Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20.739
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(19): 24248-24260, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693878

RESUMO

Biomedical devices are vulnerable to infections and biofilm formation, leading to extended hospital stays, high expenditure, and increased mortality. Infections are clinically treated via the administration of systemic antibiotics, leading to the development of antibiotic resistance. A multimechanistic strategy is needed to design an effective biomaterial with broad-spectrum antibacterial potential. Recent approaches have investigated the fabrication of innately antimicrobial biomedical device surfaces in the hope of making the antibiotic treatment obsolete. Herein, we report a novel fabrication strategy combining antibacterial nitric oxide (NO) with an antibiofilm agent N-acetyl cysteine (NAC) on a polyvinyl chloride surface using polycationic polyethylenimine (PEI) as a linker. The designed biomaterial could release NO for at least 7 days with minimal NO donor leaching under physiological conditions. The proposed surface technology significantly reduced the viability of Gram-negative Escherichia coli (>97%) and Gram-positive Staphylococcus aureus (>99%) bacteria in both adhered and planktonic forms in a 24 h antibacterial assay. The composites also exhibited a significant reduction in biomass and extra polymeric substance accumulation in a dynamic environment over 72 h. Overall, these results indicate that the proposed combination of the NO donor with mucolytic NAC on a polymer surface efficiently resists microbial adhesion and can be used to prevent device-associated biofilm formation.


Assuntos
Acetilcisteína , Antibacterianos , Biofilmes , Escherichia coli , Óxido Nítrico , Staphylococcus aureus , Acetilcisteína/química , Acetilcisteína/farmacologia , Óxido Nítrico/química , Óxido Nítrico/metabolismo , Óxido Nítrico/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Polietilenoimina/química , Polietilenoimina/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Testes de Sensibilidade Microbiana , Cloreto de Polivinila/química , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/farmacologia
2.
J Am Heart Assoc ; 13(10): e033998, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38726925

RESUMO

BACKGROUND: The vasoconstrictor effects of angiotensin II via type 1 angiotensin II receptors in vascular smooth muscle cells are well established, but the direct effects of angiotensin II on vascular endothelial cells (VECs) in vivo and the mechanisms how VECs may mitigate angiotensin II-mediated vasoconstriction are not fully understood. The present study aimed to explore the molecular mechanisms and pathophysiological relevance of the direct actions of angiotensin II on VECs in kidney and brain microvessels in vivo. METHODS AND RESULTS: Changes in VEC intracellular calcium ([Ca2+]i) and nitric oxide (NO) production were visualized by intravital multiphoton microscopy of cadherin 5-Salsa6f mice or the endothelial uptake of NO-sensitive dye 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate, respectively. Kidney fibrosis by unilateral ureteral obstruction and Ready-to-use adeno-associated virus expressing Mouse Renin 1 gene (Ren1-AAV) hypertension were used as disease models. Acute systemic angiotensin II injections triggered >4-fold increases in VEC [Ca2+]i in brain and kidney resistance arterioles and capillaries that were blocked by pretreatment with the type 1 angiotensin II receptor inhibitor losartan, but not by the type 2 angiotensin II receptor inhibitor PD123319. VEC responded to acute angiotensin II by increased NO production as indicated by >1.5-fold increase in 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence intensity. In mice with kidney fibrosis or hypertension, the angiotensin II-induced VEC [Ca2+]i and NO responses were significantly reduced, which was associated with more robust vasoconstrictions, VEC shedding, and microthrombi formation. CONCLUSIONS: The present study directly visualized angiotensin II-induced increases in VEC [Ca2+]i and NO production that serve to counterbalance agonist-induced vasoconstriction and maintain residual organ blood flow. These direct and endothelium-specific angiotensin II effects were blunted in disease conditions and linked to endothelial dysfunction and the development of vascular pathologies.


Assuntos
Angiotensina II , Encéfalo , Cálcio , Hipertensão , Rim , Microvasos , Óxido Nítrico , Vasoconstrição , Animais , Óxido Nítrico/metabolismo , Angiotensina II/farmacologia , Hipertensão/metabolismo , Hipertensão/fisiopatologia , Hipertensão/tratamento farmacológico , Rim/irrigação sanguínea , Rim/metabolismo , Cálcio/metabolismo , Vasoconstrição/efeitos dos fármacos , Microvasos/metabolismo , Microvasos/efeitos dos fármacos , Microvasos/patologia , Encéfalo/metabolismo , Encéfalo/irrigação sanguínea , Camundongos , Modelos Animais de Doenças , Masculino , Células Endoteliais/metabolismo , Células Endoteliais/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Sinalização do Cálcio/efeitos dos fármacos
3.
Acta Biochim Pol ; 71: 12433, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721304

RESUMO

The study aimed to determine the osteointegration markers after dental implantation and evaluate their predictive value. The study was performed on 60 practically healthy persons who needed teeth rehabilitation using dental implants. The conical-shaped implants (CI) and hexagonal implants (HI) were used. The content of Osteopontin (OPN), Osteocalcin (OC), Alkaline Phosphatase (ALP), Osteoprotegerin (OPG), and nitric oxide (NO) was determined in patients' gingival crevicular fluid (GCF) and peri-implant sulcular fluid (PISF), collected 1, 3, and 6 months after implantation. During the 3-6 months of observation level of OPN increased in patients with CIs (<50 years > 50 years) and HIs (<50 years) (CI: <50 years F = 36.457, p < 0.001; >50 years F = 30.104, p < 0.001; HI < 50 years F = 2.246, p < 0.001), ALP increased in patients with CIs (<50 years: F = 19.58, p < 0.001; >50 years: F = 12.01; p = 0.001) and HIs (<50 years) (F = 18.51, p < 0.001), OC increased in patients <50 years (CI: F = 33.72, p < 0.001; HI: F = 55.57, p < 0.001), but in patients >50 years - on the 3 days month (CI: F = 18.82, p < 0.001; HI: F = 26.26, p < 0.001), but sharply decreased at the end of sixth month. OPG increased during 1-3 months of the observation in patients <50 years (CI: F = 4.63, p = 0.037; HI: F = 2.8927, p = 0.046), but at the end of the sixth month returned to the initial level; NO content in PISF increased in patients with CI (>50 years) during 1-6 months of the observation (F = 27.657, p < 0.001). During the post-implantation period, age-related differences in osteointegration were observed. Patients <50 years old had relatively high levels of OPN, ALP, OC, and OPG in PISF, resulting in less alveolar bone destruction around dental implants and more intensive osteointegration. These indicators may be used as biological markers for monitoring implant healing. The process of osseointegration was more intense in CIs due to their comparatively high mechanical loading.


Assuntos
Fosfatase Alcalina , Biomarcadores , Implantes Dentários , Líquido do Sulco Gengival , Osseointegração , Osteocalcina , Osteopontina , Osteoprotegerina , Humanos , Pessoa de Meia-Idade , Biomarcadores/metabolismo , Feminino , Masculino , Osteoprotegerina/metabolismo , Líquido do Sulco Gengival/metabolismo , Fosfatase Alcalina/metabolismo , Osteocalcina/metabolismo , Adulto , Osteopontina/metabolismo , Prognóstico , Óxido Nítrico/metabolismo , Implantação Dentária/métodos , Fatores de Tempo
4.
J Nanobiotechnology ; 22(1): 232, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720301

RESUMO

Diabetic wounds pose a challenge to healing due to increased bacterial susceptibility and poor vascularization. Effective healing requires simultaneous bacterial and biofilm elimination and angiogenesis stimulation. In this study, we incorporated polyaniline (PANI) and S-Nitrosoglutathione (GSNO) into a polyvinyl alcohol, chitosan, and hydroxypropyltrimethyl ammonium chloride chitosan (PVA/CS/HTCC) matrix, creating a versatile wound dressing membrane through electrospinning. The dressing combines the advantages of photothermal antibacterial therapy and nitric oxide gas therapy, exhibiting enduring and effective bactericidal activity and biofilm disruption against methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Escherichia coli. Furthermore, the membrane's PTT effect and NO release exhibit significant synergistic activation, enabling a nanodetonator-like burst release of NO through NIR irradiation to disintegrate biofilms. Importantly, the nanofiber sustained a uniform release of nitric oxide, thereby catalyzing angiogenesis and advancing cellular migration. Ultimately, the employment of this membrane dressing culminated in the efficacious amelioration of diabetic-infected wounds in Sprague-Dawley rats, achieving wound closure within a concise duration of 14 days. Upon applying NIR irradiation to the PVA-CS-HTCC-PANI-GSNO nanofiber membrane, it swiftly eradicates bacteria and biofilm within 5 min, enhancing its inherent antibacterial and anti-biofilm properties through the powerful synergistic action of PTT and NO therapy. It also promotes angiogenesis, exhibits excellent biocompatibility, and is easy to use, highlighting its potential in treating diabetic wounds.


Assuntos
Antibacterianos , Bandagens , Biofilmes , Óxido Nítrico , Terapia Fototérmica , Ratos Sprague-Dawley , Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Óxido Nítrico/farmacologia , Óxido Nítrico/metabolismo , Ratos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Biofilmes/efeitos dos fármacos , Terapia Fototérmica/métodos , Masculino , Quitosana/química , Quitosana/farmacologia , Nanofibras/química , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Diabetes Mellitus Experimental/complicações , Staphylococcus aureus/efeitos dos fármacos , Álcool de Polivinil/química , Álcool de Polivinil/farmacologia , S-Nitrosoglutationa/farmacologia , S-Nitrosoglutationa/química
5.
Plant Cell Rep ; 43(6): 139, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38735908

RESUMO

KEY MESSAGE: Nitric oxide functions downstream of the melatonin in adjusting Cd-induced osmotic and oxidative stresses, upregulating the transcription of D4H and DAT genes, and increasing total alkaloid and vincristine contents. A few studies have investigated the relationship between melatonin (MT) and nitric oxide (NO) in regulating defensive responses. However, it is still unclear how MT and NO interact to regulate the biosynthesis of alkaloids and vincristine in leaves of Catharanthus roseus (L.) G. Don under Cd stress. Therefore, this context was explored in the present study. Results showed that Cd toxicity (200 µM) induced oxidative stress, decreased biomass, Chl a, and Chl b content, and increased the content of total alkaloid and vinblastine in the leaves. Application of both MT (100 µM) and sodium nitroprusside (200 µM SNP, as NO donor) enhanced endogenous NO content and accordingly increased metal tolerance index, the content of total alkaloid and vinblastine. It also upregulated the transcription of two respective genes (D4H and DAT) under non-stress and Cd stress conditions. Moreover, the MT and SNP treatments reduced the content of H2O2 and malondialdehyde, increased the activities of superoxide dismutase and ascorbate peroxidase, enhanced proline accumulation, and improved relative water content in leaves of Cd-exposed plants. The scavenging NO by 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxy l-3-oxide (cPTIO) averted the effects of MT on the content of total alkaloid and vinblastine and antioxidative responses. Still, the effects conferred by NO on attributes mentioned above were not significantly impaired by p-chlorophenylalanine (p-CPA as an inhibitor of MT biosynthesis). These findings and multivariate analyses indicate that MT motivated terpenoid indole alkaloid biosynthesis and mitigated Cd-induced oxidative stress in the leaves of periwinkle in a NO-dependent manner.


Assuntos
Cádmio , Catharanthus , Regulação da Expressão Gênica de Plantas , Melatonina , Óxido Nítrico , Estresse Oxidativo , Folhas de Planta , Vimblastina , Catharanthus/metabolismo , Catharanthus/genética , Catharanthus/efeitos dos fármacos , Óxido Nítrico/metabolismo , Cádmio/metabolismo , Cádmio/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Vimblastina/metabolismo , Melatonina/metabolismo , Melatonina/farmacologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Antioxidantes/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética
6.
Int J Mol Sci ; 25(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38731952

RESUMO

Porphyromonas gingivalis (Pg), a Gram-negative oral pathogen, promotes and accelerates periodontitis-associated gut disorders. Intestinal epithelial barrier dysfunction is crucial in the pathogenesis of intestinal and systemic diseases. In this study, we sought to elucidate the protective role of cinnamaldehyde (CNM, an activator of Nrf2) against P. gingivalis (W83) and Pg-derived lipopolysaccharide (Pg-LPS) induced intestinal epithelial barrier dysfunction via antioxidative mechanisms in IEC-6 cells. IEC-6 (ATCC, CRL-1592) cells were pretreated with or without CNM (100 µM), in the presence or absence of P. gingivalis (strain W83, 109 MOI) or Pg-LPS (1, 10, and 100 µg/mL), respectively, between 0-72 h time points by adopting a co-culture method. Intestinal barrier function, cytokine secretion, and intestinal oxidative stress protein markers were analyzed. P. gingivalis or Pg-LPS significantly (p < 0.05) increased reactive oxygen species (ROS) and malondialdehyde (MDA) levels expressing oxidative stress damage. Pg-LPS, as well as Pg alone, induces inflammatory cytokines via TLR-4 signaling. Furthermore, infection reduced Nrf2 and NAD(P)H quinone dehydrogenase 1 (NQO1). Interestingly, inducible nitric oxide synthase (iNOS) protein expression significantly (p < 0.05) increased with Pg-LPS or Pg infection, with elevated levels of nitric oxide (NO). CNM treatment suppressed both Pg- and Pg-LPS-induced intestinal oxidative stress damage by reducing ROS, MDA, and NO production. Furthermore, CNM treatment significantly upregulated the expression of tight junction proteins via increasing the phosphorylation levels of PI3K/Akt/Nrf2 suppressing inflammatory cytokines. CNM protected against Pg infection-induced intestinal epithelial barrier dysfunction by activating the PI3K/Akt-mediated Nrf2 signaling pathway in IEC-6 cells.


Assuntos
Acroleína , Mucosa Intestinal , Fator 2 Relacionado a NF-E2 , Óxido Nítrico , Fosfatidilinositol 3-Quinases , Porphyromonas gingivalis , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Fator 2 Relacionado a NF-E2/metabolismo , Acroleína/análogos & derivados , Acroleína/farmacologia , Animais , Transdução de Sinais/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Porphyromonas gingivalis/patogenicidade , Fosfatidilinositol 3-Quinases/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Óxido Nítrico/metabolismo , Linhagem Celular , Lipopolissacarídeos , Estresse Oxidativo/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Receptor 4 Toll-Like/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Citocinas/metabolismo
7.
PeerJ ; 12: e17252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38708345

RESUMO

Background: Periodontitis is a chronic infectious disease, characterized by an exacerbated inflammatory response and a progressive loss of the supporting tissues of the teeth. Porphyromonas gingivalis is a key etiologic agent in periodontitis. Cystatin C is an antimicrobial salivary peptide that inhibits the growth of P. gingivalis. This study aimed to evaluate the antimicrobial activity of this peptide and its effect on cytokine production, nitric oxide (NO) release, reactive oxygen species (ROS) production, and programmed cell death in human macrophages infected with P. gingivalis. Methods: Monocyte-derived macrophages generated from peripheral blood were infected with P. gingivalis (MOI 1:10) and stimulated with cystatin C (2.75 µg/ml) for 24 h. The intracellular localization of P. gingivalis and cystatin C was determined by immunofluorescence and transmission electron microscopy (TEM). The intracellular antimicrobial activity of cystatin C in macrophages was assessed by counting Colony Forming Units (CFU). ELISA assay was performed to assess inflammatory (TNFα, IL-1ß) and anti-inflammatory (IL-10) cytokines. The production of nitrites and ROS was analyzed by Griess reaction and incubation with 2',7'-dichlorodihydrofluorescein diacetate (H2DCFDA), respectively. Programmed cell death was assessed with the TUNEL assay, Annexin-V, and caspase activity was also determined. Results: Our results showed that cystatin C inhibits the extracellular growth of P. gingivalis. In addition, this peptide is internalized in the infected macrophage, decreases the intracellular bacterial load, and reduces the production of inflammatory cytokines and NO. Interestingly, peptide treatment increased ROS production and substantially decreased bacterial-induced macrophage apoptosis. Conclusions: Cystatin C has antimicrobial and immuno-regulatory activity in macrophages infected with P. gingivalis. These findings highlight the importance of understanding the properties of cystatin C for its possible therapeutic use against oral infections such as periodontitis.


Assuntos
Cistatina C , Macrófagos , Óxido Nítrico , Porphyromonas gingivalis , Espécies Reativas de Oxigênio , Porphyromonas gingivalis/imunologia , Humanos , Macrófagos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/microbiologia , Cistatina C/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Citocinas/metabolismo , Periodontite/microbiologia , Periodontite/imunologia , Periodontite/tratamento farmacológico , Periodontite/patologia , Apoptose/efeitos dos fármacos
8.
Sci Rep ; 14(1): 10145, 2024 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698070

RESUMO

For centuries, medicinal plants have served as the cornerstone for traditional health care systems and same practice is still prevalent today. In the Himalayan region, Saussurea heteromalla holds a significant place in traditional medicine and is used to address various health issues. Despite its historical use, little exploration has focused on its potential for scavenging free radicals and reducing inflammation. Hence, our current study aims to investigate the free radical scavenging capabilities of S. heteromalla extracts. The n-hexane extract of entire plant revealed promising activity. This extract underwent extensive extraction on a larger scale. Subsequent purification, employing column chromatography, HPLC-DAD techniques, led to the identification of active compounds, confirmed via GC-MS and the NIST database as 1-O-butyl 2-O-octyl benzene-1,2-dicarboxylate and 2,4-ditert-butylphenol. Assessing the free radical scavenging properties involved utilizing RAW-264.7 macrophages activated by lipopolysaccharides. Notably, the compound 2,4-di-tert-butylphenol exhibited remarkable scavenging abilities, demonstrating over 80% inhibition of Nitric oxide. This study stands as the inaugural report on the isolation of these compounds from S. heteromalla.


Assuntos
Antioxidantes , Cromatografia Gasosa-Espectrometria de Massas , Macrófagos , Óxido Nítrico , Extratos Vegetais , Saussurea , Saussurea/química , Camundongos , Óxido Nítrico/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Células RAW 264.7 , Antioxidantes/farmacologia , Antioxidantes/química , Lipopolissacarídeos/farmacologia , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química
9.
Sci Total Environ ; 931: 172812, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38703854

RESUMO

Cadmium (Cd), as a non-essential and toxic heavy metal in plants, has deleterious effects on plant physiological and biochemical processes. Nitric oxide (NO) is one of the most important signaling molecules for plants to response diverse stresses. Here, we found that Cd-induced programmed cell death (PCD) was accompanied by NO bursts, which exacerbated cell death when NO was removed and vice versa. Proteomic analysis of S-nitrosylated proteins showed that the differential proteins in Cd-induced PCD and in NO-alleviated PCD mainly exist together in carbohydrate metabolism and amino acid metabolism, while some of the differential proteins exist alone in metabolism of cofactors and vitamins and lipid metabolism. Meanwhile, S-nitrosylation of proteins in porphyrin and chlorophyll metabolism and starch and sucrose metabolism could explain the leaf chlorosis induced by PCD. Moreover, protein transport protein SEC23, ubiquitinyl hydrolase 1 and pathogenesis-related protein 1 were identified to be S-nitrosylated in vivo, and their expressions were increased in Cd-induced PCD while decreased in NO treatment. Similar results were obtained in tomato seedlings with higher S-nitrosylation. Taken together, our results indicate that NO might be involved in the regulation of Cd-induced PCD through protein S-nitrosylation, especially proteins involved in PCD response.


Assuntos
Cádmio , Óxido Nítrico , Plântula , Solanum lycopersicum , Óxido Nítrico/metabolismo , Cádmio/toxicidade , Solanum lycopersicum/metabolismo , Plântula/efeitos dos fármacos , Plântula/metabolismo , Apoptose/efeitos dos fármacos , Proteínas de Plantas/metabolismo , Poluentes do Solo/toxicidade , Poluentes do Solo/metabolismo
10.
Bull Exp Biol Med ; 176(5): 555-561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38717567

RESUMO

The levels of NO metabolites in the plasma and mRNA of the NOS3, ATG9B, and NOS2 genes in peripheral blood leukocytes of healthy people and patients with early forms of non-alcoholic fatty liver disease (steatosis and weak activity non-alcoholic steatohepatitis) were studied. In patients with steatohepatitis, the concentration of NO metabolites in the blood and the level of mRNA of the NOS2 gene were higher than in patients with steatosis and healthy people. These differences can be of diagnostic value for distinguishing between steatosis and weak activity steatohepatitis in non-alcoholic fatty liver disease. A correlation between the levels of NO metabolites and the expression of the NOS2 gene in weak activity steatohepatitis was established, which indicates activation of NO synthesis in non-alcoholic steatohepatitis due to the expression of the inducible NO synthase gene. The level of the NOS2 gene mRNA in peripheral blood leukocytes of patients with weak activity steatohepatitis correlated with the level of TNFα and IL-6 cytokines. An increase in the level of NO in the blood in weak activity steatohepatitis correlated with the level of MDA, an indicator of oxidative stress.


Assuntos
Interleucina-6 , Óxido Nítrico Sintase Tipo III , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Hepatopatia Gordurosa não Alcoólica , Fator de Necrose Tumoral alfa , Humanos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Óxido Nítrico/sangue , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Masculino , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Feminino , Adulto , Interleucina-6/sangue , Interleucina-6/genética , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , RNA Mensageiro/genética , RNA Mensageiro/sangue , RNA Mensageiro/metabolismo , Estresse Oxidativo/genética , Estudos de Casos e Controles , Malondialdeído/sangue
11.
Sci Rep ; 14(1): 11047, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38744989

RESUMO

Callicarpa kwangtungensis Chun (CK) is a common remedy exhibits anti-inflammatory properties and has been used in Chinese herbal formulations, such as KangGongYan tablets. It is the main component of KangGongYan tablets, which has been used to treat chronic cervicitis caused by damp heat, red and white bands, cervical erosion, and bleeding. However, the anti-inflammatory effects of CK water extract remains unknown. This study assessed the anti-inflammatory effects of CK in vivo and in vitro, characterized its main components in the serum of rats and verified the anti-inflammatory effects of serum containing CK. Nitric oxide (NO), tumour necrosis factor α (TNF-α) and interleukin-6 (IL-6) release by RAW264.7 cells was examined by ELISA and Griess reagents. Inflammation-related protein expression in LPS-stimulated RAW264.7 cells was measured by western blotting. Furthermore, rat model of foot swelling induced by λ-carrageenan and a collagen-induced arthritis (CIA) rat model were used to explore the anti-inflammatory effects of CK. The components of CK were characterized by LC-MS, and the effects of CK-containing serum on proinflammatory factors levels and the expression of inflammation-related proteins were examined by ELISA, Griess reagents and Western blotting. CK suppressed IL-6, TNF-α, and NO production, and iNOS protein expression in LPS-stimulated RAW264.7 cells. Mechanistic studies showed that CK inhibited the phosphorylation of ERK, P38 and JNK in the MAPK signaling pathway, promoted the expression of IκBα in the NF-κB signaling pathway, and subsequently inhibited the expression of iNOS, thereby exerting anti-inflammatory effects. Moreover, CK reduced the swelling rates with λ-carrageenan induced foot swelling, and reduced the arthritis score and incidence in the collagen-induced arthritis (CIA) rat model. A total of 68 compounds in CK water extract and 31 components in rat serum after intragastric administration of CK were characterized. Serum pharmacological analysis showed that CK-containing serum suppressed iNOS protein expression and NO, TNF-α, and IL-6 release. CK may be an anti-inflammatory agent with therapeutic potential for acute and chronic inflammatory diseases, especially inflammatory diseases associated with MAPK activation.


Assuntos
Anti-Inflamatórios , Artrite Experimental , Óxido Nítrico , Extratos Vegetais , Animais , Camundongos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Ratos , Células RAW 264.7 , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Óxido Nítrico/metabolismo , Artrite Experimental/tratamento farmacológico , Água/química , Carragenina , Modelos Animais de Doenças , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/sangue , Masculino , Interleucina-6/metabolismo , Interleucina-6/sangue , Edema/tratamento farmacológico , Inflamação/tratamento farmacológico
12.
Cytokine ; 179: 156637, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38723454

RESUMO

Sepsis is understood as the result of initiating systemic inflammation derived from an inadequate host response against pathogens. In its acute phase, sepsis is marked by an exacerbated reaction to infection, tissue damage, organ failure, and metabolic dysfunction. Among these, hypoglycemia, characterized by disorders of the gluconeogenesis pathway, is related to one of the leading causes of mortality in septic patients. Recent research has investigated the involvement of sympathetic efferent neuroimmune pathways during systemic inflammation. These pathways can be stimulated by several centrally administered drugs, including Angiotensin-(1-7) (Ang-(1-7)). Therefore, the present study aims to evaluate the effects of central treatment with Ang-(1-7) on hypoglycemia during endotoxemia. For this, male Wistar Hannover rats underwent stereotaxic surgery for intracerebroventricular (i.c.v.) administration of Ang-(1-7) and cannulation of the jugular vein for lipopolysaccharide (LPS) injection. Our results demonstrate that LPS was capable of inducing hypoglycemia and that prior central treatment with Ang-(1-7) attenuated this effect. Our data also show that Ang-(1-7) reduced plasma concentrations of TNF-α, IL-1ß, IL-6, and nitric oxide, in addition to the decrease and increase of hepatic IL-6 and IL-10 respectively, in animals subjected to systemic inflammation by LPS, resulting in the reduction of systemic and hepatic inflammation, thus attenuating the deleterious effects of LPS on phosphoenolpyruvate carboxykinase protein content. In summary, the data suggest that central treatment with Ang-(1-7) attenuates hypoglycemia induced by endotoxemia, probably through anti-inflammatory action, leading to reestablishing hepatic gluconeogenesis.


Assuntos
Angiotensina I , Hipoglicemia , Lipopolissacarídeos , Fragmentos de Peptídeos , Ratos Wistar , Sepse , Animais , Angiotensina I/farmacologia , Masculino , Sepse/tratamento farmacológico , Sepse/metabolismo , Sepse/complicações , Fragmentos de Peptídeos/farmacologia , Hipoglicemia/tratamento farmacológico , Hipoglicemia/metabolismo , Ratos , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Fígado/metabolismo , Fígado/efeitos dos fármacos , Óxido Nítrico/metabolismo , Hepatite/tratamento farmacológico , Hepatite/metabolismo , Endotoxemia/tratamento farmacológico , Citocinas/metabolismo , Gluconeogênese/efeitos dos fármacos , Glicemia/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Biomacromolecules ; 25(5): 3190-3199, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38693753

RESUMO

Intracellular bacteria in dormant states can escape the immune response and tolerate high-dose antibiotic treatment, leading to severe infections. To overcome this challenge, cascade-targeted nanoplatforms that can target macrophages and intracellular bacteria, exhibiting synergetic antibiotic/reactive oxygen species (ROS)/nitric oxide (NO)/immunotherapy, were developed. These nanoplatforms were fabricated by encapsulating trehalose (Tr) and vancomycin (Van) into phosphatidylserine (PS)-coated poly[(4-allylcarbamoylphenylboric acid)-ran-(arginine-methacrylamide)-ran-(N,N'-bisacryloylcystamine)] nanoparticles (PABS), denoted as PTVP. PS on PTVP simulates a signal of "eat me" to macrophages to promote cell uptake (the first-step targeting). After the uptake, the nanoplatform in the acidic phagolysosomes could release Tr, and the exposed phenylboronic acid on the nanoplatform could target bacteria (the second-step targeting). Nanoplatforms can release Van in response to infected intracellular overexpressed glutathione (GSH) and weak acid microenvironment. l-arginine (Arg) on the nanoplatforms could be catalyzed by upregulated inducible nitric oxide synthase (iNOS) in the infected macrophages to generate nitric oxide (NO). N,N'-Bisacryloylcystamine (BAC) on nanoplatforms could deplete GSH, allow the generation of ROS in macrophages, and then upregulate proinflammatory activity, leading to the reinforced antibacterial capacity. This nanoplatform possesses macrophage and bacteria-targeting antibiotic delivery, intracellular ROS, and NO generation, and pro-inflammatory activities (immunotherapy) provides a new strategy for eradicating intracellular bacterial infections.


Assuntos
Antibacterianos , Nanopartículas , Óxido Nítrico , Espécies Reativas de Oxigênio , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Antibacterianos/farmacologia , Antibacterianos/química , Camundongos , Animais , Células RAW 264.7 , Nanopartículas/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/imunologia , Imunoterapia/métodos , Vancomicina/farmacologia , Vancomicina/química , Vancomicina/administração & dosagem , Infecções Bacterianas/tratamento farmacológico , Trealose/química , Trealose/farmacologia
14.
Int J Mol Sci ; 25(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38732088

RESUMO

Pregnancy at advanced maternal age (AMA) is a condition of potential risk for the development of maternal-fetal complications with possible repercussions even in the long term. Here, we analyzed the changes in plasma redox balance and the effects of plasma on human umbilical cord mesenchymal cells (hUMSCs) in AMA pregnant women (patients) at various timings of pregnancy. One hundred patients and twenty pregnant women younger than 40 years (controls) were recruited and evaluated at various timings during pregnancy until after delivery. Plasma samples were used to measure the thiobarbituric acid reactive substances (TBARS), glutathione and nitric oxide (NO). In addition, plasma was used to stimulate the hUMSCs, which were tested for cell viability, reactive oxygen species (ROS) and NO release. The obtained results showed that, throughout pregnancy until after delivery in patients, the levels of plasma glutathione and NO were lower than those of controls, while those of TBARS were higher. Moreover, plasma of patients reduced cell viability and NO release, and increased ROS release in hUMSCs. Our results highlighted alterations in the redox balance and the presence of potentially harmful circulating factors in plasma of patients. They could have clinical relevance for the prevention of complications related to AMA pregnancy.


Assuntos
Idade Materna , Células-Tronco Mesenquimais , Óxido Nítrico , Oxirredução , Espécies Reativas de Oxigênio , Substâncias Reativas com Ácido Tiobarbitúrico , Cordão Umbilical , Humanos , Feminino , Gravidez , Adulto , Células-Tronco Mesenquimais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico/sangue , Substâncias Reativas com Ácido Tiobarbitúrico/metabolismo , Cordão Umbilical/citologia , Cordão Umbilical/metabolismo , Glutationa/metabolismo , Glutationa/sangue , Sobrevivência Celular , Estresse Oxidativo , Plasma/metabolismo
15.
J Toxicol Environ Health A ; 87(12): 497-515, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38619158

RESUMO

One prominent aspect of Parkinson's disease (PD) is the presence of elevated levels of free radicals, including reactive oxygen species (ROS). Syagrus coronata (S. coronata), a palm tree, exhibits antioxidant activity attributed to its phytochemical composition, containing fatty acids, polyphenols, and flavonoids. The aim of this investigation was to examine the potential neuroprotective effects of S. coronata fixed oil against rotenone-induced toxicity using Drosophila melanogaster. Young Drosophila specimens (3-4 d old) were exposed to a diet supplemented with rotenone (50 µM) for 7 d with and without the inclusion of S. coronata fixed oil (0.2 mg/g diet). Data demonstrated that rotenone exposure resulted in significant locomotor impairment and increased mortality rates in flies. Further, rotenone administration reduced total thiol levels but elevated lipid peroxidation, iron (Fe) levels, and nitric oxide (NO) levels while decreasing the reduced capacity of mitochondria. Concomitant administration of S. coronata exhibited a protective effect against rotenone, as evidenced by a return to control levels of Fe, NO, and total thiols, lowered lipid peroxidation levels, reversed locomotor impairment, and enhanced % cell viability. Molecular docking of the oil lipidic components with antioxidant enzymes showed strong binding affinity to superoxide dismutase (SOD) and glutathione peroxidase (GPX1) enzymes. Overall, treatment with S. coronata fixed oil was found to prevent rotenone-induced movement disorders and oxidative stress in Drosophila melanogaster.


Assuntos
Transtornos dos Movimentos , Rotenona , Animais , Drosophila melanogaster , Simulação de Acoplamento Molecular , Estresse Oxidativo , Antioxidantes/farmacologia , Óxido Nítrico/metabolismo
16.
Cells ; 13(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38607058

RESUMO

During pregnancy, uterine vasculature undergoes significant circumferential growth to increase uterine blood flow, vital for the growing feto-placental unit. However, this process is often compromised in conditions like maternal high blood pressure, particularly in preeclampsia (PE), leading to fetal growth impairment. Currently, there is no cure for PE, partly due to the adverse effects of anti-hypertensive drugs on maternal and fetal health. This study aimed to investigate the vasodilator effect of extra virgin olive oil (EVOO) phenols on the reproductive vasculature, potentially benefiting both mother and fetus. Isolated uterine arteries (UAs) from pregnant rats were tested with EVOO phenols in a pressurized myograph. To elucidate the underlying mechanisms, additional experiments were conducted with specific inhibitors: L-NAME/L-NNA (10-4 M) for nitric oxide synthases, ODQ (10-5 M) for guanylate cyclase, Verapamil (10-5 M) for the L-type calcium channel, Ryanodine (10-5 M) + 2-APB (3 × 10-5 M) for ryanodine and the inositol triphosphate receptors, respectively, and Paxilline (10-5 M) for the large-conductance calcium-activated potassium channel. The results indicated that EVOO-phenols activate Ca2+ signaling pathways, generating nitric oxide, inducing vasodilation via cGMP and BKCa2+ signals in smooth muscle cells. This study suggests the potential use of EVOO phenols to prevent utero-placental blood flow restriction, offering a promising avenue for managing PE.


Assuntos
Cálcio , Artéria Uterina , Ratos , Gravidez , Feminino , Animais , Artéria Uterina/metabolismo , Cálcio/metabolismo , Azeite de Oliva/farmacologia , Óxido Nítrico/metabolismo , Placenta/metabolismo , Rianodina , Fenóis/farmacologia , Dilatação , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Endotélio/metabolismo
17.
Behav Brain Res ; 466: 114995, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38599251

RESUMO

Neurodegenerative disorders have a pathophysiology that heavily involves neuroinflammation. In this study, we used lipopolysaccharide (LPS) to create a model of cognitive impairment by inducing systemic and neuroinflammation in experimental animals. LPS was injected intraperitoneally at a dose of 0.5 mg/kg during the last seven days of the study. Adalimumab (ADA), a TNF-α inhibitor, was injected at a dose of 10 mg/kg a total of 3 times throughout the study. On the last two days of the experiment, 50 mg/kg of curcumin was administered orally as a positive control group. Open field (OF) and elevated plus maze tests (EPM) were used to measure anxiety-like behaviors. The tail suspension test (TST) was used to measure depression-like behaviors, while the novel object recognition test (NOR) was used to measure learning and memory activities. Blood and hippocampal TNF α and nitric oxide (NO) levels, hippocampal BDNF, CREB, and ACh levels, and AChE activity were measured by ELISA. LPS increased anxiety and depression-like behaviors while decreasing the activity of the learning-memory system. LPS exerted this effect by causing systemic and neuroinflammation, cholinergic dysfunction, and impaired BDNF release. ADA controlled LPS-induced behavioral changes and improved biochemical markers. ADA prevented cognitive impairment induced by LPS by inhibiting inflammation and regulating the release of BDNF and the cholinergic pathway.


Assuntos
Acetilcolina , Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Doenças Neuroinflamatórias , Óxido Nítrico , Sepse , Fator de Necrose Tumoral alfa , Animais , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Óxido Nítrico/metabolismo , Masculino , Doenças Neuroinflamatórias/metabolismo , Doenças Neuroinflamatórias/tratamento farmacológico , Fator de Necrose Tumoral alfa/metabolismo , Acetilcolina/metabolismo , Sepse/complicações , Sepse/metabolismo , Sepse/tratamento farmacológico , Lipopolissacarídeos/farmacologia , Adalimumab/farmacologia , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Modelos Animais de Doenças , Ansiedade/tratamento farmacológico , Ansiedade/metabolismo , Ansiedade/etiologia , Homeostase/efeitos dos fármacos , Depressão/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Comportamento Animal/efeitos dos fármacos , Inibidores do Fator de Necrose Tumoral/farmacologia
18.
Drug Dev Ind Pharm ; 50(5): 460-469, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602337

RESUMO

OBJECTIVE: Ferulic acid (FA) is a promising nutraceutical molecule which exhibits antioxidant and anti-inflammatory properties, but it suffers from poor solubility and bioavailability. In the presented study, FA nanoemulsions were prepared to potentiate the therapeutic efficacy of FA in prevention of gastric ulcer. METHODS: FA nanoemulsions were prepared, pharmaceutically characterized, and the selected nanoemusion was tested for its ulcer-ameliorative properties in rats after induction of gastric ulcer using ethanol, by examination of stomach tissues, assessment of serum IL-1ß and TNF-α, assessment of nitric oxide, prostaglandin E2, glutathione, catalase and thiobarbituric acid reactive substance in stomach homogenates, as well as histological and immunohistochemical evaluation. RESULTS: Results revealed that the selected FA nanoemulsion showed a particle size of 90.43 nm, sustained release of FA for 8 h, and better in vitro anti-inflammatory properties than FA. Moreover, FA nanoemulsion exhibited significantly better anti-inflammatory and antioxidant properties in vivo, and the gastric tissue treated with FA nanoemulsion was comparable to the normal control upon histological and immunohistochemical evaluation. CONCLUSION: Findings suggest that the prepared ferulic acid nanoemulsion is an ideal anti-ulcer system, which is worthy of further investigations.


Assuntos
Antiulcerosos , Antioxidantes , Ácidos Cumáricos , Emulsões , Nanopartículas , Úlcera Gástrica , Animais , Ácidos Cumáricos/farmacologia , Ácidos Cumáricos/química , Emulsões/química , Úlcera Gástrica/tratamento farmacológico , Ratos , Antioxidantes/farmacologia , Antioxidantes/química , Masculino , Antiulcerosos/farmacologia , Antiulcerosos/administração & dosagem , Antiulcerosos/química , Antiulcerosos/farmacocinética , Nanopartículas/química , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/administração & dosagem , Mucosa Gástrica/efeitos dos fármacos , Mucosa Gástrica/metabolismo , Mucosa Gástrica/patologia , Ratos Wistar , Tamanho da Partícula , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Solubilidade , Óxido Nítrico/metabolismo
19.
Fish Shellfish Immunol ; 149: 109571, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636736

RESUMO

Bacteria-enhanced inducible nitric oxide synthase (iNOS) overproduces nitric oxide (NO) leading to mitochondrial and cellular damage. In mammals, arginase (ARG), the enzyme consuming the same substrate l-arginine with iNOS, was believed to inhibit iNOS activity by competing the substrate. But in fish, this conception has been widely challenged. In this study, the gene expression using real-time quantitative PCR (RT-qPCR) technology showed that when stimulated by Aeromonas hydrophila (A. hydrophila), grass carp (gc) iNOS was up-regulated in head kidney monocytes/macrophages (M0/MФ), and its changes were not detected in the whole tissue of liver or spleen, showing a high degree of cell-specific expression pattern. At the same time, gcARG2 had a high basal expression in tissues and was up-regulated by A. hydrophila stimulation. Next, phthalaldehyde-primaquine reaction was first used in the determination of intracellular urea in fish cells. It was found that the induced gcARG2 led to an increase in the intracellular urea content. Moreover, urea and NO production in M0/MФ were increased in a substrate dose-dependent manner from 30 to 100 µM of l-arginine and reached the highest yield at 300 and 3000 µM of l-arginine, respectively. Furthermore, head kidney M0/MФ was cultured in RPMI1640 medium containing physiological concentration (500 µM) of l-arginine to evaluate the effect of ARG. Under A. hydrophila stimulation, treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine (BEC) showed that inhibition of arginase could further enhance the NO production stimulated by A. hydrophila. This in turn led to a cumulation in peroxynitrite (ONOO-) content and an injury of the mitochondrial membrane potential. Our study showed for the first time that fish ARG in head kidney M0/MФ can limit excessive production of NO and harmful products by iNOS to maintain mitochondrial and cellular homeostasis.


Assuntos
Aeromonas hydrophila , Arginase , Carpas , Doenças dos Peixes , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas , Mitocôndrias , Óxido Nítrico , Animais , Aeromonas hydrophila/fisiologia , Arginase/genética , Arginase/metabolismo , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Óxido Nítrico/metabolismo , Carpas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Arginina
20.
Nitric Oxide ; 146: 37-47, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38579899

RESUMO

AIM: The mechanism of NO bioavailability in endothelial dysfunction, the trigger for atherogenesis is still unclear as exogenous nitrate therapy fails to alleviate endothelial dysfunction. Recently, sialin, a nitrate transporter, has been linked to affect tissue nitrate/nitrite levels. Hence, we investigated the role of sialin in NO bioavailability in endothelial dysfunction. METHODS: Serum-starved HUVECs were stimulated with either TNFα or AT-2 for 24 h either alone or in the presence of autophagy inducer or autophagy inhibitor alone. Nitric oxide, nitrite, and nitrate levels were measured in cell supernatant and cell lysate. Quantitative real-time PCR, Annexin V-PI, and monocyte adhesion assays were performed. Immunofluorescence staining for sialin, vWF, and LC3 was performed. STRING database was used to create protein interacting partners for sialin. RESULTS: Sialin is strongly expressed in activated EC in vitro and atherosclerotic plaque as well as tumor neo-vessel ECs. Sialin mediates nitrate ion efflux and is negatively regulated by autophagy via mTOR pathway. Blocking sialin enhances NO bioavailability, autophagy, cell survival, and eNOS expression while decreasing monocyte adhesion. PPI shows LGALS8 to directly interact with sialin and regulate autophagy, cell-cell adhesion, and apoptosis. CONCLUSION: Sialin is a potential novel therapeutic target for treating endothelial dysfunction in atherosclerosis and cancer.


Assuntos
Autofagia , Células Endoteliais da Veia Umbilical Humana , Nitratos , Óxido Nítrico , Humanos , Óxido Nítrico/metabolismo , Nitratos/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Adesão Celular , Sialomucinas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA