the water was 3.05 ± 1.16 items per L and in the sediment was 0.15 ± 0.06 items per g dry weight, which is relatively low compared to other reservoirs in China. The dominant components of microplastics detected in the Chitian Reservoir were polypropylene (PP), rayon, and polyester. Physical morphology analysis of microplastics showed that fibers with small particle sizes (<1 mm) and white color were the predominant characteristics in both the surface water and sediment. The domestic sewage from surrounding residents and agricultural wastewater may be the primary sources of microplastics in the reservoir. Ecological risk assessment revealed that the overall pollution load index (PLI) in the surface water (0.65) and sediment (0.51) of the Chitian Reservoir and its surrounding area is at a low level. The potential ecological hazards (RI) of microplastics (0.13 to 336.78 in water; 0.23 to 465.93 in sediment) in most sites fall within the scope of level I, but those in a few sites are at level II due to the presence of polyvinyl chloride (PVC). This study enriches the data on microplastic pollution in inland reservoir systems, providing fundamental reference information for future ecotoxicological studies and the management of microplastic pollution control.


Assuntos
Água Potável , Poluentes Químicos da Água , Microplásticos , Plásticos/análise , Água Potável/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água/análise , China
19.
Sci Total Environ ; 914: 169860, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38199341

RESUMO

Halobenzoquinones (HBQs) are a class of disinfection byproducts with high cytotoxicity and potential carcinogenicity, which have been widely detected in chlorination of drinking water and swimming pool water. However, to date, the formation of HBQs upon ozonation and the HBQ precursors have been overlooked. This study investigated the formation of chlorinated and dechlorinated HBQs from six dichlorophenol (DCP) isomers. The monomeric and dimeric HBQs were identified in all the ozonation effluents, exhibiting 1-100 times higher toxicity levels than their precursors. The sum of detected HBQs intensity had a satisfactory linear relation with the maximum toxic unit (R2 = 0.9657), indicating the primary toxicity contribution to the increased overall toxicity of effluents. Based on density functional theory calculations, when ozone attacks the para carbon to the hydroxyl group of 2,3-DCP, the probability of producing chlorinated HBQs is 80.41 %, indicating that the para carbon attack mainly resulted in the formation of monomeric HBQs. 2,3-dichlorophenoxy radicals were successfully detected in ozonated 2,3-DCP effluent through electron paramagnetic resonance and further validated using theoretical calculation, revealing the formation pathway of dimeric HBQs. The results indicate that chlorinated phenols, regardless of the positions of chlorine substitution, can potentially serve as precursors for both chlorinated and dechlorinated HBQs formation during ozonation.


Assuntos
Compostos Alílicos , Água Potável , Hidrocarbonetos Clorados , Ozônio , Poluentes Químicos da Água , Purificação da Água , Benzoquinonas , Desinfecção/métodos , Halogenação , Água Potável/análise , Fenóis , Carbono , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
20.
Environ Pollut ; 342: 123092, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38072025

RESUMO

The disinfection of drinking water generates hundreds of disinfection byproducts (DBPs), including haloaromatic DBPs. These haloaromatic DBPs are suspected to be more toxic than haloaliphatic ones, and they are currently not regulated. This work investigates their toxicity and ability to interfere with estrogen synthesis in human placental JEG-3 cells, and their genotoxic potential in human alveolar A549 cells. Among the haloaromatic DBPs studied, halobenzoquinones (2,6-dichloro-1,4-benzoquinone (DCBQ) and 2,6-dibromo-1,4-benzoquinone (DBBQ)) showed the highest cytotoxicity (EC50: 18-26 µg/mL). They induced the generation of very high levels of reactive oxygen species (ROS) and up-regulated the expression of genes involved in estrogen synthesis (cyp19a1, hsd17b1). Increased ROS was linked to significant depletion of polyunsaturated lipid species from inner cell membranes. The other DBPs tested showed low or no significant cytotoxicity (EC50 ≥ 100 µg/mL), while 2,4,6-trichloro-phenol (TCP), 2,4,6-tribromo-phenol (TBP) and 3,5-dibromo-4-hydroxybenzaldehyde (DCHB) induced the formation of micronuclei at concentrations much higher than those typically found in water (100 µg/mL). This study reveals the different modes of action of haloaromatic DBPs, and highlights the toxic potential of halobenzoquinones, which had a significant impact on the expression of placenta steroid metabolism related genes and induce oxidative stress, implying potential adverse health effects.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Feminino , Gravidez , Humanos , Desinfecção , Desinfetantes/toxicidade , Desinfetantes/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Linhagem Celular Tumoral , Placenta/metabolismo , Água Potável/análise , Benzoquinonas/toxicidade , Fenóis/metabolismo , Estrogênios/metabolismo , Lipídeos , Poluentes Químicos da Água/análise , Halogenação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA