Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Molecules ; 28(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36903282

RESUMO

Polybrominated diphenyl ethers (PBDEs) are classic and emerging pollutants that are potentially harmful to the human immune system. Research on their immunotoxicity and mechanisms suggests that they play an important role in the resulting pernicious effects of PBDEs. 2,2',4,4'-Tetrabrominated biphenyl ether (BDE-47) is the most biotoxic PBDE congener, and, in this study, we evaluated its toxicity toward RAW264.7 cells of mouse macrophages. The results show that exposure to BDE-47 led to a significant decrease in cell viability and a prominent increase in apoptosis. A decrease in mitochondrial membrane potential (MMP) and an increase in cytochrome C release and caspase cascade activation thus demonstrate that cell apoptosis induced by BDE-47 occurs via the mitochondrial pathway. In addition, BDE-47 inhibits phagocytosis in RAW264.7 cells, changes the related immune factor index, and causes immune function damage. Furthermore, we discovered a significant increase in the level of cellular reactive oxygen species (ROS), and the regulation of genes linked to oxidative stress was also demonstrated using transcriptome sequencing. The degree of apoptosis and immune function impairment caused by BDE-47 could be reversed after treatment with the antioxidant NAC and, conversely, exacerbated by treatment with the ROS-inducer BSO. These findings indicate that oxidative damage caused by BDE-47 is a critical event that leads to mitochondrial apoptosis in RAW264.7 macrophages, ultimately resulting in the suppression of immune function.


Assuntos
Éteres Difenil Halogenados , Mitocôndrias , Camundongos , Animais , Humanos , Espécies Reativas de Oxigênio/metabolismo , Éteres Difenil Halogenados/farmacologia , Mitocôndrias/metabolismo , Macrófagos/metabolismo
2.
Molecules ; 26(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34770740

RESUMO

Polybrominated diphenyl ether (PBDE) compounds, derived from marine organisms, originate from symbiosis between marine sponges and cyanobacteria or bacteria. PBDEs have broad biological spectra; therefore, we analyzed structure and activity relationships of PBDEs to determine their potential as anticancer or antibacterial lead structures, through reactions and computational studies. Six known PBDEs (1-6) were isolated from the sponge, Lamellodysdiea herbacea; 13C NMR data for compound 6 are reported for the first time and their assignments are confirmed by their theoretical 13C NMR chemical shifts (RMSE < 4.0 ppm). Methylation and acetylation of 1 (2, 3, 4, 5-tetrabromo-6-(3', 5'-dibromo-2'-hydroxyphenoxy) phenol) at the phenol functional group gave seven molecules (7-13), of which 10, 12, and 13 were new. New crystal structures for 8 and 9 are also reported. Debromination carried out on 1 produced nine compounds (1, 2, 14, 16-18, 20, 23, and 26) of which 18 was new. Debromination product 16 showed a significant IC50 8.65 ± 1.11; 8.11 ± 1.43 µM against human embryonic kidney (HEK293T) cells. Compounds 1 and 16 exhibited antibacterial activity against Gram-positive Staphylococcus aureus and Gram-negative Klebsiella pneumoniae with MID 0.078 µg/disk. The number of four bromine atoms and two phenol functional groups are important for antibacterial activity (S. aureus and K. pneumoniae) and cytotoxicity (HEK293T). The result was supported by analysis of frontier molecular orbitals (FMOs). We also propose possible products of acetylation and debromination using analysis of FMOs and electrostatic charges and we confirm the experimental result.


Assuntos
Organismos Aquáticos/química , Éteres Difenil Halogenados/química , Poríferos/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Éteres Difenil Halogenados/farmacologia , Humanos , Conformação Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Análise Espectral , Relação Estrutura-Atividade
3.
Life Sci ; 282: 119827, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34273373

RESUMO

AIMS: We aimed to investigate the effect of PBDEs (47, 99, 209) on cellular events involved in epigenetic modification, inflammation, and epithelial mesenchymal transition (EMT). MATERIALS AND METHODS: We studied: 1) ERK1/2 phosphorylation; 2) Enhancer of Zester Homolog 2 (EZH2); 3) Histone H3 tri-methylated in lysine 27 (H3K27me3); 4) K-RAS; 5) silencing disabled homolog 2-interacting protein gene (DAB2IP), 6) let-7a; 7) Muc5AC/Muc5B, and 8) IL-8 in a 3D in vitro model of epithelium obtained with primary Normal Human Bronchial Epithelial cells (pNHBEs) or A549 cell line, chronically exposed to PBDEs (47, 99, 209). KEY FINDINGS: PBDEs (10 nM, 100 nM and 1 µM) increased ERK1/2 phosphorylation, and EZH2, H3K27me3, and K-RAS protein expression, while decreased DAB2IP and Let-7a transcripts in pNHBEs ALI culture. Furthermore PBDEs (47, 99) (100 nM) increased Muc5AC and Muc5B mRNA, and PBDE 47 (100 nM) IL-8 mRNA via EZH2 in pNHBEs. Finally, PBDEs (100 nM) affected EZH2, H3K27me3, K-RAS protein expression, and DAB2IP, Let-7a transcripts and cell invasion in A549 cells. Gsk343 (methyltransferase EZH2 inhibitor) (1 mM) and U0126 (inhibitor of MEK1/2) (10 µM) were used to show the specific effect of PBDEs. SIGNIFICANCE: PBDE inhalation might promote inflammation/cancer via EZH2 methyltransferase activity and H3K27me3, k-RAS and ERk1/2 involvement, generating adverse health outcomes of the human lung.


Assuntos
Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Células Epiteliais , Retardadores de Chama/administração & dosagem , Éteres Difenil Halogenados/efeitos adversos , Neoplasias Pulmonares , Proteínas de Neoplasias/metabolismo , Mucosa Respiratória , Células A549 , Idoso , Células Epiteliais/enzimologia , Células Epiteliais/patologia , Feminino , Retardadores de Chama/farmacologia , Éteres Difenil Halogenados/farmacologia , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/enzimologia , Neoplasias Pulmonares/patologia , Masculino , Pessoa de Meia-Idade , Mucosa Respiratória/enzimologia , Mucosa Respiratória/patologia
4.
Front Immunol ; 12: 664534, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34025666

RESUMO

The 2,2'4,4'-tetrabromodiphenyl ether (PBDE-47) is one of the most prominent PBDE congeners detected in the environment and in animal and human tissues. Animal model experiments suggested the occurrence of PBDE-induced immunotoxicity leading to different outcomes and recently we demonstrated that this substance can impair macrophage and basophil activities. In this manuscript, we decided to further examine the effects induced by PBDE-47 treatment on innate immune response by looking at the intracellular expression profile of miRNAs as well as the biogenesis, cargo content and activity of human M(LPS) macrophage cell-derived small extracellular vesicles (sEVs). Microarray and in silico analysis demonstrated that PBDE-47 can induce some epigenetic effects in M(LPS) THP-1 cells modulating the expression of a set of intracellular miRNAs involved in biological pathways regulating the expression of estrogen-mediated signaling and immune responses with particular reference to M1/M2 differentiation. In addition to the cell-intrinsic modulation of intracellular miRNAs, we demonstrated that PBDE-47 could also interfere with the biogenesis of sEVs increasing their number and selecting a de novo population of sEVs. Moreover, PBDE-47 induced the overload of specific immune related miRNAs in PBDE-47 derived sEVs. Finally, culture experiments with naïve M(LPS) macrophages demonstrated that purified PBDE-47 derived sEVs can modulate macrophage immune response exacerbating the LPS-induced pro-inflammatory response inducing the overexpression of the IL-6 and the MMP9 genes. Data from this study demonstrated that PBDE-47 can perturb the innate immune response at different levels modulating the intracellular expression of miRNAs but also interfering with the biogenesis, cargo content and functional activity of M(LPS) macrophage cell-derived sEVs.


Assuntos
Vesículas Extracelulares/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Éteres Difenil Halogenados/farmacologia , Lipopolissacarídeos/imunologia , MicroRNAs/genética , Transcriptoma , Biomarcadores , Biologia Computacional/métodos , Citocinas/metabolismo , Perfilação da Expressão Gênica , Humanos , Lipopolissacarídeos/efeitos adversos , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Células THP-1
5.
Molecules ; 26(4)2021 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-33668501

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a group of molecules with an ambiguous background in literature. PBDEs were first isolated from marine sponges of Dysidea species in 1981 and have been under continuous research to the present day. This article summarizes the two research aspects, (i) the marine compound chemistry research dealing with naturally produced PBDEs and (ii) the environmental toxicology research dealing with synthetically-produced brominated flame-retardant PBDEs. The different bioactivity patterns are set in relation to the structural similarities and dissimilarities between both groups. In addition, this article gives a first structure-activity relationship analysis comparing both groups of PBDEs. Moreover, we provide novel data of a promising anticancer therapeutic PBDE (i.e., 4,5,6-tribromo-2-(2',4'-dibromophenoxy)phenol; termed P01F08). It has been known since 1995 that P01F08 exhibits anticancer activity, but the detailed mechanism remains poorly understood. Only recently, Mayer and colleagues identified a therapeutic window for P01F08, specifically targeting primary malignant cells in a low µM range. To elucidate the mechanistic pathway of cell death induction, we verified and compared its cytotoxicity and apoptosis induction capacity in Ramos and Jurkat lymphoma cells. Moreover, using Jurkat cells overexpressing antiapoptotic Bcl-2, we were able to show that P01F08 induces apoptosis mainly through the intrinsic mitochondrial pathway.


Assuntos
Antineoplásicos/farmacologia , Pesquisa Biomédica , Éteres Difenil Halogenados/farmacologia , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Éteres Difenil Halogenados/síntese química , Éteres Difenil Halogenados/química , Humanos , Relação Estrutura-Atividade , Terminologia como Assunto
6.
Chem Biodivers ; 17(11): e2000481, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32924325

RESUMO

As an important branch of halogenated bisphenol compounds, the halogenated bisphenol monosubstituted-ether compounds have received a lot of attention in environmental health science because of their toxicity and variability. In this study, a synthetic method for bisphenol monosubstituted-ether byproduct libraries was developed. By using the versatile and efficient method, tetrachlorobisphenol A, tetrabromobisphenol A, and tetrabromobisphenol S monosubstituted alkyl-ether compounds were accessed in 39-82 % yield. Subsequently, the cytotoxicity of 27 compounds were screened using three different cell lines (HepG2, mouse primary astrocytes and Chang liver cells). Compound 2,6-dibromo-4-[3,5-dibromo-4-(2-hydroxyethoxy)benzene-1-sulfonyl]phenol was more toxic than other compounds in various cells, and the sensitivity of this compound to the normal hepatocytes and cancer cells was inconsistent. The compounds 2,6-dichloro-4-(2-{3,5-dichloro-4-[(prop-2-en-1-yl)oxy]phenyl}propan-2-yl)phenol and 2,6-dibromo-4-(2-{3,5-dibromo-4-[(prop-2-en-1-yl)oxy]phenyl}propan-2-yl)phenol were the most toxic to HepG2 cells, and most of the other compounds inhibited cell proliferation. Moreover, typical compounds were also reproductive and developmental toxic to zebrafish embryos at different concentrations. The synthetic byproduct libraries could be used as pure standard compounds and applied in research on environmental behavior and the transformation of halogenated flame retardants.


Assuntos
Compostos Benzidrílicos/química , Éteres/química , Retardadores de Chama/síntese química , Éteres Difenil Halogenados/química , Fenóis/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Embrião não Mamífero/efeitos dos fármacos , Embrião não Mamífero/fisiologia , Desenvolvimento Embrionário/efeitos dos fármacos , Retardadores de Chama/farmacologia , Éteres Difenil Halogenados/síntese química , Éteres Difenil Halogenados/farmacologia , Halogenação , Humanos , Camundongos , Bifenil Polibromatos/síntese química , Bifenil Polibromatos/química , Bifenil Polibromatos/farmacologia , Peixe-Zebra/crescimento & desenvolvimento
7.
Chemosphere ; 260: 127556, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32682134

RESUMO

Polybrominated diphenyl ethers (PBDEs) are brominated, persistent and bioaccumulative flame retardants widely used in the manufacture of plastic products. Decabromodiphenyl ether (BDE-209) is the most prevalent PBDE in the atmosphere and found in human blood, breast milk and umbilical cord. In vitro studies showed that BDE-209 interferes with murine melanoma cells (B16F10), modulating cell death rates, proliferation and migration, important events for cancer progression. In order to evaluate if BDE-209 modulates metastasis formation in murine models, C57BL/6 mice were exposed to BDE-209 (0.08, 0.8 and 8 µg/kg) via gavage (5-day intervals for 45 days) (9 doses in total). Then, mice were inoculated with melanoma cells (B16-F10) at caudal vein receiving 4 additional doses of BDE-209. At 20th day post-cell inoculation, blood, lung, liver, kidney and brain were sampled for hematological, biochemical and morphological analyses. The slightly higher levels of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) in the blood and pro-oxidant state in the liver of BDE-exposed mice indicated liver damage. Although the in vivo approach is for metastasis formation in the lung, they were unexpectedly observed in non-target organs (liver, brain, kidney and gonads). The similarity test showed high proximity among individuals from the control and a dissimilarity index between the control and exposed groups. The present data corroborate the known hepatotoxicity of BDE-209 to mice (C57BL/6) and demonstrate for the first time the increase of metastatic dissemination of B16F10 cells in vivo due to previous and continuous BDE-209 exposure, revealing possible implications of this organic compound with melanoma malignancy related traits.


Assuntos
Éteres Difenil Halogenados/farmacologia , Melanoma/patologia , Camundongos Endogâmicos C57BL , Metástase Neoplásica/patologia , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Retardadores de Chama/farmacologia , Éteres Difenil Halogenados/toxicidade , Xenoenxertos , Humanos , Fígado/efeitos dos fármacos , Fígado/patologia , Melanoma Experimental , Camundongos
8.
J Biochem Mol Toxicol ; 34(6): e22485, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32128945

RESUMO

Flame retardants, specifically polybrominated diphenyl ethers (PBDEs), are chemical compounds widely used for industrial purposes and household materials. NHANES data indicate that nearly all Americans have trace amounts of PBDEs in serum, with even higher levels associated with occupational exposure. PBDEs are known to bioaccumulate in the environment due to their lipophilicity and stability, and more importantly, they have been detected in human adipose tissue. The present study examined whether the PBDE congener, BDE-99 (2,2',4,4',5-pentabromodiphenyl ether; 0.2-20 µM), enhances the adipogenesis of mouse and human preadipocyte cell models in vitro via induced lipid accumulation. 3T3-L1 mouse preadipocytes and human visceral preadipocytes demonstrated enhanced hormone-induced lipid accumulation upon BDE-99 treatment. In addition, BDE-99 (20 µM) induced preadipocyte differentiation and lipid development in nondifferentiated human preadipocytes. BDE-99, the second most abundant congener in human adipose tissue, increased total lipids in differentiating adipocytes and therefore showed a potential role in the regulation of adipogenesis. This warrants more research to further understand the impact of lipophilic persistent pollutants on adipose tissue homeostasis.


Assuntos
Adipócitos/efeitos dos fármacos , Adipócitos/metabolismo , Diferenciação Celular/efeitos dos fármacos , Poluentes Ambientais/farmacologia , Retardadores de Chama/farmacologia , Éteres Difenil Halogenados/farmacologia , Lipogênese/efeitos dos fármacos , Células 3T3-L1 , Adipogenia/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Homeostase/efeitos dos fármacos , Humanos , Camundongos
9.
Physiol Behav ; 216: 112798, 2020 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-31926943

RESUMO

Decabromodiphenyl ether (decaBDE) is a flame retardant that was widely-applied to many consumer products for decades. Consequently, decaBDE and other members of its class have become globally-distributed environmental contaminants. Epidemiological and animal studies indicate that decaBDE exposure during critical periods of brain development produces long-term behavioral impairments. The current study was designed to identify potential neuroendocrine mechanisms for learning and response inhibition deficits observed by our lab in a previous study. C57BL6/J mouse pups were given a single daily oral dose of 0 or 20 mg/kg decaBDE from day 1 to 21. Serum thyroid hormone levels and astrocyte-specific staining in three regions of the hippocampus were measured on day 22. DecaBDE exposure significantly reduced serum triiodothyronine, thyroxine, and astrocyte density in the subgranular zone but not the hilus or granular layer in both male and female mice. The reduction of thyroid hormone and/or glia activity could impair hippocampal development, leading to behavior dysfunction.


Assuntos
Astrócitos/efeitos dos fármacos , Giro Denteado/efeitos dos fármacos , Éteres Difenil Halogenados/farmacologia , Hormônios Tireóideos/sangue , Animais , Animais Recém-Nascidos , Contagem de Células , Giro Denteado/anatomia & histologia , Giro Denteado/citologia , Relação Dose-Resposta a Droga , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Tiroxina/sangue , Tri-Iodotironina/sangue
10.
Environ Sci Process Impacts ; 21(6): 950-956, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31143904

RESUMO

Polybrominated diphenyl ethers (PBDEs) can be metabolized to hydroxylated PBDEs (OH-PBDEs), which play important roles in their disruption effects on the thyroid hormone (TH) system. Recently, multiple in vitro studies suggested that OH-PBDEs might be further metabolically transformed to PBDE sulfates. However, information about the bioactivity of PBDE sulfate metabolites is limited. In the present study, we explored the possible disruption effects of PBDE sulfates to the TH system by studying their binding and activity towards TH transport proteins and nuclear receptors. We found PBDE sulfates could bind to two major TH transport proteins (thyroxine-binding globulin and transthyretin). Besides, PBDE sulfates could also bind to two subtypes of TH nuclear receptors (TRα and TRß) and showed agonistic activity towards the subsequent signaling pathway. Moreover, the PBDE sulfates showed higher binding potency to TH transport proteins and TRs compared with their corresponding OH-PBDE precursors. Molecular docking results showed that replacement of hydroxyl groups with sulfate groups might lead to more hydrogen bond interactions with these proteins. Overall, our study suggested that PBDE sulfates might disturb the TH system by binding to TH transport proteins or TRs. Our finding indicated a possible mechanism for the TH system disruption effects of PBDEs through their sulfate metabolites.


Assuntos
Éteres Difenil Halogenados/farmacologia , Pré-Albumina/metabolismo , Receptores dos Hormônios Tireóideos/metabolismo , Sulfatos/farmacologia , Globulina de Ligação a Tiroxina/metabolismo , Animais , Linhagem Celular , Éteres Difenil Halogenados/química , Ligação de Hidrogênio , Simulação de Acoplamento Molecular , Pré-Albumina/química , Ratos , Receptores dos Hormônios Tireóideos/química , Sulfatos/química , Globulina de Ligação a Tiroxina/química
11.
Artigo em Chinês | MEDLINE | ID: mdl-30884580

RESUMO

Objective: To investigate the effect of 2, 2', 4, 4'-tetrabromodiphenyl ether (PBDE-47) on the mitochondrial mass in rat adrenal pheochromocytoma (PC12) cells and the potential mechanisms. Methods: Highly differentiated PC12 cells were divided into control, 1, 10 or 20 µmol/L PBDE-47-treated groups and cultured for 24 h. Transmission electron microscopy was employed to observe the changes in mitochondrial morphology and quantity in PC12 cells. Flow cytometry was used to measure the fluorescence intensity of Nonyl Acridine Orange (NAO) , a fluorescent indicator of mitochondrial membrane cardiolipin, to reflect mitochondria mass. Western blotting was used to determine the expression levels of Mitofusion 1 (Mfn1) and Fission 1 (Fis1) proteins. To further explore the role of abnormal mitochondrial fusion and fission in PBDE-47-induced mitochondrial mass changes, PC12 cells were divided into control group, 5 µmol/L M1 treatment group, 20 µmol/L PBDE-47 treatment group and 5 µmol/L M1+20 µmol/L PBDE-47 combined treatment group and cultured for 24 h, then the fluorescence intensity of NAO and expression levels of Mfn1 and Fis1 proteins were detected. Results: The control group showed numerous mitochondria with normal morphology, while the number of mitochondria decreased after PBDE-47 treatment. Especially, the disappeared cristae, swelling and vacuoles of mitochondria and decreased fluorescence intensity of NAO (P<0.05) were observed in 10 and 20 µmol/L PBDE-47-treated groups. Meanwhile, the expression levels of Mfn1 and Fis1 proteins in the 10 and 20 µmol/L PBDE-47-treated groups were significantly decreased compared with control group (P<0.05) . However, 5 µmol/L M1 co-treatment with 20 µmol/L PBDE-47 significantly increased the levels of Mfn1 and Fis1 proteins and fluorescence intensity of NAO compared with the 20 µmol/L PBDE-47 group (P<0.05) . Conclusion: PBDE-47 can inhibit the mitochondrial fusion and fission process, thus leading to damage of mitochondria mass in PC12 cells.


Assuntos
Éteres Difenil Halogenados/farmacologia , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Animais , Células PC12 , Ratos
12.
Chem Res Toxicol ; 32(4): 621-628, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30714368

RESUMO

Polybrominated diphenyl ethers (PBDEs) have been reported to exert reproductive endocrine toxicity, but the mechanisms for this process remain unclear. Currently available studies have concentrated on the enzymatic reactions during steroidogenesis, but the results are not consistent. In this study, we explored the effects of 2,2',4,4'-tertrabromodiphenyl ether (BDE-47) on progesterone biosynthesis and the potential mechanisms in human placental choriocarcinoma cells. The results showed that BDE-47 decreased progesterone production in a dose-dependent manner but had no effect on key enzymes (Cyp11a1 and 3ß-HSD). BDE-47 exposure depolarized the mitochondrial membrane potential and downregulated adenosine triphosphate levels. The gene expression levels of Mfn2, Tspo, Atad3, Vdac1, Fis1, and Drp1, which are involved in mitochondrial dynamics and cholesterol transport, were disturbed. The demethylation of some CpG loci of mitochondrial biomarkers (Drp1, Opa1, Vdac2, and Atad3) was induced in the 1 µM BDE-47 exposure group, but no methylation change was observed with 50 µM treatment. Our findings unveiled that the reduction of progesterone synthesis induced by BDE-47 might be associated with cholesterol transportation, mitochondrial dynamics, and mitochondrial functions. These findings provide substantial data on the reproductive endocrine toxicity of PBDEs.


Assuntos
Colesterol/metabolismo , Éteres Difenil Halogenados/farmacologia , Mitocôndrias/efeitos dos fármacos , Progesterona/antagonistas & inibidores , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Mitocôndrias/metabolismo , Progesterona/análise , Progesterona/biossíntese , Relação Estrutura-Atividade , Células Tumorais Cultivadas
13.
Chemosphere ; 222: 849-855, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30743236

RESUMO

Decabromodiphenyl ether (BDE-209), an addictive type flame retardant, is widely found in environments, and could affect the glycolipid metabolism. The present study was designed to investigate the potential mechanism of BDE-209 affecting glycolipid metabolism. Forty mice were randomly divided into four groups, and they were exposed to BDE-209 at dosages of 0, 7.5, 25 and 75 mg kg-1·d-1 for 28 d, respectively. The results showed that BDE-209 increased the serum levels of glucose, insulin, and triglyceride, also decreased the level of high-density lipoprotein, and damaged the structures of liver and adipose tissue in mice. BDE-209 significantly increased the protein expression of p-IRS, markedly decreased the expressions of PI3K, p-AKT, and GLUT4, significantly improved the lipid metabolism related factor expressions of p-mTOR, mTOR, PPARγ and RXRɑ, also inhibited the activity of antioxidant enzymes in the liver of mice. These results suggested that BDE-209 could affect glucose metabolism and inhibiting PI3K/AKT/GLUT4 signaling pathway resulting from improving the p-IRS expression, and interfered with lipid metabolism through activate mTOR/PPARγ/RXRα resulting from oxidative stress in mice.


Assuntos
Glicolipídeos/metabolismo , Éteres Difenil Halogenados/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Transdução de Sinais , Tecido Adiposo/efeitos dos fármacos , Animais , Antioxidantes , Retardadores de Chama/farmacologia , Glucose/metabolismo , Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Estresse Oxidativo , Fosfatidilinositol 3-Quinases/metabolismo
14.
Chem Biodivers ; 16(3): e1800593, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30548373

RESUMO

A new tribromoiododiphenyl ether (1) and eight known brominated diphenyl ethers (2-9) were isolated from the MeOH extract of the sponge Arenosclera sp. collected in Vietnam, using repeated open column chromatography and preparative thin layer chromatography. The chemical structure of the new compound 1 was determined by analyses of spectroscopic (1D- and 2D-NMR, and MS) data and by comparison of our data with those reported in the literature. Compounds 1, 3, and 8 exhibited strong antibacterial activities against the Gram-positive bacteria Bacillus subtilis and Staphylococcus aureus and the Gram-negative bacterium Klebsiella pneumoniae with MIC values ranging from 0.8 to 6.3 µm, while compounds 5 and 7 only displayed activities against Gram-positive bacteria with MIC values from 0.5 to 3.1 µm. Compound 2 showed activities against the four tested bacteria with MIC values ranging from 0.5 to 6.3 µm.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Éteres Difenil Halogenados/farmacologia , Klebsiella pneumoniae/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/isolamento & purificação , Relação Dose-Resposta a Droga , Éteres Difenil Halogenados/química , Éteres Difenil Halogenados/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular , Poríferos , Relação Estrutura-Atividade
15.
Chemosphere ; 219: 845-854, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30562690

RESUMO

Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants that are added to numerous products to prevent accidental fires. PBDEs are present in the environment and they bio-accumulate in human and animal tissues. Recently, their presence has been correlated to several pathologies but little is known about their effect on the human innate immune system activity. In this study we investigated the effect of the congener 2,2',4,4'-Tetrabromodiphenyl ether (PBDE-47) on the functional activity of the THP-1 human macrophages cell line and on ex vivo freshly isolated human basophils. Cytotoxicity and genotoxicity studies showed that PBDE-47 was able to induce toxic effects on the THP-1 cell line viability at concentrations ≥25 µM. Immune function of THP-1 was studied after stimulation with bacterial lipopolysaccharide (LPS) and PBDE-47 exposure at concentrations granting macrophage viability. Two dimensional electrophoresis showed modification of the proteome in the 3 µM PBDE-47 treated sample and Real Time PCR and ELISA demonstrated a statistically significant reduction in the expression of IL-1ß, IL-6 and TNF-α cytokines. Furthermore, PBDE-47 was able to perturbate genes involved in cell motility upregulating CDH-1 and downregulating MMP-12 expressions. Finally, basophil activation assay showed reduced CD63 activation in PBDE-47 treated samples. In conclusion, our study demonstrated that PBDE-47 may perturb the activities of cells involved in innate immunity dampening the expression of macrophage pro-inflammatory cytokines (IL-1ß, IL-6 and TNF-α) and genes involved in cell motility (MMP-12 and E-cadherin) and interfering with basophil activation suggesting that this compound can impair innate immune response.


Assuntos
Éteres Difenil Halogenados/toxicidade , Imunidade Inata/efeitos dos fármacos , Animais , Basófilos/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Poluentes Ambientais/farmacologia , Éteres Difenil Halogenados/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Células THP-1
16.
Food Chem Toxicol ; 121: 367-373, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30232031

RESUMO

Growing epidemiological evidence is substantiating an association between exposure to persistent organic pollutants (POPs) and incidence of atherosclerosis. Decabromodiphenyl ether (BDE-209) is a new POP which presents extensively in human populations; whether this contaminant is potentially arteriosclerotic remains unclear. In this study, we investigated the effects of BDE-209 on macrophage-derived foam cell formation, a hallmark of early atherosclerosis, using THP-1-derived macrophages incubated with oxidized low-density lipoprotein (oxLDL) as a foam cell model. The results showed that 6.25, 12.5 and 25.0 µM of BDE-209 significantly enhanced lipid accumulation inside the foam cells, in a dose-dependent manner. Further mechanism assays suggested that BDE-209 significantly increased the expression of Toll-like receptor 4 (TLR4), a signal transducing integral membrane protein mediating lipid uptake in macrophages, at both the mRNA and protein levels. In contrast, there was no significant changes for several key regulators involving in lipid efflux, lipogenesis, and lipid oxidation in macrophages. Furthermore, the augmented lipid accumulation was almost completely abrogated by treatment with an anti-TLR4 antibody. Together, these data illustrate that BDE-209 enhances oxLDL-induced macrophage foam cell formation via augmenting TLR4-dependent lipid uptake in the cells.


Assuntos
Células Espumosas/efeitos dos fármacos , Éteres Difenil Halogenados/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Linhagem Celular , Sobrevivência Celular , Relação Dose-Resposta a Droga , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Células THP-1
17.
Environ Health Perspect ; 126(5): 057005, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29790728

RESUMO

BACKGROUND: Numerous studies have indicated the estrogenic effects of polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs (OH-PBDEs). However, the previous mechanistic studies focused on their estrogenic effects through genomic transcriptional activation of estrogen receptors. OBJECTIVE: The present study aimed to investigate the estrogenic effects of PBDEs and OH-PBDEs via nongenomic G protein-coupled estrogen receptor (GPER) pathways. METHODS: The binding affinities of 12 PBDEs and 18 OH-PBDEs with GPER were determined by a fluorescence competitive binding assay in a human breast cancer cell line (SKBR3). Molecular docking was performed to simulate the interactions. Their activities on GPER pathways were investigated by detecting calcium mobilization and cyclic adenosine monophosphate (cAMP) accumulation in SKBR3 cells. The effects on SKBR3 cell migration were investigated using Boyden chamber and wound-healing assays. RESULTS: Our results showed that 11 of the OH-PBDEs but none of the PBDEs bound to GPER directly. Relative binding affinities ranged from 1.3% to 20.0% compared to 17ß-estradiol. Docking results suggested that the hydroxyl group played an essential role in the binding of OH-PBDEs to GPER by forming hydrogen bond interactions. Most of the OH-PBDEs activated subsequent GPER signaling pathways. Among them, 4'-OH-BDE-049, 5'-OH-BDE-099, and 3'-OH-BDE-154 displayed the highest activity with lowest effective concentrations (LOECs) of 10-100 nM. These three OH-PBDEs also promoted SKBR3 cell migration via GPER pathways with LOECs of 0.1-1 µM. CONCLUSION: OH-PBDEs could bind to GPER, activate the subsequent signaling pathways, and promote SKBR3 cell migration via GPER pathways. OH-PBDEs might exert estrogenic effects by a novel nongenomic mechanism involving the activation of GPER at nanomolar concentrations. https://doi.org/10.1289/EHP2387.


Assuntos
Éteres Difenil Halogenados/farmacologia , Bifenil Polibromatos/farmacologia , Receptores de Estrogênio/metabolismo , Western Blotting , Linhagem Celular Tumoral , Células HEK293 , Humanos , Espectrometria de Massas , Simulação de Acoplamento Molecular , Transdução de Sinais/efeitos dos fármacos
18.
Chemosphere ; 201: 483-491, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29529575

RESUMO

Mangrove wetland receives nutrient-rich aquaculture effluent (AE) from nearby farming activities and polybrominated diphenyl ethers (PBDEs) from the production and usage of flame retardants. The effects of BDE-209 (the most common PBDE congener), AE and their combination on two true mangrove species, namely Kandelia obovata and Avicennia marina, were compared in a 6-month microcosm study. Results showed that K. obovata was more sensitive to these contaminants than A. marina, as reflected by its enhanced production of leaf superoxide (O2-∗) by BDE-209 and root malondialdehyde (MDA) by the combined BDE-209 and AE treatment. The hormesis model showed that the combined effects of BDE-209 and AE on the production of MDA, O2-∗ and catalase (CAT) activity in K. obovata and A. marina were antagonistic except root O2-∗ in A. marina, but the effects on leaf superoxide dismutase (SOD) activity in K. obovata, and root SOD and peroxidase (POD) activities in A. marina were synergistic. The defense mechanisms differed between treatment and species. The activities of SOD and POD were the main mechanisms to defend K. obovata and A. marina against BDE-209, but CAT in K. obovata and POD in A. marina were more important in defending the combined BDE-209 and AE treatment.


Assuntos
Aquicultura , Avicennia/efeitos dos fármacos , Éteres Difenil Halogenados/farmacologia , Rhizophoraceae/efeitos dos fármacos , Áreas Alagadas , Antioxidantes/farmacologia , Avicennia/enzimologia , Avicennia/crescimento & desenvolvimento , Avicennia/metabolismo , Retardadores de Chama/farmacologia , Éteres Difenil Halogenados/análise , Malondialdeído , Oxirredução , Rhizophoraceae/enzimologia , Rhizophoraceae/crescimento & desenvolvimento , Rhizophoraceae/metabolismo , Especificidade da Espécie
19.
Artigo em Inglês | MEDLINE | ID: mdl-28943455

RESUMO

To study the effects of environmental endocrine disruptor compounds (EDCs) on aquatic animals, embryos and larvae are typically incubated in water containing defined concentrations of EDCs. However, the amount of EDC uptake into the animal is often difficult to determine. Using radiolabeled estradiol ([3H]E2), we previously developed a rapid, straightforward assay to measure estradiol uptake from water into zebrafish embryos and larvae. Here, we extend this approach to measure the uptake of two additional EDCs, bisphenol A (BPA) and ethinyl estradiol (EE2). As with E2, the uptake of each compound by individual larvae was low (<6%), and increased with increasing concentration, duration, and developmental stage. We found that E2 and EE2 had similar uptake under equivalent exposure conditions, while BPA had comparatively lower uptake. One application of this assay is to test factors that influence EDC uptake or efflux. It has been suggested that persistent organic pollutants (POPs) inhibit ABC transporters that may normally efflux EDCs and their metabolites, inducing toxicity in aquatic organisms. We measured [3H]E2 levels in zebrafish in the presence or absence of the POP PDBE-100, and cyclosporine A, a known inhibitor of ABC transporters. Neither chemical significantly affected [3H]E2 levels in zebrafish, suggesting that zebrafish maintain estradiol efflux in the presence of PDBE-100, independently of cyclosporine A-responsive transporters. These uptake results will be a valuable reference for EDC exposure studies in developing zebrafish, and provide a rapid assay to screen for chemicals that influence estrogen-like EDC levels in vivo.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Embrião não Mamífero/metabolismo , Disruptores Endócrinos/metabolismo , Poluentes Químicos da Água/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Transportadores de Cassetes de Ligação de ATP/antagonistas & inibidores , Fatores Etários , Animais , Compostos Benzidrílicos/metabolismo , Ciclosporina/farmacologia , Relação Dose-Resposta a Droga , Disruptores Endócrinos/toxicidade , Estradiol/metabolismo , Etinilestradiol/metabolismo , Éteres Difenil Halogenados/farmacologia , Larva/metabolismo , Fenóis/metabolismo , Fatores de Tempo , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/embriologia , Proteínas de Peixe-Zebra/antagonistas & inibidores
20.
Biochemistry ; 57(5): 817-826, 2018 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-29215266

RESUMO

Human hepatic cytochromes P450 (CYP) are integral to xenobiotic metabolism. CYP2B6 is a major catalyst of biotransformation of environmental toxicants, including polybrominated diphenyl ethers (PBDEs). CYP2B substrates tend to contain halogen atoms, but the biochemical basis for this selectivity and for species specific determinants of metabolism has not been identified. Spectral binding titrations and inhibition studies were performed to investigate interactions of rat CYP2B1, rabbit CYP2B4, and CYP2B6 with a series of phenoxyaniline (POA) congeners that are analogues of PBDEs. For most congeners, there was a <3-fold difference between the spectral binding constants (KS) and IC50 values. In contrast, large discrepancies between these values were observed for POA and 3-chloro-4-phenoxyaniline. CYP2B1 was the enzyme most sensitive to POA congeners, so the Val-363 residue from that enzyme was introduced into CYP2B4 or CYP2B6. This substitution partially altered the protein-ligand interaction profiles to make them more similar to that of CYP2B1. Addition of cytochrome P450 oxidoreductase (POR) to titrations of CYP2B6 with POA or 2'4'5'TCPOA decreased the affinity of both ligands for the enzyme. Addition of cytochrome b5 to a recombinant enzyme system containing POR and CYP2B6 increased the POA IC50 value and decreased the 2'4'5'TCPOA IC50 value. Overall, the inconsistency between KS and IC50 values for POA versus 2'4'5'TCPOA is largely due to the effects of redox partner binding. These results provide insight into the biochemical basis of binding of diphenyl ethers to human CYP2B6 and changes in CYP2B6-mediated metabolism that are dependent on POA congener and redox partner identity.


Assuntos
Hidrocarboneto de Aril Hidroxilases/antagonistas & inibidores , Citocromo P-450 CYP2B1/antagonistas & inibidores , Citocromo P-450 CYP2B6/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450/farmacologia , Éteres Difenil Halogenados/farmacologia , Alquilação/efeitos dos fármacos , Substituição de Aminoácidos , Compostos de Anilina , Animais , Hidrocarboneto de Aril Hidroxilases/química , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Derivados de Benzeno/farmacologia , Citocromo P-450 CYP2B1/química , Citocromo P-450 CYP2B1/genética , Citocromo P-450 CYP2B1/metabolismo , Citocromo P-450 CYP2B6/química , Citocromo P-450 CYP2B6/genética , Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/metabolismo , Inibidores do Citocromo P-450 CYP2B6/farmacologia , Inibidores das Enzimas do Citocromo P-450/metabolismo , Família 2 do Citocromo P450/antagonistas & inibidores , Família 2 do Citocromo P450/química , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Citocromos b5/metabolismo , Poluentes Ambientais/metabolismo , Éteres Difenil Halogenados/metabolismo , Humanos , Hidrocarbonetos Halogenados/metabolismo , Concentração Inibidora 50 , Estrutura Molecular , Mutagênese Sítio-Dirigida , NADPH Oxidases/metabolismo , Oxirredução , Coelhos , Ratos , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA