Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.316
Filtrar
1.
Biomed Pharmacother ; 163: 114861, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37178575

RESUMO

Research on transient receptor potential vanilloid-4 (TRPV4) can provide a promising potential therapeutic target in the development of novel medicines for lung disorders. TRPV4 expresses in lung tissue and plays an important role in the maintenance of respiratory homeostatic function. TRPV4 is upregulated in life-threatening respiratory diseases like pulmonary hypertension, asthma, cystic fibrosis, and chronic obstructive pulmonary diseases. TRPV4 is linked to several proteins that have physiological functions and are sensitive to a wide variety of stimuli, such as mechanical stimulation, changes in temperature, and hypotonicity, and responds to a variety of proteins and lipid mediators, including anandamide (AA), the arachidonic acid metabolite, 5,6-epoxyeicosatrienoic acid (5,6-EET), a plant dimeric diterpenoid called bisandrographolide A (BAA), and the phorbol ester 4-alpha-phorbol-12,13-didecanoate (4α-PDD). This study focused on relevant research evidence of TRPV4 in lung disorders and its agonist and antagonist effects. TRPV4 can be a possible target of discovered molecules that exerts high therapeutic potential in the treatment of respiratory diseases by inhibiting TRPV4.


Assuntos
Hipertensão Pulmonar , Canais de Potencial de Receptor Transitório , Humanos , Canais de Cátion TRPV/metabolismo , Ésteres de Forbol/farmacologia , Hipertensão Pulmonar/metabolismo
2.
J Nat Prod ; 85(11): 2687-2693, 2022 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-36378070

RESUMO

Four new diterpene esters, shirakindicans A-D (1-4), along with eight related known diterpene esters (5-12), were isolated from the fruits of the Bangladeshi medicinal plant Shirakiopsis indica. The structures of 1-4 were elucidated by spectroscopic data analysis and electronic circular dichroism (ECD) calculations. Shirakindican A (1) was assigned as a tigliane-type diterpene ester possessing an unusual 6ß-hydroxy-1,7-dien-3-one structure, while shirakindican B (2) exhibits a tiglia-1,5-dien-3,7-dione structure. The anti-HIV activities of the isolated diterpene esters were evaluated and showed significant activities for sapintoxins A (5) and D (11), with EC50 values of 0.0074 and 0.044 µM, respectively, and TI values of 1 100 and 5 290. Sapatoxin A (12) also exhibited anti-HIV activity with an EC50 value of 0.13 µM and a TI value of 161.


Assuntos
Fármacos Anti-HIV , Euphorbiaceae , HIV , Ésteres de Forbol , Euphorbiaceae/química , Frutas/química , Estrutura Molecular , HIV/efeitos dos fármacos , Ésteres de Forbol/química , Ésteres de Forbol/isolamento & purificação , Ésteres de Forbol/farmacologia , Fármacos Anti-HIV/química , Fármacos Anti-HIV/isolamento & purificação , Fármacos Anti-HIV/farmacologia , Linhagem Celular , Humanos
3.
J Microbiol Biotechnol ; 32(1): 81-90, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-34818666

RESUMO

Peucedanum japonicum Thunberg (PJT) has been used in traditional medicine to treat colds, coughs, fevers, and other inflammatory diseases. The goal of this study was to investigate whether 3'-isovaleryl-4'-senecioylkhellactone (IVSK) from PJT has anti-inflammatory effects on lung epithelial cells. The anti-inflammatory effects of IVSK were evaluated using phorbol 12-myristate 13-acetate (PMA)-stimulated A549 cells and regular human lung epithelial cells as a reference. IVSK reduced the secretion of the inflammatory mediators interleukin (IL)-8 and monocyte chemoattractant protein-1 (MCP-1), and the mRNA expression of IL-6, IL-8, MCP-1, and IL-1ß. Additionally, it inhibited the phosphorylation of IκB kinase (IKK), p65, Iκ-Bα, and mitogen-activated protein kinases (MAPKs) p38, JNK, and ERK in A549 cells stimulated with PMA. Moreover, the binding affinity of activator protein-1 (AP-1) and nuclear factor-κB (NF-κB) was significantly reduced in the luciferase assay, while nuclear translocation was markedly inhibited by IVSK in the immunocytochemistry. These findings indicate that IVSK can protect against inflammation through the AP-1 and NF-κB pathway and could possibly be used as a lead compound for the treatment of inflammatory lung diseases.


Assuntos
Anti-Inflamatórios/farmacologia , Apiaceae/metabolismo , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Ésteres de Forbol/farmacologia , Células A549/efeitos dos fármacos , Citocinas/metabolismo , Humanos , Quinase I-kappa B/metabolismo , Inflamação , Mediadores da Inflamação/metabolismo , Interleucina-1beta , Interleucina-8 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , RNA Mensageiro/metabolismo , Fator de Transcrição AP-1/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
4.
Bioorg Med Chem Lett ; 50: 128319, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34403728

RESUMO

Tigliane esters show many biological activities, including anti-HIV-1 activity. Our aim in this study was to establish structure-anti-HIV activity relationships for four series of tigliane-type diterpenoids. We synthesized and evaluated 29 new phorbol ester derivatives for anti-HIV activity and for cytotoxicity against human tumor cell lines. Among them, three derivatives, two phorbol-13-monoesters (5d and 5e) and a phorbol-12,13-diester (6a), showed significant anti-HIV activity. We found that better anti-HIV activity was often associated with a shorter acyl ester at C-13. Particularly, compounds with a phenyl ring in the ester side chain exhibited excellent anti-HIV activity and had good safety indexes. Due to its significant anti-HIV potency with a high selectivity index, phorbol-12,13-dicinnamoate (6a) was chosen as the potential candidate for further preclinical trials.


Assuntos
Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , HIV-1/fisiologia , Ésteres de Forbol/química , Ésteres de Forbol/farmacologia , Replicação Viral/efeitos dos fármacos , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Estrutura Molecular , Relação Estrutura-Atividade
5.
Hum Cell ; 34(6): 1709-1716, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34312810

RESUMO

Mechanical stiffness is closely related to cell adhesion and rounding in some cells. In leukocytes, dephosphorylation of ezrin/radixin/moesin (ERM) proteins is linked to cell adhesion events. To elucidate the relationship between surface stiffness, cell adhesion, and ERM dephosphorylation in leukocytes, we examined the relationship in the myelogenous leukemia line, KG-1, by treatment with modulation drugs. KG-1 cells have ring-shaped cortical actin with microvilli as the only F-actin cytoskeleton, and the actin structure constructs the mechanical stiffness of the cells. Phorbol 12-myristate 13-acetate and staurosporine, which induced cell adhesion to fibronectin surface and ERM dephosphorylation, caused a decrease in surface stiffness in KG-1 cells. Calyculin A, which inhibited ERM dephosphorylation and had no effect on cell adhesion, did not affect surface stiffness. To clarify whether decreasing cell surface stiffness and inducing cell adhesion are equivalent, we examined KG-1 cell adhesion by treatment with actin-attenuated cell softening reagents. Cytochalasin D clearly diminished cell adhesion, and high concentrations of Y27632 slightly induced cell adhesion. Only Y27632 slightly decreased ERM phosphorylation in KG-1 cells. Thus, decreasing cell surface stiffness and inducing cell adhesion are not equivalent, but these phenomena are coordinately regulated by ERM dephosphorylation in KG-1 cells.


Assuntos
Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Proteínas do Citoesqueleto/metabolismo , Elasticidade/fisiologia , Leucemia Mieloide/patologia , Leucócitos/metabolismo , Leucócitos/fisiologia , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Actinas/metabolismo , Amidas/farmacologia , Adesão Celular/genética , Linhagem Celular Tumoral , Citocalasina D/farmacologia , Elasticidade/efeitos dos fármacos , Fibronectinas/metabolismo , Humanos , Leucemia Mieloide/metabolismo , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Ésteres de Forbol/farmacologia , Fosforilação/efeitos dos fármacos , Piridinas/farmacologia , Estaurosporina/farmacologia
6.
Cancer Immunol Immunother ; 70(12): 3477-3488, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33890137

RESUMO

Acute megakaryocytic leukemia (AMKL) is one of the rarest sub-types of acute myeloid leukemia (AML). AMKL is characterized by high proliferation of megakaryoblasts and myelofibrosis of bone marrow, this disease is also associated with poor prognosis. Previous analyses have reported that the human megakaryoblastic cells can be differentiated into cells with megakaryocyte (MK)-like characteristics by phorbol 12-myristate 13-acetate (PMA). However, little is known about the mechanism responsible for regulating this differentiation process. We performed long non-coding RNA (lncRNA) profiling to investigate the differently expressed lncRNAs in megakaryocyte blast cells treated with and without PMA and examined those that may be responsible for the PMA-induced differentiation of megakaryoblasts into MKs. We found 30 out of 90 lncRNA signatures to be differentially expressed after PMA treatment of megakaryoblast cells, including the highly expressed JPX lncRNA. Further, in silico lncRNA-miRNA and miRNA-mRNA interaction analysis revealed that the JPX is likely involved in unblocking the expression of TGF-ß receptor (TGF-ßR) by sponging oncogenic miRNAs (miR-9-5p, miR-17-5p, and miR-106-5p) during MK differentiation. Further, we report the activation of TGF-ßR-induced non-canonical ERK1/2 and PI3K/AKT pathways during PMA-induced MK differentiation and ploidy development. The present study demonstrates that TGF-ßR-induced non-canonical ERK1/2 and PI3K/AKT pathways are associated with PMA-induced MK differentiation and ploidy development; in this molecular mechanism, JPX lncRNA could act as a decoy for miR-9-5p, miR-17-5p, and miR-106-5p, titrating them away from TGF-ßR mRNAs. Importantly, this study reveals the activation of ERK1/2 and PI3K/AKT pathway in PMA-induced Dami cell differentiation into MK. The identified differentially expressed lncRNA signatures may facilitate further study of the detailed molecular mechanisms associated with MK development. Thus, our data provide numerous targets with therapeutic potential for the modulation of the differentiation of megakaryoblastic cells in AMKL.


Assuntos
Leucemia Megacarioblástica Aguda/tratamento farmacológico , Megacariócitos/efeitos dos fármacos , Ésteres de Forbol/farmacologia , RNA Longo não Codificante/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Leucemia Megacarioblástica Aguda/genética , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética , RNA Longo não Codificante/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Fator de Crescimento Transformador beta/genética
7.
Anticancer Agents Med Chem ; 21(18): 2512-2519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33622229

RESUMO

BACKGROUND: Medicinal plants serve as sources of compounds used to treat other types of cancers. The root of the plant Lophira alata (Ochnaceae) has been used as a component of traditional herbal decoctions administered to cancer patients in southwestern Nigeria. However, the mechanism of the cytotoxic effects of Lophira alata alone or in the presence of phorbol ester has not been investigated in brain tumor cells. OBJECTIVE: This study aimed to examine the cytotoxic potential of the methanolic fraction of Lophira alata root on malignant glioma invasive cellular growth and survival. METHODS: The methanolic fraction of Lophira alata (LAM) was subjected to high-performance liquid chromatography to determine the fingerprints of the active molecules. The antiproliferative effects of Lophira alata were assessed using the MTT and LDH assays. Protein immunoblots were carried out to test the effects of Lophira alata, alone or in the presence of phorbol ester, on survival signaling pathways, such as Akt, mTOR, and apoptotic markers such as PARP and caspases. RESULTS: The methanolic fraction of Lophira alata (LAM) induced a concentration-dependent and time-dependent decrease in glioma cell proliferation. In addition, LAM attenuated phorbol ester-mediated signaling of downstream targets such as Akt/mTOR. Gene silencing using siRNA targeting PKC-alpha attenuated LAM-mediated downregulation of Akt. In addition, LAM induced both PARP and caspase cleavages. The HPLC fingerprint of the fraction indicates the presence of flavonoids. CONCLUSION: LAM decreases cell proliferation and induces apoptosis in glioma cell lines and thus could serve as a therapeutic molecule in the management of gliomas.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Glioblastoma/tratamento farmacológico , Ochnaceae/química , Extratos Vegetais/farmacologia , Proteína Quinase C-alfa/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glioblastoma/metabolismo , Glioblastoma/patologia , Humanos , Ésteres de Forbol/farmacologia , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Proteína Quinase C-alfa/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/isolamento & purificação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células Tumorais Cultivadas
8.
J Ethnopharmacol ; 279: 113889, 2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33524514

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Euphorbia fischeriana S. (E. fischeriana) is a classic Chinese herb with toxicity that is mainly used for cancer treatment and in insect repellent, anti-inflammatory and anti-edema applications (Liu et al., 2001). 12-Deoxyphorbol13-palmitate (DP), a tetracyclic diterpene monomer compound, was extracted from the roots of E. fischeriana by our research groups. AIM: Previous studies found that DP could inhibit the proliferation of leukemia cells in vitro. However, the underlying mechanism of DP in leukemia is unknown. Hence, DP's pharmacological effect on leukemia cells was investigated in this study. MATERIALS AND METHODS: DP was obtained from the Natural Medicine Chemistry Laboratory of Qiqihaer Medical University. In vitro, K562 cells and HL60 cells were incubated with DP or DP combined with LY294002 at different concentrations. Cell proliferation and apoptosis were detected by the relevant experimental methods. In vivo, nude mouse xenograft models were established by injecting K562 cells. DP was intraperitoneally administered to observe the influence on the growth of transplanted tumors. Gene detection and immunoblot analysis were performed to validate the mechanisms. RESULTS: The cell counting kit-8 (CCK-8) assay proved that DP inhibited the growth of K562 and HL60 cells in a time- or dose-dependent manner. At 12 h, DP could induce apoptosis by Annexin V-FITC/propidium iodide (PI) dual labeling, loss of mitochondrial membrane potential (MMP), intracellular reactive oxygen species (ROS), acridine orange/ethidium bromide (AO/EB) staining and transmission electron microscopy (TEM) observation in K562 or HL60 cells. Furthermore, in an assay of gene and protein expression, we found that DP could downregulate the gene and protein expression levels of Bcl-2, upregulate the gene and protein expression levels of Bax and Bim, and downregulate the protein expression levels of PI3k, p-Akt, and p-FoxO3a. Moreover, the effects of DP on proliferation and apoptosis in K562 cells were enhanced by LY294002. Then, we tested the antitumor effects of DP in vivo. Nude mouse xenograft models were established by subcutaneously injecting K562 cells. We found that tumor volume was significantly decreased in DP-treated xenograft nude mice. Morphologic changes, apoptosis degree, and related gene and protein expression levels in transplanted tumor tissue of DP-treated nude mice were assessed by different experimental methods. CONCLUSIONS: The in vivo and in vitro experimental results indicated that DP might inhibit the proliferation and induce the apoptosis of leukemia cells, which might be a result of suppressing the PI3k/Akt signaling pathways.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Euphorbia/química , Leucemia/tratamento farmacológico , Ésteres de Forbol/farmacologia , Animais , Antineoplásicos Fitogênicos/isolamento & purificação , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células HL-60 , Humanos , Células K562 , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ésteres de Forbol/isolamento & purificação , Fosfatidilinositol 3-Quinase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Methods Mol Biol ; 2270: 61-76, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33479893

RESUMO

IL-10 is the best known and most studied anti-inflammatory cytokine and, in the last 20 years, it has acquired even greater fame as it has been associated with the regulatory phenotype of B cells. Indeed, although great efforts have been made to find a unique marker, to date IL-10 remains the main way to follow both murine and human regulatory B cells, hence the need of precise and reproducible methods to identify and purify IL-10-producing B cells for both functional and molecular downstream assays. In this chapter, we present our protocols to isolate these cells from the murine spleen and peritoneum and from human peripheral blood. Since the production of IL-10 by B cells is not only a weapon to counteract the adverse effect of pro-inflammatory cytokines but also a response to cellular activation, we focused on those B cells that are prone to IL-10 production and detectable following a short-term stimulation with phorbol-12-myristate-13-acetate, ionomycin, and lipopolysaccharide (murine system) or CpG (human system).


Assuntos
Subpopulações de Linfócitos B/citologia , Linfócitos B Reguladores/citologia , Separação Celular/métodos , Animais , Subpopulações de Linfócitos B/imunologia , Citocinas/imunologia , Expressão Gênica/genética , Expressão Gênica/imunologia , Humanos , Interleucina-10/metabolismo , Ionomicina/farmacologia , Lipopolissacarídeos/farmacologia , Ativação Linfocitária/imunologia , Camundongos , Ésteres de Forbol/farmacologia , Baço/citologia , Acetato de Tetradecanoilforbol/farmacologia
10.
Mol Biol Rep ; 47(11): 8775-8788, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33098048

RESUMO

Numerous protocols to establish dopaminergic phenotype in SH-SY5Y cells have been reported. In most of these protocols there are variations in concentration of serum used. In this paper, we compared the effects of high (10%), low (3%) and descending (2.5%/1%) serum concentration in differentiation medium containing different proportion of retinoic acid (RA) and 12-O-Tetradecanoylphorbol-13-acetate (TPA) or RA-only on the undifferentiated SH-SY5Y cells with regards to cell morphology, biochemical and gene expression alterations. Cells differentiated in culture medium containing low and descending serum concentrations showed increased number of neurite projections and reduced proliferation rates when compared to undifferentiated cells. The SH-SY5Y cells differentiated in culture medium containing 3% RA and low serum or descending (2.5%/1% RA/TPA) were found to be more susceptible to 6-hydroxydopamine (6-OHDA) induced cytotoxicity. Cells differentiated with RA/TPA or RA differentiated showed increased production of the α-synuclein (SNCA) neuroprotein and dopamine neurotransmitter compared to undifferentiated cells, regardless serum concentrations used. There was no significant difference in the expression of tyrosine hydroxylase (TH) gene between undifferentiated and differentiated SH-SY5Y cells. However, the expression of dopamine receptor D2 (DRD2) gene was markedly increased (p<0.05) in differentiated cells with 3% serum and RA only when compared to undifferentiated cells. In conclusion, to terminally differentiate SH-SY5Y cells to be used as a cell-based model to study Parkinson's disease (PD) to investigate molecular mechanisms and drug discovery, the optimal differentiation medium should contain 3% serum in RA-only.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Meios de Cultura , Regulação da Expressão Gênica/efeitos dos fármacos , Ésteres de Forbol/farmacologia , Tretinoína/farmacologia , Linhagem Celular Tumoral , Meios de Cultura/química , Meios de Cultura/farmacologia , Humanos , Receptores de Dopamina D2/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , alfa-Sinucleína/metabolismo
11.
Int J Mol Sci ; 21(20)2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-33066446

RESUMO

Prostratin, a non-tumor promoting 12-deoxyphorbol ester, has been reported as a protein kinase C (PKC) activator and is shown to have anti-proliferative activity in certain cancer cell types. Here we show that GRC-2, a prostratin analogue isolated from Euphorbia grandicornis, is ten-fold more potent than prostratin for inhibiting the growth of human non-small cell lung cancer (NSCLC) A549 cells. Flow cytometry assay revealed that GRC-2 and prostratin inhibited cell cycle progression at the G2/M phase and induced apoptosis. The cytotoxic effect of GRC-2 and prostratin was accompanied by activation and nuclear translocation of PKC-δ and PKD as well as hyperactivation of extracellular signal-related kinase (ERK). Knockdown of either PKC-δ, PKD or ERK significantly protected A549 cancer cells from GRC-2- and prostratin-induced growth arrest as well as apoptosis. Taken together, our results have shown that prostratin and a more potent analogue GRC-2 reduce cell viability in NSCLC A549 cells, at least in part, through activation of the PKC-δ/PKD/ERK pathway, suggesting the potential of prostratin and GRC-2 as anticancer agents.


Assuntos
Apoptose/efeitos dos fármacos , Carcinógenos/farmacologia , Proliferação de Células/efeitos dos fármacos , Ésteres de Forbol/farmacologia , Transdução de Sinais/efeitos dos fármacos , Células A549 , Carcinógenos/química , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Ésteres de Forbol/química , Proteína Quinase C/metabolismo , Proteína Quinase C-delta/metabolismo
12.
Cells ; 9(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003440

RESUMO

Podoplanin and CD44 are transmembrane glycoproteins involved in inflammation and cancer. In this paper, we report that podoplanin is coordinately expressed with the CD44 standard (CD44s) and variant (CD44v) isoforms in vivo-in hyperplastic skin after a pro-inflammatory stimulus with 12-O-tetradecanoylphorbol-13-acetate (TPA)-and in vitro-in cell lines representative of different stages of mouse-skin chemical carcinogenesis, as well as in human squamous carcinoma cell (SCC) lines. Moreover, we identify CD44v10 in the mouse-skin carcinogenesis model as the only CD44 variant isoform expressed in highly aggressive spindle carcinoma cell lines together with CD44s and podoplanin. We also characterized CD44v3-10, CD44v6-10 and CD44v8-10 as the major variant isoforms co-expressed with CD44s and podoplanin in human SCC cell lines. Immunofluorescence confocal microscopy experiments show that these CD44v isoforms colocalize with podoplanin at plasma membrane protrusions and cell-cell contacts of SCC cells, as previously reported for CD44s. Furthermore, CD44v isoforms colocalize with podoplanin in chemically induced mouse-skin SCCs in vivo. Co-immunoprecipitation experiments indicate that podoplanin physically binds to CD44v3-10, CD44v6-10 and CD44v8-10 isoforms, as well as to CD44s. Podoplanin-CD44 interaction is mediated by the transmembrane and cytosolic regions and is negatively modulated by glycosylation of the extracellular domain. These results point to a functional interplay of podoplanin with both CD44v and CD44s isoforms in SCCs and give insight into the regulation of the podoplanin-CD44 association.


Assuntos
Carcinoma de Células Escamosas/metabolismo , Receptores de Hialuronatos/metabolismo , Glicoproteínas de Membrana/metabolismo , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinoma de Células Escamosas/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Extensões da Superfície Celular/metabolismo , Humanos , Receptores de Hialuronatos/genética , Glicoproteínas de Membrana/genética , Camundongos , Ésteres de Forbol/farmacologia , Ligação Proteica , Domínios Proteicos/genética , Isoformas de Proteínas
13.
Theranostics ; 10(22): 10186-10199, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32929342

RESUMO

Rationale: Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease characterized by autoantibody production by hyper-activated B cells. Although mesenchymal stem cells (MSCs) ameliorate lupus symptoms by inhibiting T cells, whether they inhibit B cells has been controversial. Here we address this issue and reveal how to prime MSCs to inhibit B cells and improve the efficacy of MSCs in SLE. Methods: We examined the effect of MSCs on purified B cells in vitro and the therapeutic efficacy of MSCs in lupus-prone MRL.Faslpr mice. We screened chemicals for their ability to activate MSCs to inhibit B cells. Results: Mouse bone marrow-derived MSCs inhibited mouse B cells in a CXCL12-dependent manner, whereas human bone marrow-derived MSCs (hMSCs) did not inhibit human B (hB) cells. We used a chemical approach to overcome this hurdle and found that phorbol myristate acetate (PMA), phorbol 12,13-dibutyrate, and ingenol-3-angelate rendered hMSCs capable of inhibiting IgM production by hB cells. As to the mechanism, PMA-primed hMSCs attracted hB cells in a CXCL10-dependent manner and induced hB cell apoptosis in a PD-L1-dependent manner. Finally, we showed that PMA-primed hMSCs were better than naïve hMSCs at ameliorating SLE progression in MRL.Faslpr mice. Conclusion: Taken together, our data demonstrate that phorbol esters might be good tool compounds to activate MSCs to inhibit B cells and suggest that our chemical approach might allow for improvements in the therapeutic efficacy of hMSCs in SLE.


Assuntos
Linfócitos B/efeitos dos fármacos , Lúpus Eritematoso Sistêmico/tratamento farmacológico , Células-Tronco Mesenquimais/efeitos dos fármacos , Ésteres de Forbol/farmacologia , Animais , Apoptose/efeitos dos fármacos , Células Cultivadas , Feminino , Humanos , Masculino , Transplante de Células-Tronco Mesenquimais , Camundongos , Camundongos Endogâmicos C3H , Linfócitos T/efeitos dos fármacos
14.
Int J Mol Sci ; 21(17)2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32867213

RESUMO

Platelet activation plays a key role in cardiovascular diseases. The generation of mitochondrial reactive oxygen species (ROS) has been described as a critical step required for platelet activation. For this reason, it is necessary to find new molecules with antiplatelet activity and identify their mechanisms of action. Mitoquinone (MitoQ) is a mitochondria-targeted antioxidant that reduces mitochondrial overproduction of ROS. In this work, the antiplatelet effect of MitoQ through platelet adhesion and spreading, secretion, and aggregation was evaluated. Thus MitoQ, in a non-toxic effect, decreased platelet adhesion and spreading on collagen surface, and expression of P-selectin and CD63, and inhibited platelet aggregation induced by collagen, convulxin, thrombin receptor activator peptide-6 (TRAP-6), and phorbol 12-myristate 13-acetate (PMA). As an antiplatelet mechanism, we showed that MitoQ produced mitochondrial depolarization and decreased ATP secretion. Additionally, in platelets stimulated with antimycin A and collagen MitoQ significantly decreased ROS production. Our findings showed, for the first time, an antiplatelet effect of MitoQ that is probably associated with its mitochondrial antioxidant effect.


Assuntos
Antioxidantes/farmacologia , Plaquetas/metabolismo , Compostos Organofosforados/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Ubiquinona/análogos & derivados , Trifosfato de Adenosina/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Células Cultivadas , Colágeno/metabolismo , Humanos , Camundongos , Mitocôndrias/metabolismo , Oligopeptídeos/farmacologia , Selectina-P/metabolismo , Ésteres de Forbol/farmacologia , Ativação Plaquetária/efeitos dos fármacos , Tetraspanina 30/metabolismo , Ubiquinona/farmacologia
15.
Cells ; 9(8)2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751549

RESUMO

In addition to antigen presentation to CD4+ T cells, aggregation of cell surface major histocompatibility complex class II (MHC-II) molecules induces signal transduction in antigen presenting cells that regulate cellular functions. We previously reported that crosslinking of MHC-II induced the endocytosis of MHC-II, which was associated with decreased surface expression levels in murine dendritic cells (DCs) and resulted in impaired activation of CD4+ T cells. However, the downstream signal that induces MHC-II endocytosis remains to be elucidated. In this study, we found that the crosslinking of MHC-II induced intracellular Ca2+ mobilization, which was necessary for crosslinking-induced MHC-II endocytosis. We also found that these events were suppressed by inhibitors of Syk and phospholipase C (PLC). Treatments with a phorbol ester promoted MHC-II endocytosis, whereas inhibitors of protein kinase C (PKC) suppressed crosslinking-induced endocytosis of MHC-II. These results suggest that PKC could be involved in this process. Furthermore, crosslinking-induced MHC-II endocytosis was suppressed by inhibitors of clathrin-dependent endocytosis. Our results indicate that the crosslinking of MHC-II could stimulate Ca2+ mobilization and induce the clathrin-dependent endocytosis of MHC-II in murine DCs.


Assuntos
Clatrina/metabolismo , Células Dendríticas/imunologia , Endocitose/efeitos dos fármacos , Antígenos de Histocompatibilidade Classe II/metabolismo , Proteína Quinase C/metabolismo , Animais , Apresentação de Antígeno/imunologia , Células da Medula Óssea/citologia , Cálcio/metabolismo , Células Cultivadas , Clatrina/antagonistas & inibidores , Reagentes de Ligações Cruzadas/metabolismo , Endocitose/imunologia , Estrenos/farmacologia , Masculino , Camundongos , Ésteres de Forbol/farmacologia , Proteína Quinase C/antagonistas & inibidores , Pirrolidinonas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Organismos Livres de Patógenos Específicos , Estaurosporina/farmacologia , Estilbenos/farmacologia , Quinase Syk/antagonistas & inibidores , Quinase Syk/metabolismo , Fosfolipases Tipo C/antagonistas & inibidores , Fosfolipases Tipo C/metabolismo
16.
Biochem Pharmacol ; 177: 113937, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32224142

RESUMO

Latent HIV reservoirs are the main obstacle to eradicate HIV infection. One strategy proposes to eliminate these viral reservoirs by pharmacologically reactivating the latently infected T cells. We show here that a 4-deoxyphorbol ester derivative isolated from Euphorbia amygdaloides ssp. semiperfoliata, 4ß-dPE A, reactivates HIV-1 from latency and could potentially contribute to decrease the viral reservoir. 4ß-dPE A shows two effects in the HIV replication cycle, infection inhibition and HIV transactivation, similarly to other phorboids PKC agonists such PMA and prostratin and to other diterpene esters such SJ23B. Our data suggest 4ß-dPE A is non-tumorigenic, unlike the related compound PMA. As the compounds are highly similar, the lack of tumorigenicity by 4ß-dPE A could be due to the lack of a long side lipophilic chain that is present in PMA. 4ß-dPE activates HIV transcription at nanomolar concentrations, lower than the concentration needed by other latency reversing agents (LRAs) such as prostratin and similar to bryostatin. PKCθ/MEK activation is required for the transcriptional activity, and thus, anti-latency activity of 4ß-dPE A. However, CD4, CXCR4 and CCR5 receptors down-regulation effect seems to be independent of PCK/MEK, suggesting the existence of at least two different targets for 4ß-dPE A. Furthermore, NF-κb transcription factor is involved in 4ß-dPE HIV reactivation, as previously shown for other PKCs agonists. We also studied the effects of 4ß-dPE A in combination with other LRAs. When 4ß-dPE A was combined with another PKC agonists such as prostratin an antagonic effect was achieved, while, when combined with an HDAC inhibitor such as vorinostat, a strong synergistic effect was obtained. Interestingly, the latency reversing effect of the combination was synergistically diminishing the EC50 value but also increasing the efficacy showed by the drugs alone. In addition, combinations of 4ß-dPE A with antiretroviral drugs as CCR5 antagonist, NRTIs, NNRTIs and PIs, showed a consistent synergistic effect, suggesting that the combination would not interefer with antiretroviral therapy (ART). Finally, 4ß-dPE A induced latent HIV reactivation in CD4 + T cells of infected patients under ART at similar levels than the tumorigenic phorbol derivative PMA, showing a clear reactivation effect. In summary, we describe here the mechanism of action of a new potent deoxyphorbol derivative as a latency reversing agent candidate to decrease the size of HIV reservoirs.


Assuntos
Fármacos Anti-HIV/farmacologia , Infecções por HIV/metabolismo , HIV-1/fisiologia , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Ésteres de Forbol/farmacologia , Proteína Quinase C/metabolismo , Ativação Viral/efeitos dos fármacos , Vorinostat/farmacologia , Briostatinas/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Sobrevivência Celular/efeitos dos fármacos , Sinergismo Farmacológico , Infecções por HIV/patologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , Humanos , Células Jurkat , Transdução de Sinais/efeitos dos fármacos , Latência Viral/efeitos dos fármacos
17.
Pflugers Arch ; 472(3): 385-403, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31932898

RESUMO

Mucin secretion by salivary mucous glands is mediated predominantly by parasympathetic acetylcholine activation of cholinergic muscarinic receptors via increased intracellular free calcium ([Ca2+]i) and activation of conventional protein kinase C isozymes (cPKC). However, the parasympathetic co-neurotransmitter, vasoactive intestinal peptide (VIP), also initiates secretion, but to a lesser extent. In the present study, cross talk between VIP- and muscarinic-induced mucin secretion was investigated using isolated rat sublingual tubuloacini. VIP-induced secretion is mediated by cAMP-activated protein kinase A (PKA), independently of increased [Ca2+]i. Synergistic secretion between VIP and the muscarinic agonist, carbachol, was demonstrated but only with submaximal carbachol. Carbachol has no effect on cAMP ± VIP. Instead, PKA activated by VIP releases Ca2+ from an intracellular pool maintained by the sarco/endoplasmic reticulum Ca2+-ATPase pump. Calcium release was independent of phospholipase C activity. The resultant sustained [Ca2+]i increase is additive to submaximal, but not maximal carbachol-induced [Ca2+]i. Synergistic mucin secretion was mimicked by VIP plus either phorbol 12-myristate 13-acetate or 0.01 µM thapsigargin, and blocked by the PKC inhibitor, Gö6976. VIP-induced Ca2+ release also promoted store-operated Ca2+ entry. Synergism is therefore driven by VIP-mediated [Ca2+]i augmenting cPKC activity to enhance muscarinic mucin secretion. Additional data suggest ryanodine receptors control VIP/PKA-mediated Ca2+ release from a Ca2+ pool also responsive to maximal carbachol. A working model of muscarinic and VIP control of mucous cell exocrine secretion is presented. Results are discussed in relation to synergistic mechanisms in other secretory cells, and the physiological and therapeutic significance of VIP/muscarinic synergism controlling salivary mucous cell exocrine secretion.


Assuntos
Secreções Corporais/metabolismo , Cálcio/metabolismo , Colinérgicos/farmacologia , Mucinas/metabolismo , Proteína Quinase C/metabolismo , Glândulas Salivares/efeitos dos fármacos , Peptídeo Intestinal Vasoativo/farmacologia , Adenosina Trifosfatases/metabolismo , Animais , Isoenzimas/metabolismo , Masculino , Agonistas Muscarínicos/farmacologia , Ésteres de Forbol/farmacologia , Ratos , Ratos Wistar , Receptores Muscarínicos/metabolismo , Glândulas Salivares/metabolismo , Tapsigargina/farmacologia
18.
Free Radic Res ; 53(11-12): 1051-1059, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31575304

RESUMO

Matrix metalloproteinases (MMPs), zinc-containing proteinases, play a critical role in tumour progression by degrading extracellular matrix components. MMP2 and MMP9 are secreted from tumour-associated macrophages as well as tumour cells and have been implicated in the formation of the tumour microenvironment. Therefore, the inhibition of these MMPs may suppress tumour progression and metastasis. 4-Hydroperoxy-2-decenoic acid ethyl ester (HPO-DAEE) is known to cause apoptosis in the human lung cancer cell line A549 by inducing endoplasmic reticulum (ER) stress. However, the effects of HPO-DAEE on tumour progression remain unclear. HPO-DAEE pre-treatment significantly suppressed phorbol 12-myristate 13-acetate (TPA)-triggered MMP activation in human monocytic THP-1 cells. It also enhanced the expression of haem oxygenase-1, an antioxidant enzyme, and suppressed the TPA-triggered intracellular accumulation of reactive oxygen species (ROS). Furthermore, HPO-DAEE suppressed transforming growth factor-ß1-triggered human prostate cancer PC3 cell migration and this was accompanied by the inhibition of MMP expression and activities. The present results indicate that HPO-DAEE may exert inhibitory effects on tumour progression by suppressing MMP expression and activities.


Assuntos
Antineoplásicos/farmacologia , Ésteres/farmacologia , Ácidos Graxos Monoinsaturados/farmacologia , Ácidos Graxos/farmacologia , Metaloproteinases da Matriz/biossíntese , Ésteres de Forbol/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Antineoplásicos/química , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Ésteres/química , Ácidos Graxos/química , Ácidos Graxos Monoinsaturados/química , Humanos , Masculino , Metaloproteinases da Matriz/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-Atividade , Fator de Crescimento Transformador beta1/metabolismo
19.
PLoS One ; 14(9): e0222784, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31536599

RESUMO

Activins regulate numerous processes including inflammation and are synthesized as precursors consisting of a long N-terminal pro-region and a mature protein. Genomic human databases currently list three activin A (Act A) variants termed X1, X2 and X3. The X3 variant is the shortest, lacks N-terminal segments present in X1 and X2, and has been the focus of most past literature. Here, we asked whether these variants are expressed by human cells and tissues and what structural features are contained within their pro-regions. Human monocytic-like cells THP1 and U937 expressed X1 and X2 variants after exposure to phorbol ester or granulocyte-macrophage colony-stimulating factor, while X2 transcripts were present in placenta. Expression vectors encoding full length X2 or X3 variants resulted in production and secretion of biologically active Act A from cultured cells. Previous studies reported a putative HS-binding domain (HBD) in the X3 pro-region. Here, we identified a novel HBD with consensus HS-binding motifs near the N-terminal end of X1 and X2 pro-regions. Peptides encompassing this new domain interacted with substrate-bound HS with nanomolar affinity, while peptides from putative X3 HBD did not. In good agreement, full length X2 pro-region interacted with heparin-agarose, while the X3 pro-region did not. In sum, our study reveals that Act A variants are expressed by inflammatory cells and placenta and yield biological activity. The high affinity HBD in X1 and X2 pro-region and its absence in X3 could greatly influence overall Act A distribution, availability and activity in physiological and pathological circumstances.


Assuntos
Ativinas/metabolismo , Motivos de Aminoácidos , Heparitina Sulfato/metabolismo , Conformação Proteica , Ativinas/química , Ativinas/genética , Sequência de Aminoácidos , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Humanos , Subunidades beta de Inibinas/química , Subunidades beta de Inibinas/genética , Subunidades beta de Inibinas/metabolismo , Modelos Moleculares , Ésteres de Forbol/farmacologia , Ligação Proteica , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Células THP-1 , Células U937
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA