Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
Nature ; 609(7928): 761-771, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071158

RESUMO

Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2-4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS-AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1+ neurons in the NTS-AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection.


Assuntos
Tronco Encefálico , Comportamento de Doença , Neurônios , Animais , Anorexia/complicações , Área Postrema/citologia , Área Postrema/metabolismo , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Comportamento de Doença/efeitos dos fármacos , Letargia/complicações , Lipopolissacarídeos/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Solitário/citologia , Núcleo Solitário/metabolismo
2.
Physiol Behav ; 237: 113435, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933418

RESUMO

The ability of amylin to inhibit gastric emptying and glucagon secretion in rats is reduced under hypoglycemic conditions. These effects are considered part of a fail-safe mechanism that prevents amylin from further decreasing nutrient supply when blood glucose levels are low. Because these actions and amylin-induced satiation are mediated by the area postrema (AP), it is plausible that these phenomena are based on the co-sensitivity of AP neurons to amylin and glucose. Using hyperinsulinemic glucose clamps in unrestrained and freely-feeding rats, we investigated whether amylin's ability to inhibit food intake is also reduced by hypoglycemia (HYPO). Following an 18 h fast, rats were infused with insulin and glucose for 45 min to clamp blood glucose at baseline levels (between 90 and 100 mg/dL). HYPO (approximately 55 mg/dL) was induced between 45 and 60 min and then maintained for the remainder of the clamp. Rats were injected with amylin (20 µg/kg) or saline and offered normal chow at 85 min. Food intake was measured at 30 and 60 min after amylin. Control hyperinsulinemic/euglycemic (EU) rats were maintained at approximately 150 mg/dL (which is a physiological periprandial glucose level) before and after amylin injection. Terminal experiments tested the effect of amylin to induce the phosphorylation of ERK, a marker of amylin action in the AP, in EU and HYPO conditions. Amylin significantly reduced 30- and 60-min food intake in EU rats, but the effect at 60-min was attenuated in HYPO rats. Interestingly, glucose infusion rate had to be dramatically reduced at meal onset in saline-treated, but not in amylin-treated, EU or HYPO rats; this suggests that meal-related glucose appearance in the blood was inhibited by amylin under both EU and HYPO. Finally, amylin induced a similar pERK response in the AP in EU and HYPO rats. We conclude that amylin's action to decrease eating is blunted in hypoglycemia, and this effect seems to be downstream from amylin-induced pERK in AP neurons. These data allow us to extend the idea of a hypoglycemic brake on amylin's actions to its food intake-reducing effect, but also demonstrate that amylin can buffer meal-induced glucose appearance at EU and HYPO levels.


Assuntos
Hipoglicemia , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Amiloide/metabolismo , Animais , Área Postrema/metabolismo , Ingestão de Alimentos , Hipoglicemia/induzido quimicamente , Masculino , Ratos
3.
Front Endocrinol (Lausanne) ; 12: 772909, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34987476

RESUMO

Central administration of fibroblast growth factor-1 (FGF1) results in long-lasting resolution of hyperglycemia in various rodent models, but the pre- and postsynaptic mechanisms mediating the central effects of FGF1 are unknown. Here we utilize electrophysiology recordings from neuronal populations in the arcuate nucleus of the hypothalamus (ARH), nucleus of the solitary tract (NTS), and area postrema (AP) to investigate the mechanisms underlying FGF1 actions. While FGF1 did not alter membrane potential in ARH-NPY-GFP neurons, it reversibly depolarized 83% of ARH-POMC-EGFP neurons and decreased the frequency of inhibitory inputs onto ARH-POMC-EGFP neurons. This depolarizing effect persisted in the presence of FGF receptor (R) blocker FIIN1, but was blocked by pretreatment with the voltage-gated sodium channel (VGSC) blocker tetrodotoxin (TTX). Non-FGF1 subfamilies can activate vascular endothelial growth factor receptors (VEGFR). Surprisingly, the VEGFR inhibitors axitinib and BMS605541 blocked FGF1 effects on ARH-POMC-EGFP neurons. We also demonstrate that FGF1 induces c-Fos in the dorsal vagal complex, activates NTS-NPY-GFP neurons through a FGFR mediated pathway, and requires VGSCs to activate AP neurons. We conclude that FGF1 acts in multiple brain regions independent of FGFRs. These studies present anatomical and mechanistic pathways for the future investigation of the pharmacological and physiological role of FGF1 in metabolic processes.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Área Postrema/efeitos dos fármacos , Fator 1 de Crescimento de Fibroblastos/farmacologia , Neurônios/efeitos dos fármacos , Núcleo Solitário/efeitos dos fármacos , Animais , Núcleo Arqueado do Hipotálamo/metabolismo , Área Postrema/metabolismo , Potenciais da Membrana/efeitos dos fármacos , Camundongos , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Solitário/metabolismo
4.
Physiol Behav ; 223: 112992, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32497530

RESUMO

The area postrema (AP), located in the caudal hindbrain, is one of the primary binding sites for the endocrine satiation hormone amylin. Amylin is co-secreted with insulin from pancreatic ß-cells and binds to heterodimeric receptors that consist of a calcitonin core receptor (CTR) paired with receptor-activity modifying protein (RAMP) 1 or 3. In this study, we aim to validate a CTR-floxed (CTRfl/fl) mouse model for the functional and site-specific depletion of amylin/CTR signaling in the AP and the nucleus tractus solitarius (NTS). CTRfl/fl mice were injected in the NTS with adeno-associated virus (AAV) containing a green fluorescent protein tag (GFP) and Cre recombinase to create a locally restricted knockout of CTR in the caudal hindbrain. KO mice showed a lack of c-Fos expression, a marker for neuronal activation, in the AP, NTS and LPBN after amylin injection. The effect of amylin and salmon calcitonin (sCT), an amylin receptor agonist, on food intake was blunted in KO mice, confirming a functional reduction of amylin signaling in the hindbrain.


Assuntos
Área Postrema , Receptores da Calcitonina , Animais , Área Postrema/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas , Camundongos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Receptores da Calcitonina/genética , Receptores da Calcitonina/metabolismo , Núcleo Solitário/metabolismo
5.
Int J Obes (Lond) ; 43(12): 2370-2380, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31152154

RESUMO

BACKGROUND: Elevated circulating levels of the divergent transforming growth factor-beta (TGFb) family cytokine, growth differentiation factor 15 (GDF15), acting through its CNS receptor, glial-derived neurotrophic factor receptor alpha-like (GFRAL), can cause anorexia and weight loss leading to anorexia/cachexia syndrome of cancer and other diseases. Preclinical studies suggest that administration of drugs based on recombinant GDF15 might be used to treat severe obesity. However, the role of the GDF15-GFRAL pathway in the physiological regulation of body weight and metabolism is unclear. The critical site of action of GFRAL in the CNS has also not been proven beyond doubt. To investigate these two aspects, we have inhibited the actions of GDF15 in mice started on high-fat diet (HFD). METHODS: The actions of GDF15 were inhibited using two methods: (1) Groups of 8 mice under HFD had their endogenous GDF15 neutralised by monoclonal antibody treatment, (2) Groups of 15 mice received AAV-shRNA to knockdown GFRAL at its hypothesised major sites of action, the hindbrain area postrema (AP) and the nucleus of the solitary tract (NTS). Metabolic measurements were determined during both experiments. CONCLUSIONS: Treating mice with monoclonal antibody to GDF15 shortly after commencing HFD results in more rapid gain of body weight, adiposity and hepatic lipid deposition than the control groups. This is accompanied by reduced glucose and insulin tolerance and greater expression of pro-inflammatory cytokines in adipose tissue. Localised AP and NTS shRNA-GFRAL knockdown in mice commencing HFD similarly caused an increase in body weight and adiposity. This effect was in proportion to the effectiveness of GFRAL knockdown, indicated by quantitative analysis of hindbrain GFRAL staining. We conclude that the GDF15-GFRAL axis plays an important role in resistance to obesity in HFD-fed mice and that the major site of action of GDF15 in the CNS is GFRAL-expressing neurons in the AP and NTS.


Assuntos
Adiposidade , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial , Fator 15 de Diferenciação de Crescimento , Rombencéfalo , Adiposidade/genética , Adiposidade/fisiologia , Animais , Área Postrema/citologia , Área Postrema/metabolismo , Área Postrema/fisiologia , Peso Corporal/fisiologia , Dieta Hiperlipídica , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/citologia , Neurônios/metabolismo , Neurônios/fisiologia , Obesidade/metabolismo , Rombencéfalo/citologia , Rombencéfalo/metabolismo , Rombencéfalo/fisiologia , Núcleo Solitário/citologia , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiologia
6.
Am J Physiol Regul Integr Comp Physiol ; 316(6): R791-R801, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30943041

RESUMO

Amylin acts in the area postrema (AP) and arcuate nucleus (ARC) to control food intake. Amylin also increases axonal fiber outgrowth from the AP→nucleus tractus solitarius and from ARC→hypothalamic paraventricular nucleus. More recently, exogenous amylin infusion for 4 wk was shown to increase neurogenesis in adult rats in the AP. Furthermore, amylin has been shown to enhance leptin signaling in the ARC and ventromedial nucleus of the hypothalamus (VMN). Thus, we hypothesized that endogenous amylin could be a critical factor in regulating cell birth in the ARC and AP and that amylin could also be involved in the birth of leptin-sensitive neurons. Amylin+/- dams were injected with BrdU at embryonic day 12 and at postnatalday 2; BrdU+ cells were quantified in wild-type (WT) and amylin knockout (KO) mice. The number of BrdU+HuC/D+ neurons was similar in ARC and AP, but the number of BrdU+Iba1+ microglia was significantly decreased in both nuclei. Five-week-old WT and KO littermates were injected with leptin to test whether amylin is involved in the birth of leptin-sensitive neurons. Although there was no difference in the number of BrdU+c-Fos+ neurons in the ARC and dorsomedial nucleus, an increase in BrdU+c-Fos+ neurons was seen in VMN and lateral hypothalamus (LH) in amylin KO mice. In conclusion, these data suggest that during fetal development, endogenous amylin favors the birth of microglial cells in the ARC and AP and that it decreases the birth of leptin-sensitive neurons in the VMN and LH.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Área Postrema/metabolismo , Linhagem da Célula , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Microglia/metabolismo , Animais , Animais Recém-Nascidos , Núcleo Arqueado do Hipotálamo/embriologia , Área Postrema/embriologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Região Hipotalâmica Lateral/embriologia , Região Hipotalâmica Lateral/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/genética , Leptina/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neurônios/metabolismo , Fenótipo , Gravidez , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Hipotalâmico Ventromedial/embriologia , Núcleo Hipotalâmico Ventromedial/metabolismo
7.
Mol Metab ; 21: 13-21, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30685336

RESUMO

OBJECTIVE: Analogues of GDF15 (Growth Differentiation Factor 15) are promising new anti-obesity therapies as pharmacological treatment with GDF15 results in dramatic reductions of food intake and body weight. GDF15 exerts its central anorexic effects by binding to the GFRAL receptor exclusively expressed in the Area Postrema (AP) and the Nucleus of the Solitary Tract (NTS) of the hindbrain. We sought to determine if GDF15 is an indispensable factor for other interventions that cause weight loss and which are also known to act via these hindbrain regions. METHODS: To explore the role of GDF15 on food choice we performed macronutrient intake studies in mice treated pharmacologically with GDF15 and in mice having either GDF15 or GFRAL deleted. Next we performed vertical sleeve gastrectomy (VSG) surgeries in a cohort of diet-induced obese Gdf15-null and control mice. To explore the anatomical co-localization of neurons in the hindbrain responding to GLP-1 and/or GDF15 we used GLP-1R reporter mice treated with GDF15, as well as naïve mouse brain and human brain stained by ISH and IHC, respectively, for GLP-1R and GFRAL. Lastly we performed a series of food intake experiments where we treated mice with targeted genetic disruption of either Gdf15 or Gfral with liraglutide; Glp1r-null mice with GDF15; or combined liraglutide and GDF15 treatment in wild-type mice. RESULTS: We found that GDF15 treatment significantly lowered the preference for fat intake in mice, whereas no changes in fat intake were observed after genetic deletion of Gdf15 or Gfral. In addition, deletion of Gdf15 did not alter the food intake or bodyweight after sleeve gastrectomy. Lack of GDF15 or GFRAL signaling did not alter the ability of the GLP-1R agonist liraglutide to reduce food intake. Similarly lack of GLP-1R signaling did not reduce GDF15's anorexic effect. Interestingly, there was a significant synergistic effect on weight loss when treating wild-type mice with both GDF15 and liraglutide. CONCLUSION: These data suggest that while GDF15 does not play a role in the potent effects of VSG in mice there seems to be a potential therapeutic benefit of activating GFRAL and GLP-1R systems simultaneously.


Assuntos
Cirurgia Bariátrica , Fator 15 de Diferenciação de Crescimento/metabolismo , Fator 15 de Diferenciação de Crescimento/uso terapêutico , Hipoglicemiantes/uso terapêutico , Liraglutida/uso terapêutico , Obesidade/tratamento farmacológico , Redução de Peso/efeitos dos fármacos , Animais , Área Postrema/metabolismo , Peso Corporal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Sinergismo Farmacológico , Ingestão de Alimentos/efeitos dos fármacos , Gastrectomia , Deleção de Genes , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Fator 15 de Diferenciação de Crescimento/genética , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/etiologia , Núcleo Solitário/metabolismo
8.
Cardiovasc Res ; 115(6): 1092-1101, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30358805

RESUMO

AIMS: Neuroinflammation is a common feature in renovascular, obesity-related, and angiotensin II mediated hypertension. There is evidence that increased release of the pro-inflammatory cytokine tumour necrosis factor-α (TNF-α) contributes to the development of the hypertension, but the underlying neural mechanisms are unclear. Here, we investigated whether TNF-α stimulates neurons in the area postrema (AP), a circumventricular organ, to elicit sympathetic excitation, and increases in blood pressure (BP). METHODS AND RESULTS: In rats with renovascular hypertension, AP neurons that expressed TNF-α type-1 receptor (TNFR1) remained constantly activated (expressed c-Fos) and injection of TNFR1 neutralizing antibody into the AP returned BP (systolic: ∼151 mmHg) to normotensive levels (systolic: ∼108 mmHg). Nanoinjection of TNF-α (100 pg/50 nL) into the AP of anaesthetized normotensive rats increased BP (∼16 mmHg) and sympathetic nerve activity, predominantly to the heart (∼53%), but also to the kidneys (∼35%). These responses were abolished by prior injection of a TNFR1 neutralizing antibody (1 ng/50 nL) within the same site. TNFR1 were expressed in the somata of neurons activated by TNF-α that were retrogradely labelled from the rostral ventrolateral medulla (RVLM). CONCLUSION: These findings indicate that in renovascular hypertension, blocking TNFR1 receptors in the AP significantly reduces BP, while activation of TNFR1 expressing neurons in the AP by TNF-α increases BP in normotensive rats. This is mediated, in part, by projections to the RVLM and an increase in both cardiac and renal sympathetic nerve activity. These findings support the notion that proinflammatory cytokines and neuroinflammation are important pathological mechanisms in the development and maintenance of hypertension.


Assuntos
Área Postrema/metabolismo , Pressão Arterial , Frequência Cardíaca , Coração/inervação , Hipertensão Renovascular/metabolismo , Rim/inervação , Neurônios/metabolismo , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Sistema Nervoso Simpático/fisiopatologia , Animais , Anticorpos Neutralizantes/administração & dosagem , Área Postrema/efeitos dos fármacos , Área Postrema/fisiopatologia , Pressão Arterial/efeitos dos fármacos , Modelos Animais de Doenças , Frequência Cardíaca/efeitos dos fármacos , Hipertensão Renovascular/fisiopatologia , Masculino , Neurônios/efeitos dos fármacos , Ratos Sprague-Dawley , Receptores Tipo I de Fatores de Necrose Tumoral/agonistas , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Sistema Nervoso Simpático/efeitos dos fármacos , Fator de Necrose Tumoral alfa/administração & dosagem
9.
Am J Physiol Regul Integr Comp Physiol ; 315(4): R856-R865, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30133304

RESUMO

The pancreatic hormone amylin is released from beta cells following nutrient ingestion and contributes to the control of body weight and glucose homeostasis. Amylin reduces food intake by activating neurons in the area postrema (AP). Amylin was also shown to synergize with the adipokine leptin, with combination therapy producing greater weight loss and food intake reduction than either hormone alone. Although amylin and leptin were initially thought to interact downstream of the AP in the hypothalamus, recent findings show that the two hormones can act on the same AP neurons, suggesting a more direct relationship. The objective of this study was to determine whether amylin action depends on functional leptin signaling. We tested the ability of amylin to induce satiation and to activate its primary target neurons in the AP in two rodent models of LepR deficiency, the db/db mouse and the Zucker diabetic fatty (ZDF) rat. When compared with wild-type (WT) mice, db/db mice exhibited reduced amylin-induced satiation, reduced amylin-induced Fos in the AP, and a lower expression of calcitonin receptor (CTR) protein, the core component of all amylin receptors. ZDF rats also showed no reduction in food intake following amylin treatment; however, unlike the db/db mice, levels of amylin-induced Fos and CTR in the AP were no different than WT rats. Our results suggest that LepR expression is required for the full anorexic effect of amylin; however, the neuronal activation in the AP seems to depend on the type of LepR mutation.


Assuntos
Agonistas dos Receptores da Amilina/farmacologia , Depressores do Apetite/farmacologia , Área Postrema/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Leptina/metabolismo , Receptores para Leptina/metabolismo , Resposta de Saciedade/efeitos dos fármacos , Animais , Área Postrema/metabolismo , Genótipo , Masculino , Mutação , Fenótipo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Zucker , Receptores da Calcitonina/agonistas , Receptores da Calcitonina/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/efeitos dos fármacos , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Receptores para Leptina/deficiência , Receptores para Leptina/efeitos dos fármacos , Receptores para Leptina/genética , Transdução de Sinais/efeitos dos fármacos
10.
J Physiol Sci ; 68(4): 471-482, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28616820

RESUMO

During cancer chemotherapy, drugs such as 5-HT3 receptor antagonists have typically been used to control vomiting and anorexia. We examined the effects of oxytocin (OXT), which has been linked to appetite, on cisplatin-induced anorexia in rats. Fos-like immunoreactivity (Fos-LI) expressed in the supraoptic nucleus (SON), the paraventricular nucleus (PVN), the area postrema and the nucleus of the solitary tract (NTS) after intraperitoneal (ip) administration of cisplatin. We also examined the fluorescence intensity of OXT-mRFP1 after ip administration of cisplatin in OXT-mRFP1 transgenic rats. The mRFP1 fluorescence intensity was significantly increased in the SON, the PVN, and the NTS after administration of cisplatin. The cisplatin-induced anorexia was abolished by OXT receptor antagonist (OXTR-A) pretreatment. In the OXT-LI cells, cisplatin-induced Fos expression in the SON and the PVN was also suppressed by OXTR-A pretreatment. These results suggested that central OXT may be involved in cisplatin-induced anorexia in rats.


Assuntos
Anorexia/metabolismo , Antineoplásicos/efeitos adversos , Cisplatino/efeitos adversos , Ocitocina/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Núcleo Supraóptico/metabolismo , Animais , Anorexia/induzido quimicamente , Área Postrema/efeitos dos fármacos , Área Postrema/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Transgênicos , Ratos Wistar , Receptores de Ocitocina/antagonistas & inibidores , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo , Núcleo Supraóptico/efeitos dos fármacos
11.
Nat Med ; 23(10): 1215-1219, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28846098

RESUMO

Growth/differentiation factor 15 (GDF15), also known as MIC-1, is a distant member of the transforming growth factor-ß (TGF-ß) superfamily and has been implicated in various biological functions, including cancer cachexia, renal and heart failure, atherosclerosis and metabolism. A connection between GDF15 and body-weight regulation was initially suggested on the basis of an observation that increasing GDF15 levels in serum correlated with weight loss in individuals with advanced prostate cancer. In animal models, overexpression of GDF15 leads to a lean phenotype, hypophagia and other improvements in metabolic parameters, suggesting that recombinant GDF15 protein could potentially be used in the treatment of obesity and type 2 diabetes. However, the signaling and mechanism of action of GDF15 are poorly understood owing to the absence of a clearly identified cognate receptor. Here we report that GDNF-family receptor α-like (GFRAL), an orphan member of the GFR-α family, is a high-affinity receptor for GDF15. GFRAL binds to GDF15 in vitro and is required for the metabolic actions of GDF15 with respect to body weight and food intake in vivo in mice. Gfral-/- mice were refractory to the effects of recombinant human GDF15 on body-weight, food-intake and glucose parameters. Blocking the interaction between GDF15 and GFRAL with a monoclonal antibody prevented the metabolic effects of GDF15 in rats. Gfral mRNA is highly expressed in the area postrema of mouse, rat and monkey, in accordance with previous reports implicating this region of the brain in the metabolic actions of GDF15 (refs. 4,5,6). Together, our data demonstrate that GFRAL is a receptor for GDF15 that mediates the metabolic effects of GDF15.


Assuntos
Área Postrema/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Fator 15 de Diferenciação de Crescimento/farmacologia , Obesidade/metabolismo , Redução de Peso/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Ingestão de Alimentos/genética , Citometria de Fluxo , Receptores de Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Células HEK293 , Humanos , Immunoblotting , Macaca fascicularis , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real , Ressonância de Plasmônio de Superfície , Redução de Peso/genética
12.
Endocr Regul ; 51(2): 73-83, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28609288

RESUMO

OBJECTIVE: Fos protein expression in catecholamine-synthesizing neurons of the substantia nigra (SN) pars compacta (SNC, A8), pars reticulata (SNR, A9), and pars lateralis (SNL), the ventral tegmental area (VTA, A10), the locus coeruleus (LC, A6) and subcoeruleus (sLC), the ventrolateral pons (PON-A5), the nucleus of the solitary tract (NTS-A2), the area postrema (AP), and the ventrolateral medulla (VLM-A1) was quantitatively evaluated aft er a single administration of asenapine (ASE) (designated for schizophrenia treatment) in male Wistar rats preconditioned with a chronic unpredictable variable mild stress (CMS) for 21 days. Th e aim of the present study was to reveal whether a single ASE treatment may 1) activate Fos expression in the brain areas selected; 2) activate tyrosine hydroxylase (TH)-synthesizing cells displaying Fos presence; and 3) be modulated by CMS preconditioning. METHODS: Control (CON), ASE, CMS, and CMS+ASE groups were used. CMS included restraint, social isolation, crowding, swimming, and cold. Th e ASE and CMS+ASE groups received a single dose of ASE (0.3 mg/kg, s.c.) and CON and CMS saline (300 µl/rat, s.c.). The animals were sacrificed 90 min aft er the treatments. Fos protein and TH-labeled immunoreactive perikarya were analyzed on double labeled histological sections and enumerated on captured pictures using combined light and fluorescence microscope illumination. RESULTS: Saline or CMS alone did not promote Fos expression in any of the structures investigated. ASE alone or in combination with CMS elicited Fos expression in two parts of the SN (SNC, SNR) and the VTA. Aside from some cells in the central gray tegmental nuclei adjacent to LC, where a small number of Fos profiles occurred, none or negligible Fos occurrence was detected in the other structures investigated including the LC and sLC, PON-A5, NTS-A2, AP, and VLM-A1. CMS preconditioning did not infl uence the level of Fos induction in the SN and VTA elicited by ASE administration. Similarly, the ratio between the amount of free Fos and Fos colocalized with TH was not aff ected by stress preconditioning in the SNC, SNR, and the VTA. CONCLUSIONS: Th e present study provides an anatomical/functional knowledge about the nature of the acute ASE treatment on the catecholamine-synthesizing neurons activity in certain brain structures and their missing interplay with the CMS preconditioning.


Assuntos
Antipsicóticos/farmacologia , Encéfalo/efeitos dos fármacos , Condicionamento Psicológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Neurônios/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-fos/efeitos dos fármacos , Estresse Psicológico/metabolismo , Tirosina 3-Mono-Oxigenase/efeitos dos fármacos , Animais , Área Postrema/citologia , Área Postrema/efeitos dos fármacos , Área Postrema/metabolismo , Encéfalo/citologia , Encéfalo/metabolismo , Catecolaminas/biossíntese , Dibenzocicloeptenos , Imuno-Histoquímica , Locus Cerúleo/citologia , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Masculino , Bulbo/citologia , Bulbo/efeitos dos fármacos , Bulbo/metabolismo , Microscopia de Fluorescência , Neurônios/metabolismo , Parte Compacta da Substância Negra/citologia , Parte Compacta da Substância Negra/efeitos dos fármacos , Parte Compacta da Substância Negra/metabolismo , Parte Reticular da Substância Negra/citologia , Parte Reticular da Substância Negra/efeitos dos fármacos , Parte Reticular da Substância Negra/metabolismo , Ponte/citologia , Ponte/efeitos dos fármacos , Ponte/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos , Ratos Wistar , Núcleo Solitário/citologia , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo , Estresse Psicológico/psicologia , Tirosina 3-Mono-Oxigenase/metabolismo , Área Tegmentar Ventral/citologia , Área Tegmentar Ventral/efeitos dos fármacos , Área Tegmentar Ventral/metabolismo
13.
Clin Toxicol (Phila) ; 55(8): 908-913, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28494183

RESUMO

BACKGROUND: Cannabinoid hyperemesis syndrome (CHS) is characterized by symptoms of cyclic abdominal pain, nausea, and vomiting in the setting of prolonged cannabis use. The transient receptor potential vanilloid 1 (TRPV1) receptor may be involved in this syndrome. Topical capsaicin is a proposed treatment for CHS; it binds TRPV1 with high specificity, impairing substance P signaling in the area postrema and nucleus tractus solitarius via overstimulation of TRPV1. This may explain its apparent antiemetic effect in this syndrome. PURPOSE: We describe a series of thirteen cases of suspected cannabis hyperemesis syndrome treated with capsaicin in the emergency departments of two academic medical centers. METHODS: A query of the electronic health record at both centers identified thirteen patients with documented daily cannabis use and symptoms consistent with CHS who were administered topical capsaicin cream for symptom management. RESULTS: All 13 patients experienced symptom relief after administration of capsaicin cream. CONCLUSION: Topical capsaicin was associated with improvement in symptoms of CHS after other treatments failed.


Assuntos
Dor Abdominal/tratamento farmacológico , Antieméticos/administração & dosagem , Capsaicina/administração & dosagem , Serviço Hospitalar de Emergência , Abuso de Maconha/complicações , Fumar Maconha/efeitos adversos , Náusea/tratamento farmacológico , Fármacos do Sistema Sensorial/administração & dosagem , Vômito/tratamento farmacológico , Dor Abdominal/diagnóstico , Dor Abdominal/etiologia , Dor Abdominal/metabolismo , Adulto , Antieméticos/efeitos adversos , Área Postrema/efeitos dos fármacos , Área Postrema/metabolismo , Capsaicina/efeitos adversos , Registros Eletrônicos de Saúde , Feminino , Humanos , Masculino , Massachusetts , Pessoa de Meia-Idade , Missouri , Náusea/diagnóstico , Náusea/etiologia , Náusea/metabolismo , Estudos Retrospectivos , Fármacos do Sistema Sensorial/efeitos adversos , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo , Síndrome , Canais de Cátion TRPV/antagonistas & inibidores , Canais de Cátion TRPV/metabolismo , Resultado do Tratamento , Vômito/diagnóstico , Vômito/etiologia , Vômito/metabolismo , Adulto Jovem
14.
J Physiol Sci ; 67(4): 467-474, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27535568

RESUMO

To evaluate relative factors for anorectic effects of L-histidine, we performed behavioral experiments for measuring food and fluid intake, conditioned taste aversion (CTA), taste disturbance, and c-Fos immunoreactive (Fos-ir) cells before and after i.p. injection with L-histidine in rats. Animals were injected with saline (9 ml/kg, i.p.) for a control group, and saline (9 ml/kg, i.p.) containing L-histidine (0.75, 1.5, 2.0 g/kg) for a L-histidine group. Injection of L-histidine decreased the average value of food intake, and statistically significant anorectic effects were found in animals injected with 1.5 or 2.0 g/kg L-histidine but not with 0.75 g/kg L-histidine. Taste abnormalities were not detected in any of the groups. Animals injected with 2.0 g/kg L-histidine were revealed to present with nausea by the measurement of CTA. In this group, a significant increase in the number of Fos-ir cells was detected both in the area postrema and the nucleus tractus solitarius (NTS). In the 0.75 g/kg L-histidine group, a significant increase in the number of Fos-ir cells was detected only in the NTS. When the ventral gastric branch vagotomy was performed, recovery from anorexia became faster than the sham-operated group, however, vagotomized rats injected with 2.0 g/kg L-histidine still acquired CTA. These data indicate that acute anorectic effects induced by highly concentrated L-histidine are partly caused by induction of nausea and/or visceral discomfort accompanied by neuronal activities in the NTS and the area postrema. We suggest that acute and potent effects of L-histidine on food intake require substantial amount of L-histidine in the diet.


Assuntos
Depressores do Apetite/administração & dosagem , Encéfalo/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Comportamento Alimentar/efeitos dos fármacos , Histidina/administração & dosagem , Paladar/efeitos dos fármacos , Dor Visceral/induzido quimicamente , Animais , Área Postrema/efeitos dos fármacos , Área Postrema/metabolismo , Área Postrema/fisiopatologia , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Injeções Intraperitoneais , Náusea/induzido quimicamente , Náusea/fisiopatologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo , Núcleo Solitário/fisiopatologia , Fatores de Tempo , Vagotomia , Dor Visceral/fisiopatologia , Dor Visceral/psicologia
15.
J Cachexia Sarcopenia Muscle ; 8(3): 417-427, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28025863

RESUMO

BACKGROUND: The cancer-anorexia-cachexia syndrome (CACS) negatively affects survival and therapy success in cancer patients. Inflammatory mediators and tumour-derived factors are thought to play an important role in the aetiology of CACS. However, the central and peripheral mechanisms contributing to CACS are insufficiently understood. The area postrema (AP) and the nucleus tractus solitarii are two important brainstem centres for the control of eating during acute sickness conditions. Recently, the tumour-derived macrophage inhibitory cytokine-1 (MIC-1) emerged as a possible mediator of cancer anorexia because lesions of these brainstem areas attenuated the anorectic effect of exogenous MIC-1 in mice. METHODS: Using a rat hepatoma tumour model, we examined the roles of the AP and of vagal afferents in the mediation of CACS. Specifically, we investigated whether a lesion of the AP (APX) or subdiaphragmatic vagal deafferentation (SDA) attenuate anorexia, body weight, muscle, and fat loss. Moreover, we analysed MIC-1 levels in this tumour model and their correlation with tumour size and the severity of the anorectic response. RESULTS: In tumour-bearing sham-operated animals mean daily food intake significantly decreased. The anorectic response was paralleled by a significant loss of body weight and muscle mass. APX rats were protected against anorexia, body weight loss, and muscle atrophy after tumour induction. In contrast, subdiaphragmatic vagal deafferentation did not attenuate cancer-induced anorexia or body weight loss. Tumour-bearing rats had substantially increased MIC-1 levels, which positively correlated with tumour size and cancer progression and negatively correlated with food intake. CONCLUSIONS: These findings demonstrate the importance of the AP in the mediation of cancer-dependent anorexia and body weight loss and support a pathological role of MIC-1 as a tumour-derived factor mediating CACS, possibly via an AP-dependent action.


Assuntos
Anorexia/etiologia , Anorexia/metabolismo , Área Postrema/metabolismo , Caquexia/etiologia , Caquexia/metabolismo , Fator 15 de Diferenciação de Crescimento/metabolismo , Neoplasias Hepáticas/complicações , Nervo Vago/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Animais , Composição Corporal , Peso Corporal , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Metabolismo Energético , Xenoenxertos , Neoplasias Hepáticas/patologia , Masculino , Atividade Motora , Músculo Esquelético/inervação , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Ratos
16.
Am J Physiol Regul Integr Comp Physiol ; 310(5): R440-8, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26719304

RESUMO

The area postrema (AP) is a circumventricular organ with important roles in central autonomic regulation. This medullary structure has been shown to express the leptin receptor and has been suggested to have a role in modulating peripheral signals, indicating energy status. Using RT-PCR, we have confirmed the presence of mRNA for the leptin receptor, ObRb, in AP, and whole cell current-clamp recordings from dissociated AP neurons demonstrated that leptin influenced the excitability of 51% (42/82) of AP neurons. The majority of responsive neurons (62%) exhibited a depolarization (5.3 ± 0.7 mV), while the remaining affected cells (16/42) demonstrated hyperpolarizing effects (-5.96 ± 0.95 mV). Amylin was found to influence the same population of AP neurons. To elucidate the mechanism(s) of leptin and amylin actions in the AP, we used fluorescence resonance energy transfer (FRET) to determine the effect of these peptides on cAMP levels in single AP neurons. Leptin and amylin were found to elevate cAMP levels in the same dissociated AP neurons (leptin: % total FRET response 25.3 ± 4.9, n = 14; amylin: % total FRET response 21.7 ± 3.1, n = 13). When leptin and amylin were coapplied, % total FRET response rose to 53.0 ± 8.3 (n = 6). The demonstration that leptin and amylin influence a subpopulation of AP neurons and that these two signaling molecules have additive effects on single AP neurons to increase cAMP, supports a role for the AP as a central nervous system location at which these circulating signals may act through common intracellular signaling pathways to influence central control of energy balance.


Assuntos
Área Postrema/efeitos dos fármacos , Leptina/farmacologia , Neurônios/efeitos dos fármacos , Receptores para Leptina/agonistas , Potenciais de Ação , Animais , Área Postrema/citologia , Área Postrema/metabolismo , Células Cultivadas , AMP Cíclico/metabolismo , Metabolismo Energético/efeitos dos fármacos , Técnicas In Vitro , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Masculino , Neurônios/metabolismo , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Sistemas do Segundo Mensageiro/efeitos dos fármacos , Fatores de Tempo
17.
Eur J Neurosci ; 43(5): 653-61, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26750109

RESUMO

Amylin is a pancreatic ß-cell hormone that acts as a satiating signal to inhibit food intake by binding to amylin receptors (AMYs) and activating a specific neuronal population in the area postrema (AP). AMYs are heterodimers that include a calcitonin receptor (CTR) subunit [CTR isoform a or b (CTRa or CTRb)] and a member of the receptor activity-modifying proteins (RAMPs). Here, we used single-cell quantitative polymerase chain reaction to assess co-expression of AMY subunits in AP neurons from rats that were injected with amylin or vehicle. Because amylin interacts synergistically with the adipokine leptin to reduce body weight, we also assessed the co-expression of AMY and the leptin receptor isoform b (LepRb) in amylin-activated AP neurons. Single cells were collected from Wistar rats and from transgenic Fos-GFP rats that express green fluorescent protein (GFP) under the control of the Fos promoter. We found that the mRNAs of CTRa, RAMP1, RAMP2 and RAMP3 were all co-expressed in single AP neurons. Moreover, most of the CTRa+ cells co-expressed more than one of the RAMPs. Amylin down-regulated RAMP1 and RAMP3 but not CTR mRNAs in AMY+ neurons, suggesting a possible negative feedback mechanism of amylin at its own primary receptors. Interestingly, amylin up-regulated RAMP2 mRNA. We also found that a high percentage of single cells that co-expressed all components of a functional AMY expressed LepRb mRNA. Thus, single AP cells expressed both AMY and LepRb, which formed a population of first-order neurons that presumably can be directly activated by amylin and, at least in part, also by leptin.


Assuntos
Área Postrema/metabolismo , Neurônios/metabolismo , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/metabolismo , Receptores para Leptina/metabolismo , Animais , Área Postrema/citologia , Retroalimentação Fisiológica , Feminino , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Leptina/farmacologia , Masculino , Neurônios/efeitos dos fármacos , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Receptores de Polipeptídeo Amiloide de Ilhotas Pancreáticas/genética , Receptores para Leptina/genética
18.
Neurosci Lett ; 609: 124-8, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26475505

RESUMO

Cocaine-and amphetamine-regulated transcript peptides (CARTp) suppress gastric emptying and nutritional intake following 4th icv administration. Whereas, the CARTp inhibition of gastric emptying was blocked by pre-treatment with a non-selective corticotropin releasing factor (CRF) antagonist, sucrose drinking was not, suggesting that CARTp- and CRF controls for food intake and gastric emptying are operated through separable dorsal hindbrain mechanisms. The aim of the study was to explore CARTp-CRF brainstem interactions on patterns of neuronal activation in areas of the brainstem and midbrain relevant to gastrointestinal control and feeding regulation. Rats received 4th icv injections of combinations of vehicle, CARTp (1µg), or the nonselective CRF antagonist, α-helical CRF9-41 (αCRF), in a randomized order. Brain sections were processed for c-fos by immunohistochemistry followed by image analysis at defined levels of the brain. CARTp (1µg, 4th icv) induced a robust c-fos response in the nucleus of the solitary tract (NTS) and area postrema (AP), whereas, no c-fos could be detected in the parabrachial nucleus (PBN), the paraventricular nucleus of the hypothalamus (PVN) or the arcuate nucleus of the hypothalamus (ARC). The c-fos expression in the structures of the dorsal vagal complex (DVC) was completely blocked by pre-treatment with the CRF antagonist, which did not by itself induce c-fos at any examined level. After CARTp and αCRF in combination, there was a tendency towards an increased c-fos response in the ARC. We conclude that CARTp activates cells of the area postrema and NTS via a downstream, CRF-dependent mechanism.


Assuntos
Área Postrema/metabolismo , Proteínas do Tecido Nervoso/farmacologia , Proteínas Proto-Oncogênicas c-fos/biossíntese , Núcleo Solitário/metabolismo , Animais , Hormônio Liberador da Corticotropina/farmacologia , Ingestão de Alimentos/fisiologia , Quarto Ventrículo , Trato Gastrointestinal/fisiologia , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Mesencéfalo/efeitos dos fármacos , Mesencéfalo/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Fragmentos de Peptídeos/farmacologia , Ratos Sprague-Dawley , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo
19.
Physiol Behav ; 151: 111-20, 2015 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-26171591

RESUMO

Previous studies from our laboratory have shown that methysergide, a serotonergic antagonist, injected into the lateral parabrachial nucleus (LPBN) combined with a pre-load of 2 M NaCl, given by gavage, induces 0.3 M NaCl intake. The mechanisms involved in this paradoxical behavior are still unknown. In the present work, we investigated the effect of serotonergic blockade into the LPBN on hindbrain and hypothalamic activity, gastric emptying and arterial blood pressure in cell-dehydrated rats. Methysergide plus 2 M NaCl infused intragastrically or intravenously promoted 0.3 M NaCl intake in two-bottle tests. In cell-dehydrated rats with no access to fluids, methysergide compared to vehicle increased Fos immunoreactivity in the medial nucleus of the solitary tract, area postrema and non-oxytocinergic cells of the ventral portion of the hypothalamic paraventricular nucleus (PVN). There was no alteration in the number of neurons double-labeled for Fos-ir and oxytocin in the PVN and supraoptic nuclei. There was also no alteration in plasma oxytocin and vasopressin, or arterial pressure. In rats cell-dehydrated by i.v. 2 M NaCl, methysergide also did not change the amount of an intragastric load of 0.3 M NaCl retained in the stomach or intestine. The results suggest that methysergide injected into the LPBN of cell-dehydrated rat does not alter primary inhibitory signals that control sodium intake. The inhibitory signals blocked by methysergide in the LPBN possibly originated from activation of brain osmoreceptors, second order visceral/hormonal signals or a combination of both.


Assuntos
Desidratação/metabolismo , Esvaziamento Gástrico/efeitos dos fármacos , Metisergida/farmacologia , Núcleos Parabraquiais/efeitos dos fármacos , Solução Salina Hipertônica , Antagonistas da Serotonina/farmacologia , Animais , Área Postrema/efeitos dos fármacos , Área Postrema/metabolismo , Pressão Arterial/efeitos dos fármacos , Pressão Arterial/fisiologia , Modelos Animais de Doenças , Esvaziamento Gástrico/fisiologia , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ocitocina/metabolismo , Núcleos Parabraquiais/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Solução Salina Hipertônica/administração & dosagem , Cloreto de Sódio na Dieta/administração & dosagem , Núcleo Solitário/efeitos dos fármacos , Núcleo Solitário/metabolismo , Núcleo Supraóptico/efeitos dos fármacos , Núcleo Supraóptico/metabolismo , Vasopressinas/sangue
20.
Brain Res ; 1601: 40-51, 2015 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-25557402

RESUMO

Epithelial sodium channels (ENaCs) are strongly expressed in the circumventricular organs (CVOs), and these structures may play an important role in sensing plasma sodium levels. Here, the potent ENaC blocker amiloride was injected intraperitoneally in rats and 2h later, the c-Fos activation pattern in the CVOs was studied. Amiloride elicited dose-related activation in the area postrema (AP) but only ~10% of the rats showed c-Fos activity in the organum vasculosum of the lamina terminalis (OVLT) and subfornical organ (SFO). Tyrosine hydroxylase-immunoreactive (catecholamine) AP neurons were activated, but tryptophan hydroxylase-immunoreactive (serotonin) neurons were unaffected. The AP projects to FoxP2-expressing neurons in the dorsolateral pons which include the pre-locus coeruleus nucleus and external lateral part of the parabrachial nucleus; both cell groups were c-Fos activated following systemic injections of amiloride. In contrast, another AP projection target--the aldosterone-sensitive neurons of the nucleus tractus solitarius which express the enzyme 11-ß-hydroxysteriod dehydrogenase type 2 (HSD2) were not activated. As shown here, plasma concentrations of amiloride used in these experiments were near or below the IC50 level for ENaCs. Amiloride did not induce changes in blood pressure, heart rate, or regional vascular resistance, so sensory feedback from the cardiovascular system was probably not a causal factor for the c-Fos activity seen in the CVOs. In summary, amiloride may have a dual effect on sodium homeostasis causing a loss of sodium via the kidney and inhibiting sodium appetite by activating the central satiety pathway arising from the AP.


Assuntos
Amilorida/farmacologia , Área Postrema/metabolismo , Bloqueadores do Canal de Sódio Epitelial/farmacologia , Canais Epiteliais de Sódio/metabolismo , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Amilorida/sangue , Amilorida/líquido cefalorraquidiano , Animais , Área Postrema/efeitos dos fármacos , Pressão Sanguínea/efeitos dos fármacos , Feminino , Fatores de Transcrição Forkhead/metabolismo , Frequência Cardíaca/efeitos dos fármacos , Masculino , Neurônios/efeitos dos fármacos , Núcleos Parabraquiais/efeitos dos fármacos , Núcleos Parabraquiais/metabolismo , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA