Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.139
Filtrar
1.
Braz J Biol ; 84: e278323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747858

RESUMO

This study aims to evaluate the anti-cancer-related inflammation activity of Cyperus rotundus bioactive compounds. The component of C. rotundus was analyzed using LC-HRMS. The drug-likeness of all compounds were analyzed using swissADME webserver. In addition, the analysis of inhibition potential of compounds against NF-κB and iNOS were carried out using molecular docking in PyRx software. This study found 1-Nitro-2-phenoxybenzene, ethyl 4-(acetylamino)-3-phenyl-2-thioxo-2,3-dihydro-1,3-thiazole-5-carboxylate, and nootkatone passed all the parameters of drug-likeness including Lipinski, ghose, veber, egan, and muege. Based on molecular docking, verbascoside A and n-Pentyl isopentyl phthalate has the lowest binding affinity against iNOS (-10 and -8.9 kcal/mol, respectively). In addition, verbascoside A and maltopentaose have binding affinity of -7.6 and -6.6 kcal/mol, respectively, for NF-κB. The anti-cancer activity of verbascoside A, maltopentaose, and n-Pentyl isopentyl phthalate, according to PASS analysis were anti-inflammatory, antineoplastic, chemopreventive, and chemoprotectant. The cytotoxic effect prediction showed that these compounds were relatively selective to kill tumor cell but not non-tumor cell. Rat toxicity analysis showed maltopentaose was non-toxic, where n-Pentyl isopentyl phthalate was only toxic (class IV) for intravenous administration. perMM analysis showed verbascoside A and n-Pentyl isopentyl phthalate can translocate and across the cell membrane.


Assuntos
Cyperus , Simulação de Acoplamento Molecular , NF-kappa B , Óxido Nítrico Sintase Tipo II , Transdução de Sinais , Cyperus/química , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Ratos , Simulação por Computador , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucosídeos/farmacologia , Glucosídeos/química , Humanos
2.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675532

RESUMO

Pyxinol, an active metabolite of ginsenosides in human hepatocytes, exhibits various pharmacological activities. Here, a series of C-3 modified pyxinol derivatives was designed and virtually screened by molecular docking with the key inflammation-related proteins of the nuclear factor kappa B (NF-κB) pathway. Some of the novel derivatives were synthesized to assess their effects in inhibiting the production of nitric oxide (NO) and mitochondrial reactive oxygen species (MtROS) in lipopolysaccharide-triggered RAW264.7 cells. Derivative 2c exhibited the highest NO and MtROS inhibitory activities with low cytotoxicity. Furthermore, 2c decreased the protein levels of interleukin 1ß, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2 and suppressed the activation of NF-κB signaling. Cellular thermal shift assays indicated that 2c could directly bind with p65 and p50 in situ. Molecular docking revealed that 2c's binding to the p65-p50 heterodimer and p50 homodimer was close to their DNA binding sites. In summary, pyxinol derivatives possess potential for development as NF-κB inhibitors.


Assuntos
Anti-Inflamatórios , Simulação de Acoplamento Molecular , NF-kappa B , Óxido Nítrico , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Camundongos , Animais , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Humanos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Relação Estrutura-Atividade
3.
Int Immunopharmacol ; 130: 111750, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38442577

RESUMO

BACKGROUND: The most promising biologics tumor necrosis factor α (TNFα) inhibitors are effective in treating rheumatoid arthritis (RA) in only 50-70 % of the cases; thus, new drugs targeting TNFα-mediated inflammation are required. METHODS: Firstly, the drugs that could inhibit FLS proliferation and TNFα induced inflammatory cytokine production were screened. Secondly, treatment effects of the identified drugs were screened in collagen-induced arthritis (CIA) mouse model. Thirdly, the inhibitory effect of the identified drug, agomelatine (AOM), on TNFα induced inflammatory cytokine production and NF-κB activity were confirmed. Fourthly, bioinformatics was applied to predict the binding target of AOM and the binding was confirmed, and the already known inhibitor of target was used to test the treatment effect for CIA mouse model. Finally, the effect of AOM on signaling pathway was tested and on TNFα induced inflammatory cytokine production was observed after inhibiting the target. RESULTS: AOM effectively inhibited TNFα-induced NF-κB activation, NF-κB p65 translocation, and inflammatory cytokines production in vitro and was therapeutic against CIA. The mechanistic study indicated inducible nitric oxide synthase (iNOS) as the binding target of AOM. 1400 W, a known inhibitor of iNOS, could effectively treat CIA by decreasing iNOS activity and the levels of inflammatory cytokines. The inhibitory effect of AOM on TNFα-induced inflammation was further elucidated by 1400 W, or NF-κB p65 inhibitor JSH-23, indicating that AOM is therapeutic against CIA via iNOS/ERK/p65 signaling pathway after binding with iNOS. CONCLUSIONS: AOM is therapeutic against CIA via inhibition of the iNOS/ERK/p65 signaling pathway after binding with iNOS.


Assuntos
Acetamidas , Artrite Experimental , Reposicionamento de Medicamentos , Iminas , Naftalenos , Óxido Nítrico Sintase Tipo II , Fator de Necrose Tumoral alfa , Animais , Camundongos , Acetamidas/uso terapêutico , Artrite Experimental/tratamento farmacológico , Citocinas/metabolismo , Modelos Animais de Doenças , Inflamação/metabolismo , Camundongos Endogâmicos DBA , Naftalenos/uso terapêutico , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Fator de Necrose Tumoral alfa/antagonistas & inibidores
4.
Int Immunopharmacol ; 117: 109940, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37012863

RESUMO

Overexpression of pro-inflammatory cytokines and iNOS have been found to be concomitant with several chronic inflammatory diseases and hence targeting their inhibition would be a useful therapy for inflammation. In view of this, study on discovery of natural pro-inflammatory cytokines inhibitory lead molecules from Penicillium polonicum, an endophytic fungus isolated from the fresh fruits of Piper nigrum was performed. When the culture broth extract of P. polonicum (EEPP) was subjected to LPS-induced cytokines expression (ELISA in RAW 264.7 cells), it exhibited inhibition of TNF-α, IL-6 and IL-1ß and this encouraged us to do chemical investigation on EEPP to explore the bioactive components. Four compounds isolated and characterised as 3,5-di-tert-butyl-4-hydroxy-phenyl propionic acid (1), 2,4-di-tert-butyl phenol (2), indole 3-carboxylic acid (3) and tyrosol (4) were tested for their effect on the production of TNF-α, IL-1ß and IL-6 in RAW 264.7 cells (ELISA). All the compounds exhibited a highly significant (P < 0.0001) inhibition effect, particularly against IL-1ß (IC50: 4-0.91 µM, 1-2.81 µM, 3-4.38 µM, and 2-5.54 µM). Tyrosol (4) was most active with IC50 values of 0.91, 2.67 and 4.60 µM against IL-1ß, IL-6 and TNF-α, respectively. On observing the potential activity of the compounds, two compositions C1 and C2 were prepared by mixing equimolar concentrations of compounds 1, 2, 3 & 4 (C1) and compounds 1, 2, 3, 4 & piperine (C2) in equal ratio. A synergistic effect was observed with C1 exhibiting potential suppression of IL-6 secretion (IC50 1.91 µM) and C2 against IL-1ß (IC50 5.98 µM). Also, the individual compounds and C1 were effective in controlling iNOS expressions in RAW 264.7 cells (RTPCR). Further, the in vivo performance of the compounds and compositions were studied under two in vivo inflammatory models (LPS-induced endotoxaemia and carrageenan-induced paw oedema). Compounds 1, 2, 3, 4, C1 and C2 at 50 mg/kg oral dose showed a significant control over the LPS-stimulated TNF-α, IL-1ß and IL-6 levels in plasma. C1, C2 and 1 exhibited > 50% pan-cytokine inhibition effect. Under the carrageenan-induced anti-inflammatory model, a significant reduction in the paw oedema measured in terms of the difference in the paw thickness was observed. Further, attenuation of pro-inflammatory cytokines levels following ELISA and RT-PCR experiments in the paw tissue homogenate was in agreement with paw thickness results. All compounds and C1 decreased the iNOS gene expression levels, and also the MPO activity and NO production in the paw tissue homogenate with tyrosol (4) as the most active molecule. Further, the mechanism of action was explored by testing the effect of the compounds on the expression of inflammatory markers using western blot analysis (in vitro). They were found to regulate the expression of pro-form and matured-form of IL-1ß by inhibiting NFκB. Also, the compounds reduced the translocation of the NF-κB subunit p65 to the nucleus. Thus, compounds 3,5-di-tert-butyl-4-hydroxy-phenyl propionic acid (1), 2,4-di-tert-butyl phenol (2), indole 3-carboxylic acid (3) and tyrosol (4) are reported as new natural multiple pro-inflammatory cytokines inhibitory leads. The interesting results of C1 might lay a footing for the development of a new anti-inflammatory composition.


Assuntos
Citocinas , Óxido Nítrico Sintase Tipo II , Penicillium , Animais , Camundongos , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Citocinas/biossíntese , Sinergismo Farmacológico , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Penicillium/química , Biossíntese de Proteínas/efeitos dos fármacos , Células RAW 264.7
5.
Appl Biochem Biotechnol ; 194(1): 570-586, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34705247

RESUMO

Cervical cancer is the second most common cause of cancer deaths in women worldwide and remains the main reason of mortality among women of reproductive age in developing countries. Nitric oxide is involved in several physiological functions inclusive of inflammatory and immune responses. However, the function of NO in tumor biology is debatable. The inducible NOS (iNOS/NOS2) isoform is the one responsible to maintain the levels of NO, and it exhibits pleotropic effects in various cancers with concentration-dependent pro- and anti-tumor effects. iNOS triggers angiogenesis and endothelial cell migration in tumors by regulating the levels of vascular endothelial growth factor (VEGF). In drug discovery, drug repurposing involves investigations of approved drug candidates to treat various other diseases. In this study, we used anti-cancer drugs and small molecules to target iNOS and identify a potential selective iNOS inhibitor. The structures of ligands were geometrically optimized and energy minimized using Hyperchem software. Molecular docking was performed using Molegro virtual docker, and ligands were selected based on MolDock score, Rerank score, and H-bonding energy. In the study shown, venetoclax compound demonstrated excellent binding affinity to iNOS protein. This compound exhibited the lowest MolDock score and Rerank score with better H-bonding energy to iNOS. The binding efficacy of venetoclax was analyzed by performing molecular docking and molecular dynamic simulations. Multiple parameters were used to analyze the simulation trajectory, like root mean square deviation (RMSD), radius of gyration (Rg), and hydrogen bond interactions. Based on the results, venetoclax emerges to be a promising potential iNOS inhibitor to curtail cervical cancer progression.


Assuntos
Antineoplásicos/química , Inibidores Enzimáticos/química , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/química , Neoplasias do Colo do Útero/enzimologia , Antineoplásicos/uso terapêutico , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico
6.
Bioorg Med Chem ; 54: 116589, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34971877

RESUMO

Recently, we demonstrated potential anti-inflammatory effects of sorbicillinoids isolated from marine fungi. Here, we report the synthesis of a series of new sorbicillinoid analogues and assessed their anti-inflammatory activities. Our results reveal that side chain substitution with (E)-2-butenoyl, (E)-3-(4-fluorophenyl)-2-propenoyl, and (E)-3-(3,4,5-trimethoxyphenyl)-2-propenoyl significantly enhanced the inhibitory effects of the derivatives on nitric oxide (NO) production and inducible NO synthesis (iNOS) expression stimulated by lipopolysaccharides (LPS) in mouse macrophage. Further chemical derivatization shows that the monomethylresorcinol skeleton worked better than the dimethylresorcinol skeleton in inhibiting LPS-induced inflammatory response in cultured cells. Among the 29 synthesized sorbicillinoid analogues, compounds 4b and 12b exhibited the strongest anti-inflammatory activities, holding the promise of being developed into lead compounds that can be explored as potent anti-inflammation agents.


Assuntos
Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Animais , Anti-Inflamatórios não Esteroides , Produtos Biológicos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cicloexanonas , Relação Dose-Resposta a Droga , Lipopolissacarídeos/antagonistas & inibidores , Lipopolissacarídeos/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Estrutura Molecular , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/biossíntese , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Relação Estrutura-Atividade
7.
São Paulo; s.n; s.n; 2022. 141 p. graf, tab.
Tese em Português | LILACS | ID: biblio-1379329

RESUMO

Vários estudos epidemiológicos estabelecem correlação positiva entre os níveis de ácido úrico sérico e o aumento do risco para doenças cardiovasculares. Fatores dietéticos e socioeconômicos, além da presença de comorbidades estão diretamente associados aos níveis séricos de ácido úrico. Países desenvolvidos apresentam maior incidência e prevalência da gota e alguns grupos étnicos são particularmente susceptíveis à hiperuricemia. Cristais de ácido úrico são descritos por iniciar e perpetuar resposta inflamatória, e sinalizar um padrão de resposta molecular associado ao dano (DAMP), permitindo a diferenciação de macrófagos para perfis pró-inflamatórios. Por outro lado, os efeitos do ácido úrico em sua forma solúvel ainda carecem de estudos. Macrófagos derivados de precursores monocíticos apresentam diferenciação específica e respondem a um conjunto de fatores extrínsecos, resultando em perfis distintos, um fenômeno conhecido como polarização. Assim, os macrófagos podem ser classicamente ativados para uma resposta Th1 (T helper 1) e polarizados a um perfil pró- inflamatório (M1, resposta Th1) ou a um perfil alternativo e oposto, um perfil de resolução da inflamação (M2, resposta Th2, T helper 2). Nesse sentindo, buscamos analisar os efeitos do ácido úrico solúvel sobre vias de modulação da polarização fenotípica de macrófagos e modificação redox. Utilizamos a linhagem monocítica humana THP-1, a qual foi diferenciada em macrófagossímile por acetato miristato de forbol (PMA; 5 ng.mL-1) por 48 h, seguidas da incubação com ácido úrico em meio ausente de tióis e soro fetal bovino por 8h ou 24h (0-1000 µM). A expressão de fatores de transcrição e marcadores de polarização foi realizada através de citometria de fluxo, western-blotting e por microscopia de fluorescência com alto conteúdo de imagens (HCI). Em concentrações fisiológicas, verificamos que o ácido úrico solúvel regulou positivamente a frequência de células para receptor manose CD206, um marcador clássico de perfil alternativo/M2 e regulou negativamente a expressão óxido nítrico sintase induzível (iNOS), um marcador M1, sugerindo inicialmente uma modulação para o perfil de polarização M2. Além disso, as proteínas redoxsensíveis, heme oxigenase-1 (HO-1) e tiorredoxina (Trx) tiveram sua expressão reduzida e aumentada, respectivamente, pelo tratamento com ácido úrico. Os fatores de transcrição Nrf2 e STAT3 tiveram regulação negativa após a exposição ao ácido úrico solúvel. Os resultados apresentados nesta tese sugerem uma função do urato no priming de macrófagos através da alteração da polarização destas células


Several epidemiological studies have established a positive correlation between high serum uric acid levels and increased risk for cardiovascular diseases. Developed countries have a higher incidence and prevalence of gout and some ethnic groups are particularly susceptible to hyperuricemia. Although hyperuricemia is a prevalent condition, it has still controversy biological consequences. Uric acid crystals are described as capable of initiating and perpetuating inflammatory responses, by activating the damage-associated molecular response pattern (DAMP) cascade, allowing macrophage differentiation to inflammatory profiles. In spite of that, biological response to soluble uric acid are not completely understood. Monocyte-derived macrophages respond to a set of extrinsic factors that result in different profiles and can be polarized to a proinflammatory (M1) or anti-inflammatory (M2) profile. In this thesis, we analyzed the effects of soluble uric acid on redox-modulated pathways and the phenotypic polarization of macrophages. We used human monocytic THP-1 cell line, differentiated into macrophage by phorbol myristate acetate (PMA; 5 ng.mL-1) for 48 h. After differentiation, cells were incubated with soluble uric acid in medium without thiols and fetal bovine serum for 8 h and 24 h (0-1000 µM). The expression of transcription factors and polarization markers were assessed by flow cytometry, western-blotting and fluorescence microscopy with high content imaging (HCI). At physiological concentrations, soluble uric acid positively regulated the frequency of cells for mannose receptor CD206, a classic marker of the anti-inflammatory M2 profile and negatively regulated the inducible nitric oxide synthase (iNOS) expression, a proinflammatory M1 marker, suggesting that the soluble uric acid changes the polarization profile to M2 profile. In addition, the redox-sensitive proteins heme oxygenase-1 (HO-1) and thioredoxin (Trx) had their expression decreased and increased, respectively, after exposure to urate. STAT3 and Nrf2 transcription factors were downregulated upon soluble uric acid exposure. The results presented in this thesis suggest a role of uric acid in macrophage priming through the alteration of cell polarization


Assuntos
Ácido Úrico/análise , Células THP-1/classificação , Células THP-1/química , Inflamação/classificação , Macrófagos/química , Compostos de Sulfidrila/agonistas , Doenças Cardiovasculares , Estudos Epidemiológicos , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Citometria de Fluxo/métodos , Microscopia de Fluorescência/métodos
8.
Int J Mol Sci ; 22(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34948167

RESUMO

To determine whether mitigating the harmful effects of circulating microvesicle-associated inducible nitric oxide (MV-A iNOS) in vivo increases the survival of challenged mice in three different mouse models of sepsis, the ability of anti-MV-A iNOS monoclonal antibodies (mAbs) to rescue challenged mice was assessed using three different mouse models of sepsis. The vivarium of a research laboratory Balb/c mice were challenged with an LD80 dose of either lipopolysaccharide (LPS/endotoxin), TNFα, or MV-A iNOS and then treated at various times after the challenge with saline as control or with an anti-MV-A iNOS mAb as a potential immunotherapeutic to treat sepsis. Each group of mice was checked daily for survivors, and Kaplan-Meier survival curves were constructed. Five different murine anti-MV-A iNOS mAbs from our panel of 24 murine anti-MV-A iNOS mAbs were found to rescue some of the challenged mice. All five murine mAbs were used to genetically engineer humanized anti-MV-A iNOS mAbs by inserting the murine complementarity-determining regions (CDRs) into a human IgG1,kappa scaffold and expressing the humanized mAbs in CHO cells. Three humanized anti-MV-A iNOS mAbs were effective at rescuing mice from sepsis in three different animal models of sepsis. The effectiveness of the treatment was both time- and dose-dependent. Humanized anti-MV-A iNOS rHJ mAb could rescue up to 80% of the challenged animals if administered early and at a high dose. Our conclusions are that MV-A iNOS is a novel therapeutic target to treat sepsis; anti-MV-A iNOS mAbs can mitigate the harmful effects of MV-A iNOS; the neutralizing mAb's efficacy is both time- and dose-dependent; and a specifically targeted immunotherapeutic for MV-A iNOS could potentially save tens of thousands of lives annually and could result in improved antibiotic stewardship.


Assuntos
Micropartículas Derivadas de Células/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Sepse/terapia , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Micropartículas Derivadas de Células/imunologia , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/imunologia , Fator de Necrose Tumoral alfa/farmacologia
9.
Nat Commun ; 12(1): 6652, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34789728

RESUMO

Small cell lung cancer (SCLC) has a 5-year survival rate of <7%. Rapid emergence of acquired resistance to standard platinum-etoposide chemotherapy is common and improved therapies are required for this recalcitrant tumour. We exploit six paired pre-treatment and post-chemotherapy circulating tumour cell patient-derived explant (CDX) models from donors with extensive stage SCLC to investigate changes at disease progression after chemotherapy. Soluble guanylate cyclase (sGC) is recurrently upregulated in post-chemotherapy progression CDX models, which correlates with acquired chemoresistance. Expression and activation of sGC is regulated by Notch and nitric oxide (NO) signalling with downstream activation of protein kinase G. Genetic targeting of sGC or pharmacological inhibition of NO synthase re-sensitizes a chemoresistant CDX progression model in vivo, revealing this pathway as a mediator of chemoresistance and potential vulnerability of relapsed SCLC.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Etoposídeo/uso terapêutico , Neoplasias Pulmonares/metabolismo , Carcinoma de Pequenas Células do Pulmão/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Animais , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Inibidores Enzimáticos/uso terapêutico , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos , Células Neoplásicas Circulantes/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Receptores Notch/metabolismo , Transdução de Sinais/genética , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/patologia , Guanilil Ciclase Solúvel/genética
10.
J Zhejiang Univ Sci B ; 22(11): 929-940, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34783223

RESUMO

Inflammation plays an important role in the development of acute lung injury (ALI). Severe pulmonary inflammation can cause acute respiratory distress syndrome (ARDS) or even death. Expression of proinflammatory interleukin-|1ß (IL-|1ß) and inducible nitric oxide synthase (iNOS) in the process of pulmonary inflammation will further exacerbate the severity of ALI. The purpose of this study was to explore the effect of Palrnatine (Pa) on lipopolysaccharide (LPS)-induced mouse ALI and its underlying mechanism. Pa, a natural product, has a wide range of pharmacological activities with the potential to protect against lung injury. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) assays were performed to detect the expression and translation of inflammatory genes and proteins in vitro and in vivo. Immunoprecipitation was used to detect the degree of P65 translocation into the nucleus. We also used molecular modeling to further clarify the mechanism of action. The results showed that Pa pretreatment could significantly inhibit the expression and secretion of the inflammatory cytokine IL-1ß, and significantly reduce the protein level of the proinflammatory protease iNOS, in both in vivo and in vitro models induced by LPS. Further mechanism studies showed that Pa could significantly inhibit the activation of the protein kinase B (Akt)/nuclear factor-κB (NF-κB) signaling pathway in the LPS-induced ALI mode and in LPS-induced RAW264.7 cells. Through molecular dynamics simulation, we observed that Pa was bound to the catalytic pocket of Akt and effectively inhibited the biological activity of Akt. These results indicated that Pa significantly relieves LPS-induced ALI by activating the Akt/NF-κB signaling pathway.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Menispermaceae/química , NF-kappa B/antagonistas & inibidores , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Lesão Pulmonar Aguda/patologia , Animais , Modelos Animais de Doenças , Lipopolissacarídeos/farmacologia , Pulmão/patologia , Masculino , Camundongos , Camundongos Endogâmicos ICR , Simulação de Dinâmica Molecular , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Extratos Vegetais/farmacologia , Proteínas Proto-Oncogênicas c-akt/química , Células RAW 264.7 , Transdução de Sinais/efeitos dos fármacos
11.
Front Endocrinol (Lausanne) ; 12: 744857, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34650521

RESUMO

Scleroderma, or systemic sclerosis, is a multi-organ connective tissue disease resulting in fibrosis of the skin, heart, and lungs with no effective treatment. Endocannabinoids acting via cannabinoid-1 receptors (CB1R) and increased activity of inducible NO synthase (iNOS) promote tissue fibrosis including skin fibrosis, and joint targeting of these pathways may improve therapeutic efficacy. Recently, we showed that in mouse models of liver, lung and kidney fibrosis, treatment with a peripherally restricted hybrid CB1R/iNOS inhibitor (MRI-1867) yields greater anti-fibrotic efficacy than inhibiting either target alone. Here, we evaluated the therapeutic efficacy of MRI-1867 in bleomycin-induced skin fibrosis. Skin fibrosis was induced in C57BL/6J (B6) and Mdr1a/b-Bcrp triple knock-out (KO) mice by daily subcutaneous injections of bleomycin (2 IU/100 µL) for 28 days. Starting on day 15, mice were treated for 2 weeks with daily oral gavage of vehicle or MRI-1867. Skin levels of MRI-1867 and endocannabinoids were measured by mass spectrometry to assess target exposure and engagement by MRI-1867. Fibrosis was characterized histologically by dermal thickening and biochemically by hydroxyproline content. We also evaluated the potential increase of drug-efflux associated ABC transporters by bleomycin in skin fibrosis, which could affect target exposure to test compounds, as reported in bleomycin-induced lung fibrosis. Bleomycin-induced skin fibrosis was comparable in B6 and Mdr1a/b-Bcrp KO mice. However, the skin level of MRI-1867, an MDR1 substrate, was dramatically lower in B6 mice (0.023 µM) than in Mdr1a/b-Bcrp KO mice (8.8 µM) due to a bleomycin-induced increase in efflux activity of MDR1 in fibrotic skin. Furthermore, the endocannabinoids anandamide and 2-arachidonylglycerol were elevated 2-4-fold in the fibrotic vs. control skin in both mouse strains. MRI-1867 treatment attenuated bleomycin-induced established skin fibrosis and the associated increase in endocannabinoids in Mdr1a/b-Bcrp KO mice but not in B6 mice. We conclude that combined inhibition of CB1R and iNOS is an effective anti-fibrotic strategy for scleroderma. As bleomycin induces an artifact in testing antifibrotic drug candidates that are substrates of drug-efflux transporters, using Mdr1a/b-Bcrp KO mice for preclinical testing of such compounds avoids this pitfall.


Assuntos
Antifibróticos , Fibrose , Óxido Nítrico Sintase Tipo II , Receptor CB1 de Canabinoide , Dermatopatias , Animais , Humanos , Masculino , Camundongos , Antibióticos Antineoplásicos , Antifibróticos/uso terapêutico , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/biossíntese , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Bleomicina , Endocanabinoides/metabolismo , Fibrose/induzido quimicamente , Fibrose/tratamento farmacológico , Fibrose/patologia , Hidroxiprolina/metabolismo , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Receptor CB1 de Canabinoide/antagonistas & inibidores , Pele/patologia , Dermatopatias/induzido quimicamente , Dermatopatias/tratamento farmacológico , Dermatopatias/patologia
12.
Oxid Med Cell Longev ; 2021: 6874146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630851

RESUMO

The association between diabetes and cardiovascular diseases is well known. Related diabetes macro- and microangiopathies frequently induce hypoxia and consequently energy failure to satisfy the jeopardized myocardium basal needs. Additionally, it is widely accepted that diabetes impairs endothelial nitric oxide synthase (eNOS) activity, resulting in diminished nitric oxide (NO) bioavailability and consequent endothelial cell dysfunction. In this study, we analyzed the embryonic heart-derived H9c2 cell response to hypoxic stress after administration of a high glucose concentration to reproduce a condition often observed in diabetes. We observed that 24 h hypoxia exposure of H9c2 cells reduced cell viability compared to cells grown in normoxic conditions. Cytotoxicity and early apoptosis were increased after exposure to high glucose administration. In addition, hypoxia induced a RhoA upregulation and a Bcl-2 downregulation and lowered the ERK activation observed in normoxia at both glucose concentrations. Furthermore, a significant cell proliferation rate increases after the 1400 W iNOS inhibitor administration was observed. Again, hypoxia increased the expression level of myogenin, a marker of skeletal muscle cell differentiation. The cardiomyocyte gene expression profiles and morphology changes observed in response to pathological stimuli, as hypoxia, could lead to improper ventricular remodeling responsible for heart failure. Therefore, understanding cell signaling events that regulate cardiac response to hypoxia could be useful for the discovery of novel therapeutic approaches able to prevent heart diseases.


Assuntos
Hipóxia Celular/efeitos dos fármacos , Glucose/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Amidinas/farmacologia , Animais , Apoptose/efeitos dos fármacos , Benzilaminas/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Glucose/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Ratos , Proteínas rho de Ligação ao GTP/metabolismo
13.
Molecules ; 26(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34361571

RESUMO

Inducible nitric oxide synthase (iNOS) is a crucial enzyme involved in monocyte cell response towards inflammation, and it is responsible for the production of sustained amounts of nitric oxide. This free radical molecule is involved in the defense against pathogens; nevertheless, its continuous and dysregulated production contributes to the development of several pathological conditions, including inflammatory and autoimmune diseases. In the present study, we investigated the effects of two new iNOS inhibitors, i.e., 4-(ethanimidoylamino)-N-(4-fluorophenyl)benzamide hydrobromide (FAB1020) and N-{3-[(ethanimidoylamino)methyl]benzyl}-l-prolinamidedihydrochloride (CM554), on human LPS-stimulated monocytes, using the 1400 W compound as a comparison. Our results show that CM544 and FAB1020 are selective and decrease cytotoxicity, IL-6 secretion and LPS-stimulated monocyte migration. Furthermore, the modulation of iNOS, nitrotyrosine and Nrf2 were analyzed at the protein level. Based on the collected preliminary results, the promising therapeutic value of the investigated compounds emerges, as they appear able to modulate the pro-inflammatory LPS-stimulated response in the low micromolar range in human monocytes.


Assuntos
Amidinas/farmacologia , Inibidores Enzimáticos/farmacologia , Lipopolissacarídeos/toxicidade , Monócitos/enzimologia , Óxido Nítrico Sintase Tipo II , Prolina/análogos & derivados , Humanos , Interleucina-6/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Prolina/farmacologia
14.
Clin Transl Med ; 11(7): e471, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34323400

RESUMO

Hermansky-Pudlak syndrome (HPS) is a rare genetic disorder which, in its most common and severe form, HPS-1, leads to fatal adult-onset pulmonary fibrosis (PF) with no effective treatment. We evaluated the role of the endocannabinoid/CB1 R system and inducible nitric oxide synthase (iNOS) for dual-target therapeutic strategy using human bronchoalveolar lavage fluid (BALF), lung samples from patients with HPS and controls, HPS-PF patient-derived lung fibroblasts, and bleomycin-induced PF in pale ear mice (HPS1ep/ep ). We found overexpression of CB1 R and iNOS in fibrotic lungs of HPSPF patients and bleomycin-infused pale ear mice. The endocannabinoid anandamide was elevated in BALF and negatively correlated with pulmonary function parameters in HPSPF patients and pale ear mice with bleomycin-induced PF. Simultaneous targeting of CB1 R and iNOS by MRI-1867 yielded greater antifibrotic efficacy than inhibiting either target alone by attenuating critical pathologic pathways. Moreover, MRI-1867 treatment abrogated bleomycin-induced increases in lung levels of the profibrotic interleukin-11 via iNOS inhibition and reversed mitochondrial dysfunction via CB1 R inhibition. Dual inhibition of CB1 R and iNOS is an effective antifibrotic strategy for HPSPF.


Assuntos
Síndrome de Hermanski-Pudlak/patologia , Óxido Nítrico Sintase Tipo II/metabolismo , Fibrose Pulmonar/patologia , Receptor CB1 de Canabinoide/metabolismo , Adulto , Animais , Antifibróticos/farmacologia , Antifibróticos/uso terapêutico , Ácidos Araquidônicos/metabolismo , Bleomicina/efeitos adversos , Líquido da Lavagem Broncoalveolar/química , Modelos Animais de Doenças , Endocanabinoides/metabolismo , Feminino , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Síndrome de Hermanski-Pudlak/complicações , Síndrome de Hermanski-Pudlak/metabolismo , Humanos , Interleucina-11/metabolismo , Pulmão/metabolismo , Pulmão/patologia , Masculino , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/genética , Alcamidas Poli-Insaturadas/metabolismo , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/complicações , Fibrose Pulmonar/tratamento farmacológico , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/genética , Fator de Crescimento Transformador beta1/metabolismo
15.
Can J Physiol Pharmacol ; 99(12): 1324-1332, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34314655

RESUMO

We tested the hypothesis that ethanol would aggravate the deleterious effects of sub-lethal cecal ligation and puncture (SL-CLP) sepsis in the cardiorenal system and that inhibition of inducible nitric oxide synthase (iNOS) would prevent such response. Male C57BL/6 mice were treated with ethanol for 12 weeks. One hour before SL-CLP surgery, mice were treated with N6-(1-iminoethyl)-lysine (L-NIL, 5 mg/kg, i.p.), a selective inhibitor of iNOS. A second dose of L-NIL was administered 24 h after SL-CLP surgery. Mice were killed 48 h post surgery and the blood, the renal cortex, and the left ventricle (LV) were collected for biochemical analysis. L-NIL attenuated the increase in serum creatinine levels induced by ethanol, but not by SL-CLP. Ethanol, but not SL-CLP, increased creatine kinase (CK)-MB activity and L-NIL did not prevent this response. In the renal cortex, L-NIL prevented the redox imbalance induced by ethanol and SL-CLP. Inhibition of iNOS also decreased lipoperoxidation induced by ethanol and SL-CLP in the LV. L-NIL prevented the increase of pro-inflammatory cytokines and reactive oxygen species induced by ethanol and (or) SL-CLP in the cardiorenal system, suggesting that iNOS modulated some of the molecular mechanisms that underlie the deleterious effects of both conditions in the cardiorenal system.


Assuntos
Inibidores Enzimáticos/farmacologia , Etanol/efeitos adversos , Ventrículos do Coração/metabolismo , Córtex Renal/metabolismo , Lisina/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Sepse/etiologia , Sepse/prevenção & controle , Animais , Creatina Quinase Forma MB/metabolismo , Creatinina/sangue , Citocinas/metabolismo , Inibidores Enzimáticos/administração & dosagem , Mediadores da Inflamação/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lisina/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/fisiologia , Espécies Reativas de Oxigênio/metabolismo
16.
Mol Med Rep ; 24(2)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34080024

RESUMO

Fibroblast­like synoviocytes (FLS) in the synovial lining play a key role in the pathological process of rheumatoid arthritis (RA), which produce pro­inflammatory mediators to perpetuate inflammation and proteases to contribute to cartilage destruction. Ginkgolide J (GJ) is a subclass of ginkgolides (GGs) that exhibits anti­inflammatory activity. In the present study, the protective effect of GJ on lipopolysaccharide (LPS)­treated human synovial cells SW982 and its related mechanisms were investigated using various methods, including ELISA, Griess assay, western blotting, immunofluorescence analysis and p38 kinase activity assay. The results revealed that GJ pretreatment significantly attenuated LPS­induced excess production of pro­inflammatory mediators in SW982 cells via suppression of tumor necrosis factor­α/interleukin (IL)­1ß/IL­18/NF­κB/NLR family pyrin domain containing 3, prostaglandin E2/cyclooxygenase­2 and inducible nitric oxide synthase/nitric oxide signaling. Mechanistic studies revealed that p38 activation contributed to the LPS­induced inflammatory response, and GJ pretreatment dose­dependently attenuated p38 activation, indicating that the suppressive effect of GJ was achieved by targeting p38 signaling. These findings may contribute to the prevention and treatment of RA.


Assuntos
Anti-Inflamatórios/farmacologia , Artrite Reumatoide/prevenção & controle , Ginkgolídeos/farmacologia , Inflamação/prevenção & controle , Lactonas/farmacologia , Substâncias Protetoras/farmacologia , Sinoviócitos/efeitos dos fármacos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Linhagem Celular , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Citocinas/metabolismo , Dinoprostona/antagonistas & inibidores , Dinoprostona/metabolismo , Humanos , Inflamação/induzido quimicamente , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , NF-kappa B/antagonistas & inibidores , NF-kappa B/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sinoviócitos/citologia , Sinoviócitos/metabolismo
17.
J Ethnopharmacol ; 278: 114311, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34111536

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Iris is the largest genus in the family Iridaceae. Iris plants are distributed in tropical regions of the world. They are used as ornamentals and traditionally used to treat a variety of ailments. AIM: This study aimed to evaluate the anti-inflammatory effect of flavonoids isolated from Iris spuria L. MATERIALS AND METHODS: The isolated flavonoids (1-4) were identified on the basis of different spectroscopic methods (1D- and 2D-NMR) and co-TLC with authentic samples. The anti-inflammatory effect was tested on lipopolysaccharide (LPS)-induced nitric oxide (NO) production from rat-isolated peritoneal macrophages. Modeling and docking simulations of the compounds were performed using Molecular Operating Environment software and the crystal structure of the murine inducible nitric oxide synthase (iNOS). RESULTS: Four flavonoids (1-4) had been isolated from the rhizomes of Iris spuria L. (Hocka Hoona) for the first time. They were characterized as 5,7,2'-trihydroxy-6-methoxyflavanone (1), tectorigenin 7-O-ß-D-glucopyranoside (2), tectorigenin 4'-O-ß-D-glucopyranoside (3), and tectorigenin 4'-O-[ß-D-glucopyranosyl(1 â†’ 6)-ß-D-glucopyranoside] (4). The selective inducible NO synthase inhibitor; aminoguanidine was used as a positive control. The production of nitric oxide (NO) was inhibited in a dose-dependent manner of the isolated compounds along with isoflavonoids (5-9) previously isolated from Iris spuria L. (Calizona). A concentration of 60 µg/ml of all tested compounds showed a significant inhibitory effect compared to media with LPS. Molecular modeling experiments supported the obtained biological data. CONCLUSION: Our results reveal that flavonoids isolated from I. spuria L. (Hocka Hoona) and I. spuria L. (Calizona) appear to have a potential anti-inflammatory effect via inhibition of iNOS.


Assuntos
Flavonoides/farmacologia , Inflamação/tratamento farmacológico , Gênero Iris/química , Lipopolissacarídeos/toxicidade , Macrófagos/efeitos dos fármacos , Simulação de Acoplamento Molecular , Animais , Flavonoides/química , Inflamação/induzido quimicamente , Masculino , Estrutura Molecular , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Fitoterapia , Extratos Vegetais/química , Ratos , Ratos Wistar , Rizoma/química
18.
Arch Pharm (Weinheim) ; 354(8): e2000469, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33969533

RESUMO

To obtain new anti-inflammatory agents, recent studies have aimed to replace the carboxylate functionality of nonsteroidal anti-inflammatory drugs with less acidic heterocyclic bioisosteres like 1,3,4-oxadiazole to protect the gastric mucosa from free carboxylate moieties. In view of these observations, we designed and synthesized a series of 3,5-disubstituted-1,3,4-oxadiazole derivatives as inhibitors of prostaglandin E2 (PGE2 ) and NO production with an improved activity profile. As initial screening, and to examine the anti-inflammatory activities of the compounds, the inhibitions of the productions of lipopolysaccharide-induced NO and PGE2 in RAW 264.7 macrophages were evaluated. The biological assays showed that, compared with indomethacin, compounds 5a, 5g, and 5h significantly inhibited NO production with 12.61 ± 1.16, 12.61 ± 1.16, and 18.95 ± 3.57 µM, respectively. Consequently, the three compounds were evaluated for their in vivo anti-inflammatory activities. Compounds 5a, 5g, and 5h showed a potent anti-inflammatory activity profile almost equivalent to indomethacin at the same dose in the carrageenan-induced paw edema test. Moreover, the treatment with 40 mg/kg of 5h produced significant anti-inflammatory activity data. Furthermore, docking studies were performed to reveal possible interactions with the inducible nitric oxide synthase enzyme. Docking results were able to rationalize the biological activity data of the studied inhibitors. In summary, our data suggest that compound 5h is identified as a promising candidate for further anti-inflammatory drug development with an extended safety profile.


Assuntos
Anti-Inflamatórios/farmacologia , Inibidores Enzimáticos/farmacologia , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Oxidiazóis/farmacologia , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Carragenina , Modelos Animais de Doenças , Edema/tratamento farmacológico , Edema/patologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Indometacina/farmacologia , Inflamação/tratamento farmacológico , Inflamação/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Oxidiazóis/síntese química , Oxidiazóis/química , Células RAW 264.7 , Relação Estrutura-Atividade
19.
Reprod Sci ; 28(12): 3417-3430, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33929710

RESUMO

Lipopolysaccharide (LPS) - an endotoxin that is being extensively used in laboratory to mimic microbial infection that adversely affects male fertility. This study investigated the protective effects of melatonin on LPS-induced testicular nitro-oxidative stress, inflammation, and associated damages in the testes of male golden hamsters, Mesocricetus auratus. Hamsters were administered with melatonin and LPS for 7 days. Testes of LPS treated hamsters showed degenerative changes (appearance of vacuoles, exfoliation, and depletion of germ cells in the seminiferous tubules), adverse effects on spermatogenesis (sperm count and viability), and steroidogenesis (declined serum and testicular testosterone). Furthermore, LPS treatment decreased melatonin content, melatonin receptor (MT1), and antioxidant potential (catalase and SOD), and simultaneously increased nitro-oxidative stress (CRP, nitrate, TNFα). LPS upregulated NF-kB, COX-2, and iNOS expressions to increase testicular inflammatory load that resulted in the decrease of germ cell proliferation and survival, thus culminating into germ cell apoptosis as indicated by AO-EB staining and caspase-3 expression. Administration of melatonin with LPS showed improved testicular histoarchitecture, sperm parameters, and testosterone level. Melatonin increased testicular antioxidant status (SOD, catalase) to counteract the LPS-induced testicular ROS and thus reduced testicular nitro-oxidative stress. Furthermore, melatonin treatment upregulated testicular SIRT-1 expression to inhibit LPS-induced inflammatory proteins, i.e., NF-kB/COX-2/iNOS expression. The rescue effect of melatonin was further supported by increased germ cell survival (Bcl-2), proliferation (PCNA), and declined apoptosis (caspase-3). In conclusion, our result demonstrated that melatonin rescued testes from LPS-induced testicular nitro-oxidative stress, inflammation, and associated damages by upregulation of SIRT-1.


Assuntos
Ciclo-Oxigenase 2/biossíntese , Melatonina/farmacologia , NF-kappa B/biossíntese , Óxido Nítrico Sintase Tipo II/biossíntese , Sirtuína 1/biossíntese , Testículo/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Animais , Cricetinae , Inibidores de Ciclo-Oxigenase 2/farmacologia , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Masculino , Mesocricetus , NF-kappa B/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Estresse Nitrosativo/efeitos dos fármacos , Estresse Nitrosativo/fisiologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia , Testículo/efeitos dos fármacos , Testículo/patologia
20.
J Ethnopharmacol ; 275: 114135, 2021 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-33892063

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Terminalia chebula (TC), a well-known Indian Ayurvedic medicine introduced into China in the Sui and Tang Dynasties, has been recorded and used medicinally as Fructus Chebulae, together with its variety tomentella (TCT) in the Chinese Pharmacopoeia. They have been also used commonly for the treatment of diabetes mellitus by Tibetan medicine. AIM OF THE STUDY: To investigate the main bioactive and therapeutic principles in the fruits of TCT, based on the extensive evaluation of their anti-inflammatory and hypoglycemic activities. MATERIALS AND METHODS: The TCT fresh fruits were analyzed by HPLC and separated further by column chromatography and preparative HPLC. The isolated compounds were identified by extensive spectroscopic analyses, including 1D/2D NMR, MS, UV, IR and ECD. Anti-inflammatory activity was evaluated by inhibition of NO production in RAW264.7 cells. The specific iNOS (PDB ID: 3E7G) structure was prepared by Discovery Studio 4.0, and the molecular docking simulation was performed on GOLD (version 5.2.2). Hypoglycemic activity was measured using the substrate solution of 4-nitrophenyl-α-d-glucopyranoside enzyme and buffer solution. RESULTS: The HPLC analysis method of polyphenols in the fruits of TCT was established, and 13 main chromatographic peaks were identified, including six hydrolyzable tannins (2, 4-7, 10-11), three simple phenols (12-14), and one oleanane pentacyclic triterpene, arjungenin. Extensive chromatographic separation of TCT fresh fruits yielded 14 compounds, including one new natural hydrolyzable tannin, 2,3-(S)-HHDP-6-O-galloyl-d-glucose (1). The known compounds were identified as 10 hydrolyzable tannins (2-11) and three simple phenols (12-14). Compounds 10 (IC50 = 36.43 ± 0.21 µM), 11 (IC50 = 42.28 ± 0.09 µM) displayed stronger NO inhibitory activity than the positive control L-NMMA (IC50 = 42.34 ± 0.66 µM), while 2, 4, and 9 showed moderate inhibitory activity against NO production. Further molecular docking simulation of specific iNOS on 10 and 11, as well as five previously isolated lignans 15-19 showed that there were no obvious rules between docking results and the in vitro NO inhibitory activity for hydrolyzable tannins (10 and 11), while the mechanism of anti-inflammatory activity for lignans was related to the substitution of conjugated aldehyde groups. Moreover, most of the hydrolyzable tannins (1-2, 4-5, 9-11) and simple phenol (12) displayed stronger inhibitory effects on α-glucosidase than the positive control, quercetin (IC50 = 6.118 ± 0.071 µM), with IC50 values ranging from 0.079 to 16.494 µM. Among these bioactive isolates, the hydrolyzable tannins 2, 4-5, and 9-11, and simple phenol 12 are major chemical components in TCT fruit. CONCLUSIONS: The results showed that lignans and hydrolyzed tannins are the main active ingredients of TCT fruits, responsible for the traditional treatment of sore throat and cough. Moreover, hydrolyzed tannins and simple phenolic compounds with potential hypoglycemic activity are closely related to the ethno-pharmacological uses of TCT fruits on diabetes in Tibetan medicine.


Assuntos
Anti-Inflamatórios/farmacologia , Hipoglicemiantes/farmacologia , Fenóis/farmacologia , Extratos Vegetais/farmacologia , Terminalia/química , Animais , Anti-Inflamatórios/análise , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Frutas/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Taninos Hidrolisáveis/análise , Taninos Hidrolisáveis/química , Taninos Hidrolisáveis/farmacologia , Hipoglicemiantes/análise , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Técnicas In Vitro , Lignanas/análise , Lignanas/química , Lignanas/farmacologia , Camundongos , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/química , Fenóis/análise , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/análise , Extratos Vegetais/química , Células RAW 264.7 , Triterpenos/análise , Triterpenos/química , Triterpenos/farmacologia , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA