Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.947
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Adv Rheumatol ; 64(1): 47, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38872193

RESUMO

INTRODUCTION: Patients with psoriatic arthritis have some lipid metabolism changes and higher risk of metabolic syndrome (MetS) and cardiovascular diseases, regardless of traditional risk factors, suggesting that chronic inflammation itself plays a central role concerning the atherosclerosis. However, there is a lack of information regarding atherogenic pattern and lipoprotein subfractions burden in these individuals. AIM: To evaluate the HDL and LDL-cholesterol plasmatic levels and their subfractions after a nutritional intervention in patients with psoriatic arthritis (PsA). METHODS: This was a randomized, placebo-controlled clinical trial of a 12-week nutritional intervention. PsA patients were randomly assigned to 1-Placebo: 1 g of soybean oil daily, no dietetic intervention; 2-Diet + Supplementation: an individualized diet, supplemented with 604 mg of omega-3 fatty acids, three times a day; and 3-Diet + Placebo: individualized diet + 1 g of soybean oil. The LDL subfractions were classified as non-atherogenic (NAth), atherogenic (Ath) or highly atherogenic (HAth), whereas the HDL subfractions were classified as small, medium, or large particles, according to the current recommendation based on lipoproteins electrophoresis. RESULTS: A total of 91 patients were included in the study. About 62% of patients (n = 56) had an Ath or HAth profile and the main risk factors associated were male gender, longer skin disease duration and higher BMI. Thirty-two patients (35%) had a high-risk lipoprotein profile despite having LDL plasmatic levels below 100 mg/dL. The 12-week nutritional intervention did not alter the LDL subfractions. However, there were significant improvement of HDL subfractions. CONCLUSION: Recognizing the pro-atherogenic subfractions LDL pattern could be a relevant strategy for identifying PsA patients with higher cardiovascular risk, regardless total LDL plasmatic levels and disease activity. In addition, a short-term nutritional intervention based on supervised and individualized diet added to omega-3 fatty acids changed positively the HDLLARGE subfractions, while LDLLARGE subfraction was improved in hypercholesterolemic individuals. CLINICALTRIALS: gov identifier: NCT03142503 ( http://www. CLINICALTRIALS: gov/ ).


Assuntos
Artrite Psoriásica , HDL-Colesterol , LDL-Colesterol , Humanos , Artrite Psoriásica/dietoterapia , Artrite Psoriásica/sangue , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , LDL-Colesterol/sangue , HDL-Colesterol/sangue , Suplementos Nutricionais , Ácidos Graxos Ômega-3/administração & dosagem , Ácidos Graxos Ômega-3/sangue , Ácidos Graxos Ômega-3/uso terapêutico , Óleo de Soja/administração & dosagem , Aterosclerose/prevenção & controle , Aterosclerose/sangue
2.
Food Res Int ; 188: 114440, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823857

RESUMO

The emulsification activity of myosin plays a significant role in affecting quality of emulsified meat products. High-density lipoprotein (HDL) possesses strong emulsification activity and stability due to its structural characteristics, suggesting potential for its utilization in developing functional emulsified meat products. In order to explore the effect of HDL addition on emulsification stability, rheological properties and structural features of myosin (MS) emulsions, HDL-MS emulsion was prepared by mixing soybean oil with isolated HDL and MS, with pH adjustments ranging from 3.0 to 11.0. The results found that emulsification activity and stability in two emulsion groups consistently improved as pH increased. Under identical pH, HDL-MS emulsion exhibited superior emulsification behavior as compared to MS emulsion. The HDL-MS emulsion under pH of 7.0-11.0 formed a viscoelastic protein layer at the interface, adsorbing more proteins and retarding oil droplet diffusion, leading to enhanced oxidative stability, compared to the MS emulsion. Raman spectroscopy analysis showed more flexible conformational changes in the HDL-MS emulsion. Microstructural observations corroborated these findings, showing a more uniform distribution of droplet sizes in the HDL-MS emulsion with smaller particle sizes. Overall, these determinations suggested that the addition of HDL enhanced the emulsification behavior of MS emulsions, and the composite emulsions demonstrated heightened responsiveness under alkaline conditions. This establishes a theoretical basis for the practical utilization of HDL in emulsified meat products.


Assuntos
Emulsões , Lipoproteínas HDL , Miosinas , Reologia , Emulsões/química , Concentração de Íons de Hidrogênio , Lipoproteínas HDL/química , Miosinas/química , Produtos da Carne/análise , Tamanho da Partícula , Óleo de Soja/química , Viscosidade , Análise Espectral Raman
3.
Food Res Int ; 188: 114493, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38823876

RESUMO

In this paper, two emulsion systems with high and low solid fat contents were prepared from 20 % water phase and 80 % oil phase by adjusting the palm oil/palm stearin/soybean oil ratio. Different ultrasonic power and time were used for the pretreatment of emulsion with different solid fat content, and the application characteristics of ultrasonic in W/O emulsions were explored and evaluated. Directly using high-intensity ultrasound to prepare fatty emulsions would weaken the hardness and storage modulus G' of the samples. Although ultrasound reduced the size of fat crystals in emulsions, the interaction between water droplets and fat crystals needs to be considered. After ultrasonic treatment, water droplets were difficult to immobilize on the crystal surface and thus acted as an active filler to stabilize the emulsion together with the fat crystal network. In high solid fat emulsion systems, an increase in ultrasound power (from 100 W to 200 W) could more affect the crystallization behavior of fats than an increase in ultrasound duration (from 30 s to 60 s), and the distribution of crystals and droplets was more uniform. In the low solid fat emulsion system, the texture of the sample after ultrasonic treatment was softer, and the surface was more delicate and smoother. However, the higher ultrasonic intensity (200 W) was not conducive to the preparation of the spread. Although the ultrasound with excessive intensity promoted the formation of small crystals, it would also lead to the aggregation of small crystals. These small crystals cannot form a uniform crystal network, which increases the fluidity of emulsions.


Assuntos
Cristalização , Emulsões , Óleo de Palmeira , Tamanho da Partícula , Água , Emulsões/química , Água/química , Óleo de Palmeira/química , Óleo de Soja/química , Ondas Ultrassônicas , Ultrassom
4.
Int J Biol Macromol ; 273(Pt 1): 132964, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38852719

RESUMO

There is a growing interest in developing highly viscous lipid foods using plant protein and polysaccharide gum-based emulsion technology. However, gaps remain in understanding the rheological, microstructural, and digestive properties of plant proteins like soybean protein isolate (SPI) in combination with various gums. This study investigates how combining SPI and peach gum (PG) affects rheology and lipolysis of oil-in-water (O/W) emulsions containing 20 wt% soybean oil. Emulsions with varying SPI and PG compositions including SPI-PG single and SPI/PG mixed droplet systems were prepared. Heating induced alterations in viscosity (e.g., SPI-PG from 14.88 to 90.27 Pa·s and SPI/PG from 9.66 to 85.32 Pa·s) and microstructure revealing aggregate formation at oil-water interface. The viscosity decreased significantly from the oral to intestinal phase (SPI-PG: 28.10 to 0.19 Pa·s, SPI/PG: 21.27 to 0.10 Pa·s). These changes affected lipid digestion, notably in SPI-PG and SPI/PG emulsions where a compact interface hindered lipolysis during digestion. Interestingly, free fatty acid (FFA) release during small intestinal phase followed a different order: SPI (82.51 %) > SPI-PG (70.77 %) > SPI/PG (63.60 %) > PG (56.09 %). This study provides insights into creating highly viscous O/W spreads with improved rheology, stability, and delayed lipid digestion, offering potential benefits in food product formulation.


Assuntos
Emulsões , Microesferas , Gomas Vegetais , Reologia , Proteínas de Soja , Água , Emulsões/química , Proteínas de Soja/química , Água/química , Gomas Vegetais/química , Viscosidade , Óleo de Soja/química , Lipólise
5.
Fish Shellfish Immunol ; 150: 109635, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38754648

RESUMO

The present study explored the effects of different lipid sources on growth performance, lipid deposition, antioxidant capacity, inflammatory response and disease resistance of largemouth bass (Micropterus salmoides). Four isonitrogenous (crude protein 50.46 %) and isolipidic (crude lipid 11.12 %) diets were formulated to contain 7 % of different oil sources including fish oil (FO) (control), soybean oil (SO), linseed oil (LO) and coconut oil (CO). Largemouth bass with initial body weight of 36.0 ± 0.2 g were randomly distributed into 12 tanks, with 30 fish per tank and 3 tanks per treatment. The fish were fed with the experiment diets twice daily for 8 weeks. The results indicated that the weight gain of largemouth bass fed the FO diet was significantly higher than that of fish fed the LO and CO diets. The liver crude lipid content in FO group was significantly higher than other groups, while the highest liver triglyceride content was showed in SO group and the lowest was detected in LO group. At transcriptional level, expression of lipogenesis related genes (pparγ, srebp1, fas, acc, dgat1 and dgat2) in the SO and CO group were significantly higher than the FO group. However, the expression of lipolysis and fatty acids oxidation related genes (pparα, cpt1, and aco) in vegetable oils groups were significantly higher than the FO group. As to the antioxidant capacity, vegetable oils significantly reduced the malondialdehyde content of largemouth bass. Total antioxidant capacity in the SO and LO groups were significantly increased compared with the FO group. Catalase in the LO group was significantly increased compared with the FO group. Furthermore, the ER stress related genes, such as grp78, atf6α, atf6ß, chop and xbp1 were significantly enhanced in the vegetable oil groups compared with the FO group. The activity of serum lysozyme in vegetable oil groups were significantly higher than in FO group. Additionally, the relative expression of non-specific immune related genes, including tlr2, mapk11, mapk13, mapk14, rela, tgf-ß1, tnfα, 5lox, il-1ß and il10, were all significantly increased in SO and CO groups compared to the other groups. In conclusion, based on the indexes including growth performance, lipid deposition, antioxidant capacity and inflammatory response, SO and LO could be alternative oil sources for largemouth bass.


Assuntos
Ração Animal , Antioxidantes , Bass , Dieta , Metabolismo dos Lipídeos , Animais , Bass/imunologia , Bass/crescimento & desenvolvimento , Dieta/veterinária , Ração Animal/análise , Antioxidantes/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Distribuição Aleatória , Suplementos Nutricionais/análise , Gorduras na Dieta/administração & dosagem , Óleos de Peixe/administração & dosagem , Óleo de Semente do Linho/administração & dosagem , Doenças dos Peixes/imunologia , Inflamação/veterinária , Inflamação/imunologia , Óleo de Soja/administração & dosagem , Óleo de Coco/administração & dosagem
6.
JPEN J Parenter Enteral Nutr ; 48(5): 580-587, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734877

RESUMO

BACKGROUND: Safe and efficient provision of intravenous lipid emulsion (ILE) requires a strategy to individualize infusion rates. Estimating the maximum acceptable infusion rate (MaxInfRate) of soybean oil-based ILE (SO-ILE) in individuals by using a triglyceride (TG) kinetic model was reported to be feasible. In this study, we aimed to externally validate and, if needed, update the MaxInfRate estimation. METHODS: The maximum TG concentration (TGmax) in patients receiving SO-ILE at MaxInfRate was evaluated to determine if it met the definition of being <400 mg/dl for 90th percentile of patients. The TG kinetic model was evaluated through prediction performance checks and was subsequently updated using the data set of both the previous model development and present validation studies. RESULTS: Out of 83 patients, 74 had TGmax <400 mg/dl, corresponding to a probability of 89.2% (95% CI, 81.9%-95.2%), and the 90th percentile of TGmax was 400 mg/dl (95% CI, 328-490 mg/dl), closely aligned with the theoretical values. However, the individual TGmax values were biased by the infusion rate because the covariate effects were overestimated in the TG kinetic model, requiring a minor revision. The updated MaxInfRate with the combined data set showed unbiased and more accurate predictions. CONCLUSION: The MaxInfRate was validated in external inpatients and updated with all available data. MaxInfRate estimation for individuals could be an option for the safe and efficient provision of SO-ILE.


Assuntos
Emulsões Gordurosas Intravenosas , Óleo de Soja , Triglicerídeos , Humanos , Emulsões Gordurosas Intravenosas/administração & dosagem , Óleo de Soja/administração & dosagem , Masculino , Feminino , Triglicerídeos/sangue , Pessoa de Meia-Idade , Estudos de Coortes , Idoso , Adulto , Infusões Intravenosas/métodos , Nutrição Parenteral/métodos
7.
Food Res Int ; 186: 114340, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729695

RESUMO

Fruits are essential sources of nutrients in our daily diet; however, their spoilage is often intensified by mechanical damage and the ethylene phytohormone, resulting in significant economic losses and exacerbating hunger issues. To address these challenges, this study presented a straightforward in situ synthesis protocol for producing Z/SOPPU foam, a 3D porous-structured fruit packaging. This innovative packaging material offered advanced ethylene-adsorbing and cushioning capabilities achieved through stirring, heating, and standing treatments. The results demonstrated that the Z/SOPPU foam, with its porous structure, served as an excellent packaging material for fruits, maintaining the intact appearance of tomatoes even after being thrown 72 times from a height of 1.5 m. Additionally, it exhibited desirable hydrophobicity (contact angle of 114.31 ± 0.82°), degradability (2.73 ± 0.88 % per 4 weeks), and efficient ethylene adsorption (adsorption rate of 13.2 ± 1.7 mg/m3/h). These remarkable characteristics could be attributed to the unique 3D micron-porous configuration, consisting of soybean oil polyol polyurethane foam for mechanical strain cushioning and zein for enhanced ethylene adsorption efficiency. Overall, this research offers an effective and original approach to the rational design and fabrication of advanced bio-based fruit packaging.


Assuntos
Etilenos , Embalagem de Alimentos , Frutas , Poliuretanos , Óleo de Soja , Zeína , Etilenos/química , Poliuretanos/química , Embalagem de Alimentos/métodos , Porosidade , Frutas/química , Óleo de Soja/química , Zeína/química , Adsorção , Polímeros/química , Solanum lycopersicum/química , Interações Hidrofóbicas e Hidrofílicas
8.
Food Chem ; 453: 139656, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788646

RESUMO

Oxidative stability is a key quality characteristic of edible oils, and the oil's antioxidant capacity decreases during the deodorization stage. This study explores the changes in radical formation, molecular structure, oxidative characteristics, fatty acids, and main bioactive compounds in soybean oil during deodorization. The lag phase decreased, whereas the total amount of spins of free radicals increased as the deodorization time increased from 90 to 150 min. The total amount of spins and percentage of alkyl radicals varied dramatically under different times and temperatures (220 âˆ¼ 260 ℃). Results showed that identifying and quantifying the formed radicals can provide useful information for monitoring and controlling oil oxidation in vegetable oil refining systems. Therefore, to control early oxidation events, maximize refined oil product yield, and reduce energy consumption in the refining plant, the priority should be to minimize temperature during the oil refining process and then shorten the deodorization time.


Assuntos
Ácidos Graxos , Oxirredução , Óleo de Soja , Óleo de Soja/química , Ácidos Graxos/química , Radicais Livres/química , Lipídeos/química , Antioxidantes/química
9.
Molecules ; 29(9)2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38731414

RESUMO

Consumers are concerned about employing green processing technologies and natural ingredients in different manufacturing sectors to achieve a "clean label" standard for products and minimize the hazardous impact of chemical ingredients on human health and the environment. In this study, we investigated the effects of gelatinized starch dispersions (GSDs) prepared from six plant sources (indica and japonica rice, wheat, corn, potatoes, and sweet potatoes) on the formulation and stability of oil-in-water (O/W) emulsions. The effect of gelatinization temperature and time conditions of 85-90 °C for 20 min on the interfacial tension of the two phases was observed. Emulsification was performed using a primary homogenization condition of 10,000 rpm for 5 min, followed by high-pressure homogenization at 100 MPa for five cycles. The effects of higher oil weight fractions (15-25% w/w) and storage stability at different temperatures for four weeks were also evaluated. The interfacial tension of all starch GSDs with soybean oil decreased compared with the interfacial tension between soybean oil and water as a control. The largest interfacial tension reduction was observed for the GSD from indica rice. Microstructural analysis indicated that the GSDs stabilized the O/W emulsion by coating oil droplets. Emulsions formulated using a GSD from indica rice were stable during four weeks of storage with a volume mean diameter (d4,3) of ~1 µm, minimal viscosity change, and a negative ζ-potential.


Assuntos
Emulsões , Óleo de Soja , Amido , Água , Emulsões/química , Amido/química , Água/química , Óleo de Soja/química , Oryza/química , Gelatina/química , Temperatura , Tensão Superficial , Tamanho da Partícula
10.
Food Res Int ; 187: 114452, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38763687

RESUMO

The antioxidant activity of the natural phenolic extracts is limited in particular food systems due to the existence of phenolic compounds in glycoside form. Acid hydrolysis post-treatment could be a tool to convert the glycosidic polyphenols in the extracts to aglycones. Therefore, this research investigated the effects of an acid hydrolysis post-treatment on the composition and antioxidant activity of parsley extracts obtained by an ultrasound-assisted extraction method to delay lipid oxidation in a real food system (i.e., soybean oil-in-water emulsion). Acid hydrolysis conditions were varied to maximize total phenolic content (TPC) and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity. When extracts were exposed to 0.6 M HCl for 2 h at 80 ℃, TPC was 716.92 ± 24.43 µmol gallic acid equivalent (GAE)/L, and DPPH radical scavenging activity was 66.89 ± 1.63 %. Not only did acid hydrolysis increase the concentrations of individual polyphenols, but it also resulted in the release of new phenolics such as myricetin and gallic acid. The extract's metal chelating and ferric-reducing activity increased significantly after acid hydrolysis. In soybean oil-in-water emulsion containing a TPC of 400 µmol GAE/L, the acid-hydrolyzed extract had an 11-day lag phase for headspace hexanal compared to the 6-day lag phase of unhydrolyzed extract. The findings indicated that the conversion of glycosidic polyphenols to aglycones in phenolic extracts can help extend the shelf-life of emulsion-based foods.


Assuntos
Antioxidantes , Emulsões , Petroselinum , Fenóis , Extratos Vegetais , Folhas de Planta , Óleo de Soja , Emulsões/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Óleo de Soja/química , Fenóis/química , Hidrólise , Antioxidantes/farmacologia , Antioxidantes/química , Petroselinum/química , Folhas de Planta/química , Oxirredução , Água/química , Peroxidação de Lipídeos/efeitos dos fármacos , Compostos de Bifenilo/química , Picratos/química , Polifenóis/química , Polifenóis/farmacologia
11.
Int J Biol Macromol ; 268(Pt 1): 131692, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38702247

RESUMO

Natural bioactive molecules such as phenolic acids and alkaloids play a crucial role in preserving the quality and safety of food products, particularly oils, by preventing oxidation. Berberis integerrima, a rich source of such antioxidants, has been explored in this study for its potential application in soybean oil preservation. Electrospun nanofibers, composed of polyvinyl alcohol and chitosan, were fabricated and loaded with an alcoholic extract of Berberis integerrima. The antioxidant activity of Berberis integerrima was evaluated, and the phenolic compounds contributing to its efficacy were identified and quantified. The physicochemical properties of the polyvinyl alcohol /chitosan/Berberis integerrima nanofibers, including morphology, crystallinity, functional groups, and thermal stability, were characterized. The results revealed that the polyvinyl alcohol/chitosan/Berberis integerrima nanofibers exhibited high antioxidant capacity and improved the stability of Berberis integerrima, indicating their potential as effective and biodegradable materials for food preservation. This study underscores the potential of harnessing natural antioxidants from Berberis integerrima in nanofibers to enhance the quality and safety of soybean oil.


Assuntos
Antioxidantes , Berberis , Quitosana , Nanofibras , Oxirredução , Óleo de Soja , Quitosana/química , Nanofibras/química , Óleo de Soja/química , Antioxidantes/química , Antioxidantes/farmacologia , Berberis/química , Álcool de Polivinil/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia
12.
Poult Sci ; 103(7): 103746, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38678974

RESUMO

Polyunsaturated fatty acids (PUFA), including n-6 and n-3 fatty acids, are essential for enhancing the performance and health of poultry. Avian species lack desaturase enzymes for endogenous synthesis of n-6 and n-3 fatty acids. This work aimed to determine the impacts of including soybean oil (SO) and linseed oil (LO) in quail diets on growth, lipid profile, hepatic and renal functions, immunity, and antioxidant status. A total of 350 Japanese quail chicks (1-wk-old) were randomly arranged into 7 dietary treatment groups. Seven isocaloric and isonitrogenous experimental basal diets were formed based on the nutritional requirements of growing Japanese quail. Group 1, the control, received a basal with no oils, while groups 2 to 7 received a basal diet containing either 1% SO, 1.5% SO, 2% SO, 1% LO, 1.5% LO, or 2% LO, respectively. Quail groups that consumed diets containing LO at all levels showed significantly greater live body weight (LBW) at 5th wk of age than other experimental groups. The dietary incorporation of 1.5 or 2% SO or LO at all levels yielded significant improvements in body weight gain (BWG) and feed conversion ratio (FCR) through 3 to 5 and 1 to 5 wk of age. Different dietary oil sources and levels have no significant impacts on feed intake (FI) and carcass yield parameters. Lipid profile parameters were improved by adding SO and LO in quail diets, with LO having a higher effect than SO. The hepatic and renal functionality were improved by adding SO and LO in quail diets. The lowest uric acid (UA) bloodstream concentrations were recorded in the quail group fed a diet with 2% LO. Values of Gamma globulins (G-GLO) and immunoglobulins (G, M, and A) were increased by adding SO or LO to quail diets. Blood levels of MDA and TAC were improved significantly by including LO in quail diets. The activity of the superoxide dismutase (SOD) enzyme was significantly increased by adding SO or LO to quail diets. Generally, adding SO or LO to growing quail diets up to 2% could yield favorable effects on growth performance, blood lipids, hepatic and renal functions, immunity, and antioxidant status; however, LO seems to have better effects than SO.


Assuntos
Ração Animal , Coturnix , Dieta , Suplementos Nutricionais , Óleo de Semente do Linho , Óleo de Soja , Animais , Óleo de Semente do Linho/administração & dosagem , Ração Animal/análise , Dieta/veterinária , Coturnix/crescimento & desenvolvimento , Coturnix/fisiologia , Óleo de Soja/administração & dosagem , Óleo de Soja/metabolismo , Suplementos Nutricionais/análise , Distribuição Aleatória , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Masculino , Relação Dose-Resposta a Droga , Nível de Saúde
13.
J Pediatr Surg ; 59(7): 1369-1373, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38614946

RESUMO

INTRODUCTION: Reducing soybean lipid emulsion (SLE) dose may prevent parenteral nutrition-associated cholestasis (PNAC) but effects on growth and neurodevelopment are unknown. The purpose of this study was to evaluate the effect of reduced dose SLE on growth and neurodevelopment. METHODS: Surgical neonates at 4 centers were randomized to standard SLE (3 g/kg/day) or reduced SLE (1 g/kg/day) over a 12-week period. Bilirubin levels and growth parameters were measured baseline and weekly while on study. The effects of time and group on direct bilirubin and growth were evaluated with a linear mixed effects model. Neurodevelopmental outcomes were assessed at 12- and 24-months corrected gestational age. RESULTS: Twenty-one individuals were randomized (standard dose = 9, reduced dose = 12). Subjects in the reduced dose group had slower rates of direct bilirubin increase and overall levels decreased earlier than those in the standard dose group. There was a trend toward a faster direct bilirubin decrease in the reduced dose group (p = 0.07 at day 84). There were no differences in the rates of change in weight (p = 0.352 at day 84) or height Z-scores (p = 0.11 at day 84) between groups. One subject in the reduced dose group had abnormal neurodevelopmental testing at 24 months. CONCLUSIONS: Surgical neonates randomized to a reduced dose of SLE had improved trends in direct bilirubin levels without clinically significant differences in overall growth and neurodevelopment. TYPE OF STUDY: Randomized Controlled Trial. LEVEL OF EVIDENCE: II.


Assuntos
Bilirrubina , Colestase , Emulsões Gordurosas Intravenosas , Nutrição Parenteral , Óleo de Soja , Humanos , Colestase/etiologia , Colestase/prevenção & controle , Recém-Nascido , Óleo de Soja/administração & dosagem , Óleo de Soja/uso terapêutico , Feminino , Emulsões Gordurosas Intravenosas/administração & dosagem , Emulsões Gordurosas Intravenosas/uso terapêutico , Nutrição Parenteral/efeitos adversos , Nutrição Parenteral/métodos , Masculino , Bilirrubina/sangue , Lactente , Recém-Nascido Prematuro , Relação Dose-Resposta a Droga
14.
Pediatr Surg Int ; 40(1): 97, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38581576

RESUMO

PURPOSE: The effect of different types of lipid emulsion may guide therapy of patients with intestinal failure (IF) to limit morbidity such as intestinal failure-associated liver disease (IFALD). METHODS: A retrospective chart review of pediatric patients with IF who received soybean oil lipid emulsion (SL) or mixed oil lipid emulsion (ML) was performed. Data over 1 year were collected. RESULTS: Forty-five patients received SL and 34 received ML. There were no differences in the incidence (82 versus 74%, P = 0.35) or resolution (86 versus 92%, P = 0.5) of IFALD between the cohorts. The median dose of ML was higher compared to SL (2 versus 1 g/kg/day, P < 0.001). If resolved, IFALD resolved rapidly in the ML cohort compared to the SL cohort (67 versus 37 days, P = 0.01). Weight gain was higher in the ML compared to the SL cohort at resolution of IFALD or 1 year from diagnosis of IF (P = 0.009). CONCLUSION: The administration of ML did not alter the incidence or resolution of IFALD compared to SL in pediatric IF. There was rapid resolution of IFALD and enhanced weight gain in the ML cohort compared to SL in pediatric IF.


Assuntos
Enteropatias , Insuficiência Intestinal , Hepatopatias , Falência Hepática , Humanos , Criança , Emulsões Gordurosas Intravenosas/uso terapêutico , Nutrição Parenteral , Estudos Retrospectivos , Enteropatias/tratamento farmacológico , Hepatopatias/complicações , Falência Hepática/complicações , Óleo de Soja/uso terapêutico , Aumento de Peso , Óleos de Peixe
15.
Physiol Behav ; 280: 114548, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38615729

RESUMO

Corn and soybean oils are among the most frequently used vehicles for water-insoluble compounds in toxicological studies. These two vegetable oils are nutrients and may induce some biological effects on animals that might interfere with the experimental results. However, their chronic effects on a developing brain have not been reported. This study aims to evaluate the neurobehavioral and brain biochemical effects of both oils on male and female Swiss albino mice. Pregnant female mice were exposed to 1 µl/g/d of either tap water, corn oil (CO), or soybean oil (SO) from early gestation (GD1) until weaning then offspring mice were exposed to the same treatment regimen until adulthood (PND70). Our results showed that developmental exposure to both oils induced body weight changes in offspring mice. In addition, we detected some behavioral abnormalities where both oil-treated groups showed a significant decrease in locomotor activity and greater levels of anxiety behavior. Moreover, our results suggest that continuous exposure to these oils may alter motor coordination, spatial memory and induce depression-like behavior in adult mice. These alterations were accompanied by increased malondialdehyde, superoxide dismutase, and glutathione peroxidase activities in specific brain regions. Together, these data suggest that exposure to CO and SO as vehicles in developmental studies may interfere with the behavioral response and brain redox homeostasis in offspring mice.


Assuntos
Encéfalo , Óleo de Milho , Estresse Oxidativo , Efeitos Tardios da Exposição Pré-Natal , Óleo de Soja , Animais , Feminino , Óleo de Milho/administração & dosagem , Estresse Oxidativo/efeitos dos fármacos , Camundongos , Gravidez , Masculino , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/crescimento & desenvolvimento , Glutationa Peroxidase/metabolismo , Peso Corporal/efeitos dos fármacos , Malondialdeído/metabolismo , Superóxido Dismutase/metabolismo , Atividade Motora/efeitos dos fármacos , Comportamento Animal/efeitos dos fármacos , Ansiedade/induzido quimicamente , Aprendizagem em Labirinto/efeitos dos fármacos , Veículos Farmacêuticos
16.
Environ Sci Pollut Res Int ; 31(20): 29264-29279, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38573576

RESUMO

Guided by efficient utilization of natural plant oil and sulfur as low-cost sorbents, it is desired to tailor the porosity and composition of polysulfides to achieve their optimal applications in the management of aquatic heavy metal pollution. In this study, polysulfides derived from soybean oil and sulfur (PSSs) with improved porosity (10.2-22.9 m2/g) and surface oxygen content (3.1-7.0 wt.%) were prepared with respect to reaction time of 60 min, reaction temperature of 170 °C, and mass ratios of sulfur/soybean oil/NaCl/sodium citrate of 1:1:3:2. The sorption behaviors of PSSs under various hydrochemical conditions such as contact time, pH, ionic strength, coexisting cations and anions, temperature were systematically investigated. PSSs presented a fast sorption kinetic (5.0 h) and obviously improved maximum sorption capacities for Pb(II) (180.5 mg/g), Cu(II) (49.4 mg/g), and Cr(III) (37.0 mg/g) at pH 5.0 and T 298 K, in comparison with polymers made without NaCl/sodium citrate. This study provided a valuable reference for the facile preparation of functional polysulfides as well as a meaningful option for the removal of aquatic heavy metals.


Assuntos
Cobre , Chumbo , Metais Pesados , Óleo de Soja , Sulfetos , Poluentes Químicos da Água , Adsorção , Chumbo/química , Óleo de Soja/química , Cobre/química , Sulfetos/química , Porosidade , Poluentes Químicos da Água/química , Metais Pesados/química , Cromo/química , Cinética , Concentração de Íons de Hidrogênio
17.
Sci Rep ; 14(1): 5439, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38443469

RESUMO

The objective of this study was to determine whether adding phytoncide oil (PO) and soybean oil (SBO) to the dairy cow diet could increase milk conjugated linoleic acid (CLA) and depress methane (CH4) emissions in Holstein dairy cows. Rumen fermentation was conducted at four levels of SBO (0, 1, 2, and 4%, on DM basis) and two levels of PO (0 and 0.1%, on DM basis) with in vitro experiment. To evaluate blood parameters, fecal microbe population, milk yield and fatty acid compositions, and CH4 production, in vivo experiment was conducted using 38 Holstein dairy cows divided into two groups of control (fed TMR) and treatment (fed TMR with 0.1% PO and 2% SBO as DM basis). In the in vitro study (Experiment 1), PO or SBO did not affect rumen pH. However, SBO tended to decrease ruminal ammonia-N (p = 0.099). Additionally, PO or SBO significantly decreased total gas production (p = 0.041 and p = 0.034, respectively). Both PO and SBO significantly decreased CH4 production (p < 0.05). In addition, PO significantly increased both CLA isomers (c9, t11 and t10, c12 CLA) (p < 0.001). Collectively, 0.1% PO and 2% SBO were selected resulting in most effectively improved CLA and decreased CH4 production. In the in vivo study (Experiment 2), 0.1% PO with 2% SBO (PSO) did not affect complete blood count. However, it decreased blood urea nitrogen and magnesium levels in blood (p = 0.021 and p = 0.01, respectively). PSO treatment decreased pathogenic microbes (p < 0.05). It increased milk yield (p = 0.017) but decreased percentage of milk fat (p = 0.013) and MUN level (p < 0.01). In addition, PSO treatment increased both the concentration of CLA and PUFA in milk fat (p < 0.01). Finally, it decreased CH4 emissions from dairy cows. These results provide compelling evidence that a diet supplemented with PSO can simultaneously increase CLA concentration and decrease CH4 production with no influence on the amount of milk fat (kg/day) in Holstein dairy cows.


Assuntos
Ácidos Linoleicos Conjugados , Leite , Monoterpenos , Animais , Feminino , Bovinos , Ácidos Linoleicos Conjugados/farmacologia , Óleo de Soja , Suplementos Nutricionais , Metano
18.
Carbohydr Polym ; 334: 122027, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38553226

RESUMO

To investigate the effect of oil additives on improving the water resistance of corn starch straws, corn oil (CO), soybean oil (SO), rapeseed oil (RO), peanut oil (PO), lard (LD) and coconut oil (CCO) were chosen and compared the structure and properties of starch straws with different oil additives. Corn starch straws (CS), and starch straws supplemented with CO, SO, RO, PO, LD and CCO were prepared by thermoplastic extrusion. The results showed that the incorporation of oils effectively enhanced the water resistance of starch straws such as water absorption, water solubility and water swelling performance. Meanwhile, the flexural strength of starch straws significantly increased. There was no significant linear relationship among starch chain length, oil unsaturation and straw performance. Among seven starch straws, S-SO had the strongest hydrogen bond interaction (3289 cm-1) and relaxation time (0.96 ms). The S-CO had the highest relative crystallinity (16.82 %) and degree of double helix (1.535), hence resulting in the lowest water absorption and solubility values, the highest flexural strength (23.43 MPa), the highest ΔT value (9.93 °C) and ΔH value (4.79 J/g). S-RO had the highest thermal transition temperatures.


Assuntos
Amido , Zea mays , Amido/química , Zea mays/química , Água/química , Óleo de Soja , Fenômenos Químicos , Óleo de Brassica napus , Óleo de Milho
19.
Int J Biol Macromol ; 265(Pt 2): 130717, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479673

RESUMO

In the present study, a range of sustainable, biocompatible and biodegradable polyurethanes (PU-1 to PU-4) were synthesized using different combinations of biobased polyol (obtained through the epoxidation of soybean oil, followed by ring opening with ethanol) and polyethylene glycol (PEG) and isophorone diisocyanate. The sustainable chain extender used in this study was synthesized by the esterification of lactic acid with ethylene glycol (EG). The synthesized PU samples were characterized through scanning electron microscopy (SEM), Fourier transformed infrared (FTIR) and nuclear magnetic resonance (1H NMR and 13C NMR) spectroscopy. Wetting ability and thermal degradation analysis (TGA) of the samples were also studied. Subsequently, these PUs were examined as potential drug delivery systems using Gabapentin as a model drug, which was loaded in the polymer matrix using the solvent evaporation method. The drug release studies were carried out in 0.06 N HCl as a release medium according to the method outlined in the United States Pharmacopeia. The maximum drug release was observed for sample PU-P1, which was found to be 53.0 % after 6 h. Moreover, a comparison of different PU samples revealed a trend wherein the values of drug release were decreased with an increase in the PEG content.


Assuntos
Poliuretanos , Óleo de Soja , Poliuretanos/química , Ácido Láctico , Sistemas de Liberação de Medicamentos , Fenômenos Químicos , Polietilenoglicóis/química
20.
Int J Biol Macromol ; 264(Pt 2): 130772, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38467217

RESUMO

This investigation stems from the wide interest in mitigating starch retrogradation, which profoundly impacts the quality of starch-based food, garnering significant attention in the contemporary food industry. Our study delves into the intricate dynamics of soluble soybean polysaccharide (SSPS) and soybean oil (SO) when added individually or in combination to native corn starch (NCS), offering insights into the gelatinization and retrogradation phenomena. We observed that SSPS (0.5 %, w/w) hindered starch swelling, leading to an elevated gelatinization enthalpy change (∆H) value, while SO (0.5 %, w/w) increased ∆H due to its hydrophobicity. Adding SSPS and/or SO concurrently reduced the viscosity and storage modulus (G') of starch matrix. For the starch gel (8 %, w/v) after refrigeration, SSPS magnified water-holding capacity (WHC) and decreased hardness through hydrogen bonding with starch, while SO increased hardness with limited water retention. Crucially, the combination of SSPS and SO maximized WHC, minimized hardness, and significantly inhibited starch retrogradation. The specific ratio of SSPS to SO was found to significantly influence the starch properties, with a 1:1 ratio resulting in the most desirable quality for application in starch-based foods. This study offers insights for utilizing polysaccharides and lipids in starch-based food products to extend shelf life.


Assuntos
Glycine max , Amido , Óleo de Soja , Zea mays , Polissacarídeos/farmacologia , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA