Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 6.922
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Immun Inflamm Dis ; 12(5): e1077, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38722267

RESUMO

BACKGROUND: Considering the antihepatitis effects of Tectorigenin (TEC), and the same adenosine mitogen-activated protein kinase (MAPK) pathway in both hepatitis and inflammatory bowel disease (IBD) models, exploring the role of TEC in IBD is contributive to develop a new treatment strategy against IBD. METHODS: The IBD mouse model was constructed by feeding with dextran sodium sulfate (DSS) and injection of TEC. Afterward, the mouse body weight, colon length, and disease activity index (DAI) were tested to assess the enteritis level. Mouse intestine lesions were detected by hematoxylin and eosin staining. Murine macrophages underwent lipopolysaccharide (LPS) induction to establish an inflammation model. Cell viability was determined by cell counting kit-8 assay. Enzyme-linked immunosorbent assay was performed to measure interleukin 6 (IL-6) and tumor necrosis factor-α (TNF-α) levels. Cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) expressions were quantified via quantitative reverse transcription polymerase chain reaction. Levels of MAPK pathway-related proteins (p-P38, P38, p-Jun N-terminal kinase (JNK), JNK, signal-regulated kinase (ERK), p-ERK), COX-2 and iNOS were quantitated by Western blot. RESULTS: TEC improved the inflammatory response through ameliorating weight loss, shortening colon, and increasing DAI score in IBD mouse. Expressions of intestinal inflammatory factors (IL-6, TNF-α, iNOS and COX-2) and MAPK pathway-related proteins (p-P38, p-JNK, and p-ERK) were increased both in DSS-induced mouse intestinal tissue, but TEC inhibited expressions of inflammatory factors. The same increased trend was identified in LPS-induced macrophages, but TEC improved macrophage inflammation, as evidenced by downregulation of inflammatory factors. CONCLUSION: TEC mitigates IBD and LPS-induced macrophage inflammation in mice via inhibiting MAPK signaling pathway.


Assuntos
Doenças Inflamatórias Intestinais , Isoflavonas , Lipopolissacarídeos , Sistema de Sinalização das MAP Quinases , Macrófagos , Animais , Camundongos , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos , Isoflavonas/farmacologia , Isoflavonas/uso terapêutico , Modelos Animais de Doenças , Sulfato de Dextrana/toxicidade , Inflamação/tratamento farmacológico , Inflamação/imunologia , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico Sintase Tipo II/metabolismo
2.
Sci Rep ; 14(1): 11291, 2024 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760355

RESUMO

In the current study, we utilized molecular modeling and simulation approaches to define putative potential molecular targets for Burdock Inulin, including inflammatory proteins such as iNOS, COX-2, TNF-alpha, IL-6, and IL-1ß. Molecular docking results revealed potential interactions and good binding affinity for these targets; however, IL-1ß, COX-2, and iNOS were identified as the best targets for Inulin. Molecular simulation-based stability assessment demonstrated that inulin could primarily target iNOS and may also supplementarily target COX-2 and IL-1ß during DSS-induced colitis to reduce the role of these inflammatory mechanisms. Furthermore, residual flexibility, hydrogen bonding, and structural packing were reported with uniform trajectories, showing no significant perturbation throughout the simulation. The protein motions within the simulation trajectories were clustered using principal component analysis (PCA). The IL-1ß-Inulin complex, approximately 70% of the total motion was attributed to the first three eigenvectors, while the remaining motion was contributed by the remaining eigenvectors. In contrast, for the COX2-Inulin complex, 75% of the total motion was attributed to the eigenvectors. Furthermore, in the iNOS-Inulin complex, the first three eigenvectors contributed to 60% of the total motion. Furthermore, the iNOS-Inulin complex contributed 60% to the total motion through the first three eigenvectors. To explore thermodynamically favorable changes upon mutation, motion mode analysis was carried out. The Free Energy Landscape (FEL) results demonstrated that the IL-1ß-Inulin achieved a single conformation with the lowest energy, while COX2-Inulin and iNOS-Inulin exhibited two lowest-energy conformations each. IL-1ß-Inulin and COX2-Inulin displayed total binding free energies of - 27.76 kcal/mol and - 37.78 kcal/mol, respectively, while iNOS-Inulin demonstrated the best binding free energy results at - 45.89 kcal/mol. This indicates a stronger pharmacological potential of iNOS than the other two complexes. Thus, further experiments are needed to use inulin to target iNOS and reduce DSS-induced colitis and other autoimmune diseases.


Assuntos
Ciclo-Oxigenase 2 , Interleucina-1beta , Inulina , Simulação de Acoplamento Molecular , Óxido Nítrico Sintase Tipo II , Inulina/química , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/química , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/química , Interleucina-1beta/metabolismo , Animais , Simulação de Dinâmica Molecular , Colite/induzido quimicamente , Colite/metabolismo , Colite/prevenção & controle , Ligação Proteica , Ligação de Hidrogênio , Camundongos , Modelos Moleculares , Fator de Necrose Tumoral alfa/metabolismo
3.
Bull Exp Biol Med ; 176(5): 555-561, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38717567

RESUMO

The levels of NO metabolites in the plasma and mRNA of the NOS3, ATG9B, and NOS2 genes in peripheral blood leukocytes of healthy people and patients with early forms of non-alcoholic fatty liver disease (steatosis and weak activity non-alcoholic steatohepatitis) were studied. In patients with steatohepatitis, the concentration of NO metabolites in the blood and the level of mRNA of the NOS2 gene were higher than in patients with steatosis and healthy people. These differences can be of diagnostic value for distinguishing between steatosis and weak activity steatohepatitis in non-alcoholic fatty liver disease. A correlation between the levels of NO metabolites and the expression of the NOS2 gene in weak activity steatohepatitis was established, which indicates activation of NO synthesis in non-alcoholic steatohepatitis due to the expression of the inducible NO synthase gene. The level of the NOS2 gene mRNA in peripheral blood leukocytes of patients with weak activity steatohepatitis correlated with the level of TNFα and IL-6 cytokines. An increase in the level of NO in the blood in weak activity steatohepatitis correlated with the level of MDA, an indicator of oxidative stress.


Assuntos
Interleucina-6 , Óxido Nítrico Sintase Tipo III , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Hepatopatia Gordurosa não Alcoólica , Fator de Necrose Tumoral alfa , Humanos , Hepatopatia Gordurosa não Alcoólica/sangue , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Óxido Nítrico/sangue , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Masculino , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Feminino , Adulto , Interleucina-6/sangue , Interleucina-6/genética , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/genética , RNA Mensageiro/genética , RNA Mensageiro/sangue , RNA Mensageiro/metabolismo , Estresse Oxidativo/genética , Estudos de Casos e Controles , Malondialdeído/sangue
4.
Braz J Biol ; 84: e278323, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38747858

RESUMO

This study aims to evaluate the anti-cancer-related inflammation activity of Cyperus rotundus bioactive compounds. The component of C. rotundus was analyzed using LC-HRMS. The drug-likeness of all compounds were analyzed using swissADME webserver. In addition, the analysis of inhibition potential of compounds against NF-κB and iNOS were carried out using molecular docking in PyRx software. This study found 1-Nitro-2-phenoxybenzene, ethyl 4-(acetylamino)-3-phenyl-2-thioxo-2,3-dihydro-1,3-thiazole-5-carboxylate, and nootkatone passed all the parameters of drug-likeness including Lipinski, ghose, veber, egan, and muege. Based on molecular docking, verbascoside A and n-Pentyl isopentyl phthalate has the lowest binding affinity against iNOS (-10 and -8.9 kcal/mol, respectively). In addition, verbascoside A and maltopentaose have binding affinity of -7.6 and -6.6 kcal/mol, respectively, for NF-κB. The anti-cancer activity of verbascoside A, maltopentaose, and n-Pentyl isopentyl phthalate, according to PASS analysis were anti-inflammatory, antineoplastic, chemopreventive, and chemoprotectant. The cytotoxic effect prediction showed that these compounds were relatively selective to kill tumor cell but not non-tumor cell. Rat toxicity analysis showed maltopentaose was non-toxic, where n-Pentyl isopentyl phthalate was only toxic (class IV) for intravenous administration. perMM analysis showed verbascoside A and n-Pentyl isopentyl phthalate can translocate and across the cell membrane.


Assuntos
Cyperus , Simulação de Acoplamento Molecular , NF-kappa B , Óxido Nítrico Sintase Tipo II , Transdução de Sinais , Cyperus/química , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Ratos , Simulação por Computador , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Glucosídeos/farmacologia , Glucosídeos/química , Humanos
5.
Fish Shellfish Immunol ; 149: 109571, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38636736

RESUMO

Bacteria-enhanced inducible nitric oxide synthase (iNOS) overproduces nitric oxide (NO) leading to mitochondrial and cellular damage. In mammals, arginase (ARG), the enzyme consuming the same substrate l-arginine with iNOS, was believed to inhibit iNOS activity by competing the substrate. But in fish, this conception has been widely challenged. In this study, the gene expression using real-time quantitative PCR (RT-qPCR) technology showed that when stimulated by Aeromonas hydrophila (A. hydrophila), grass carp (gc) iNOS was up-regulated in head kidney monocytes/macrophages (M0/MФ), and its changes were not detected in the whole tissue of liver or spleen, showing a high degree of cell-specific expression pattern. At the same time, gcARG2 had a high basal expression in tissues and was up-regulated by A. hydrophila stimulation. Next, phthalaldehyde-primaquine reaction was first used in the determination of intracellular urea in fish cells. It was found that the induced gcARG2 led to an increase in the intracellular urea content. Moreover, urea and NO production in M0/MФ were increased in a substrate dose-dependent manner from 30 to 100 µM of l-arginine and reached the highest yield at 300 and 3000 µM of l-arginine, respectively. Furthermore, head kidney M0/MФ was cultured in RPMI1640 medium containing physiological concentration (500 µM) of l-arginine to evaluate the effect of ARG. Under A. hydrophila stimulation, treatment with the arginase inhibitor S-(2-boronoethyl)-l-cysteine (BEC) showed that inhibition of arginase could further enhance the NO production stimulated by A. hydrophila. This in turn led to a cumulation in peroxynitrite (ONOO-) content and an injury of the mitochondrial membrane potential. Our study showed for the first time that fish ARG in head kidney M0/MФ can limit excessive production of NO and harmful products by iNOS to maintain mitochondrial and cellular homeostasis.


Assuntos
Aeromonas hydrophila , Arginase , Carpas , Doenças dos Peixes , Proteínas de Peixes , Infecções por Bactérias Gram-Negativas , Mitocôndrias , Óxido Nítrico , Animais , Aeromonas hydrophila/fisiologia , Arginase/genética , Arginase/metabolismo , Doenças dos Peixes/imunologia , Infecções por Bactérias Gram-Negativas/imunologia , Infecções por Bactérias Gram-Negativas/veterinária , Óxido Nítrico/metabolismo , Carpas/imunologia , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Arginina
6.
Asian Pac J Cancer Prev ; 25(4): 1357-1362, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38679997

RESUMO

OBJECTIVE: The aim of this study is to examine the M1 and M2 macrophages distribution in the rat's colon of DMH-induced inflammation associated colorectal cancer. METHODS: Colon tissue of three groups of 4 rats that induced using 1,2 dimethylhydrazine (DMH) at 30 mg/kg bw every week for 9, 11, and 13 weeks were used. The M1 and M2 distribution was examined by using antibody anti iNOS for M1 and anti-CD163 for M2 with immunohistochemistry method. The data was presents in figure and table in the form of percentage. RESULT: M1 macrophage was found in all groups in the low distribution level (25% - 50%), while M2 macrophage was observed in all groups with 100% distribution. In the longer period of DMH induction, M2 macrophages was distributed more abundant. CONCLUSION: All of the rat's colon showing chronic inflammation that led to the tumorigenesis.


Assuntos
1,2-Dimetilidrazina , Colo , Neoplasias Colorretais , Inflamação , Macrófagos , Animais , Ratos , Neoplasias Colorretais/patologia , Neoplasias Colorretais/induzido quimicamente , Macrófagos/patologia , Macrófagos/metabolismo , Inflamação/induzido quimicamente , Inflamação/patologia , Colo/patologia , Colo/metabolismo , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos CD/metabolismo , Carcinógenos/toxicidade , Receptores de Superfície Celular/metabolismo
7.
Molecules ; 29(8)2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38675532

RESUMO

Pyxinol, an active metabolite of ginsenosides in human hepatocytes, exhibits various pharmacological activities. Here, a series of C-3 modified pyxinol derivatives was designed and virtually screened by molecular docking with the key inflammation-related proteins of the nuclear factor kappa B (NF-κB) pathway. Some of the novel derivatives were synthesized to assess their effects in inhibiting the production of nitric oxide (NO) and mitochondrial reactive oxygen species (MtROS) in lipopolysaccharide-triggered RAW264.7 cells. Derivative 2c exhibited the highest NO and MtROS inhibitory activities with low cytotoxicity. Furthermore, 2c decreased the protein levels of interleukin 1ß, tumor necrosis factor α, inducible nitric oxide synthase, and cyclooxygenase 2 and suppressed the activation of NF-κB signaling. Cellular thermal shift assays indicated that 2c could directly bind with p65 and p50 in situ. Molecular docking revealed that 2c's binding to the p65-p50 heterodimer and p50 homodimer was close to their DNA binding sites. In summary, pyxinol derivatives possess potential for development as NF-κB inhibitors.


Assuntos
Anti-Inflamatórios , Simulação de Acoplamento Molecular , NF-kappa B , Óxido Nítrico , NF-kappa B/metabolismo , NF-kappa B/antagonistas & inibidores , Camundongos , Animais , Células RAW 264.7 , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/química , Óxido Nítrico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Lipopolissacarídeos/farmacologia , Humanos , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/antagonistas & inibidores , Relação Estrutura-Atividade
8.
Redox Biol ; 72: 103166, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38685170

RESUMO

S-nitrosylation (SNO) is an emerging paradigm of redox signaling protecting cells against oxidative stress in the heart. Our previous studies demonstrated that valosin-containing protein (VCP), an ATPase-associated protein, is a vital mediator protecting the heart against cardiac stress and ischemic injury. However, the molecular regulations conferred by VCP in the heart are not fully understood. In this study, we explored the potential role of VCP in cardiac protein SNO using multiple cardiac-specific genetically modified mouse models and various analytical techniques including biotin switch assay, liquid chromatography, mass spectrometry, and western blotting. Our results showed that cardiac-specific overexpression of VCP led to an overall increase in the levels of SNO-modified cardiac proteins in the transgenic (TG) vs. wild-type (WT) mice. Mass spectrometry analysis identified mitochondrial proteins involved in respiration, metabolism, and detoxification as primary targets of SNO modification in VCP-overexpressing mouse hearts. Particularly, we found that VCP itself underwent SNO modification at a specific cysteine residue in its N-domain. Additionally, our study demonstrated that glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a key enzyme in glycolysis, also experienced increased SNO in response to VCP overexpression. While deletion of inducible nitric oxide synthase (iNOS) in VCP TG mice did not affect VCP SNO, it did abolish SNO modification in mitochondrial complex proteins, suggesting a dual mechanism of regulation involving both iNOS-dependent and independent pathways. Overall, our findings shed light on post-translational modification of VCP in the heart, unveiling a previously unrecognized role for VCP in regulating cardiac protein SNO and offering new insights into its function in cardiac protection.


Assuntos
Camundongos Transgênicos , Miocárdio , Proteína com Valosina , Animais , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Camundongos , Miocárdio/metabolismo , Processamento de Proteína Pós-Traducional , Estresse Oxidativo , Oxirredução , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética
9.
Free Radic Biol Med ; 219: 184-194, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38636716

RESUMO

Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.


Assuntos
Fluoruracila , Hematopoese , Células-Tronco Hematopoéticas , Mitocôndrias , Óxido Nítrico Sintase Tipo II , Óxido Nítrico , Transdução de Sinais , Animais , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Mitocôndrias/metabolismo , Fluoruracila/farmacologia , Hematopoese/genética , Óxido Nítrico/metabolismo , Regeneração , Camundongos Knockout , Medula Óssea/metabolismo , Camundongos Endogâmicos C57BL
10.
Exp Eye Res ; 243: 109886, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38583755

RESUMO

Corneal injury leads to impaired normal structure of the cornea. Improving the wound healing process in epithelial cells significantly contributes to ocular damage treatments. Here, we aimed to investigate the potential mechanisms of nitric oxide (NO) and its mediator, inducible nitric oxide synthase (iNOS), in the process of corneal wound healing. We established a corneal injury model of iNOS-/- mice, and treated human corneal epithelial cell lines (HCE-2) with the iNOS inhibitor L-INL, with or without NO replenishment by supplying sodium nitroferricyanide dihydrate (SNP). Our findings showed that inhibition of NO/iNOS accelerated corneal repair, enhanced uPAR (a receptor protein indicating the migration ability), and improved epithelial cell migration. Furthermore, NO/iNOS ablation activated Akt phosphorylation, reduced neutrophil marker protein MPO expression, and downregulated the transcription of inflammation cytokines CXCL-1, CXCL-2, IL-1ß, IL-6, and TNF-α. However, the protective effects of NO/iNOS inhibition are significantly reduced by NO replenishment when treated with SNP. Therefore, we confirmed that inhibiting NO/iNOS improved the corneal wound healing by facilitating epithelial cell migration and reducing inflammatory reactions, which might be related to the activation of the Akt signaling pathway.


Assuntos
Movimento Celular , Lesões da Córnea , Modelos Animais de Doenças , Epitélio Corneano , Óxido Nítrico Sintase Tipo II , Proteínas Proto-Oncogênicas c-akt , Transdução de Sinais , Cicatrização , Animais , Cicatrização/fisiologia , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Lesões da Córnea/metabolismo , Lesões da Córnea/patologia , Transdução de Sinais/fisiologia , Óxido Nítrico Sintase Tipo II/metabolismo , Epitélio Corneano/metabolismo , Movimento Celular/fisiologia , Camundongos Endogâmicos C57BL , Humanos , Camundongos Knockout , Western Blotting , Óxido Nítrico/metabolismo , Masculino , Fosforilação
11.
Chem Biol Interact ; 395: 111013, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38663798

RESUMO

Ulcerative colitis is a chronic disease with colonic mucosa injury. Nitazoxanide is an antiprotozoal drug in clinic. Nitazoxanide and its metabolite tizoxanide have been demonstrated to activate AMPK and inhibit inflammation, therefore, the aim of the present study is to investigate the effect of nitazoxanide on dextran sulfate sodium (DSS)-induced colitis and the underlying mechanism. Oral administration of nitazoxanide ameliorated the symptoms of mice with DSS-induced colitis, as evidenced by improving the increased disease activity index (DAI), the decreased body weight, and the shortened colon length. Oral administration of nitazoxanide ameliorated DSS-induced intestinal barrier dysfunction and reduced IL-6 and IL-17 expression in colon tissues. Mechanistically, nitazoxanide and its metabolite tizoxanide treatment activated AMPK and inhibited JAK2/STAT3 signals. Nitazoxanide and tizoxanide treatment increased caudal type homeobox 2 (CDX2) expression, increased alkaline phosphatase (ALP) activity and promoted tight junctions in Caco-2 cells. Nitazoxanide and tizoxanide treatment restored the decreased zonula occludens-1(ZO-1) and occludin protein levels induced by LPS or IL-6 in Caco-2 cells. On the other hand, nitazoxanide and tizoxanide regulated macrophage bias toward M2 polarization, as evidenced by the increased arginase-1expression in bone marrow-derived macrophages (BMDM). Nitazoxanide and tizoxanide reduced the increased IL-6, iNOS and CCL2 pro-inflammatory gene expressions and inhibited JAK2/STAT3 activation in BMDM induced by LPS. In conclusion, nitazoxanide protects against DSS-induced ulcerative colitis in mice through improving intestinal barrier and inhibiting inflammation and the underlying mechanism involves AMPK activation and JAK2/STAT3 inhibition.


Assuntos
Colite Ulcerativa , Sulfato de Dextrana , Mucosa Intestinal , Nitrocompostos , Fator de Transcrição STAT3 , Tiazóis , Animais , Tiazóis/farmacologia , Tiazóis/uso terapêutico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colite Ulcerativa/metabolismo , Nitrocompostos/farmacologia , Camundongos , Humanos , Células CACO-2 , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Sulfato de Dextrana/toxicidade , Fator de Transcrição STAT3/metabolismo , Masculino , Janus Quinase 2/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Inflamação/tratamento farmacológico , Colo/efeitos dos fármacos , Colo/patologia , Colo/metabolismo , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Óxido Nítrico Sintase Tipo II/metabolismo , Interleucina-6/metabolismo , Modelos Animais de Doenças
12.
Biomolecules ; 14(4)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38672406

RESUMO

Peroxidative damage to human spermatozoa has been shown to be the primary cause of male infertility. The possible role of nitric oxide (NO) in affecting sperm motility, capacitation, and acrosome reaction has been reported, too. The overproduction of NO by the enzyme inducible nitric oxide synthase (iNOS) could be responsible as it has been implicated in the pathogenesis of many diseases. There have been many studies on regulating iNOS function in various tissues, especially by protein-protein interaction; however, no study has looked for iNOS-interacting proteins in the human testis. Here, we have reported the identification of two proteins that interact with iNOS. We initially undertook a popular yeast two-hybrid assay to screen a human testis cDNA library in yeast using an iNOS-peptide fragment (amino acids 181-335) as bait. We verified our data using the mammalian chemiluminescent co-IP method; first, employing the same peptide and, then, a full-length protein co-expressed in HEK293 cells in addition to the candidate protein. In both cases, these two protein partners of iNOS were revealed: (a) sperm acrosome-associated 7 protein and (b) retinoblastoma tumor-suppressor binding protein.


Assuntos
Óxido Nítrico Sintase Tipo II , Testículo , Técnicas do Sistema de Duplo-Híbrido , Humanos , Masculino , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Testículo/metabolismo , Células HEK293 , Ligação Proteica
13.
Front Immunol ; 15: 1347420, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38686374

RESUMO

Introduction: Skin injuries represent a prevalent form of physical trauma, necessitating effective therapeutic strategies to expedite the wound healing process. Hesperidin, a bioflavonoid naturally occurring in citrus fruits, exhibits a range of pharmacological attributes, including antimicrobial, antioxidant, anti-inflammatory, anticoagulant, and analgesic properties. The main objective of the study was to formulate a hydrogel with the intention of addressing skin conditions, particularly wound healing. Methods: This research introduces a methodology for the fabrication of a membrane composed of a Polyvinyl alcohol - Sodium Alginate (PVA/A) blend, along with the inclusion of an anti-inflammatory agent, Hesperidin (H), which exhibits promising wound healing capabilities. A uniform layer of a homogeneous solution comprising PVA/A was cast. The process of crosslinking and the enhancement of hydrogel characteristics were achieved through the application of gamma irradiation at a dosage of 30 kGy. The membrane was immersed in a Hesperidin (H) solution, facilitating the permeation and absorption of the drug. The resultant system is designed to deliver H in a controlled and sustained manner, which is crucial for promoting efficient wound healing. The obtained PVA/AH hydrogel was evaluated for cytotoxicity, antioxidant and free radical scavenging activities, anti-inflammatory and membrane stability effect. In addition, its action on oxidative stress, and inflammatory markers was evaluated on BJ-1 human normal skin cell line. Results and Discussion: We determined the effect of radical scavenging activity PVA/A (49 %) and PVA/AH (87%), the inhibition of Human red blood cell membrane hemolysis by PVA/AH (81.97 and 84.34 %), hypotonicity (83.68 and 76.48 %) and protein denaturation (83.17 and 85.8 %) as compared to 250 µg/ml diclofenac (Dic.) and aspirin (Asp.), respectively. Furthermore, gene expression analysis revealed an increased expression of genes associated with anti-oxidant and anti-inflammatory properties and downregulated TNFα, NFκB, iNOS, and COX2 by 67, 52, 58 and 60%, respectively, by PVA/AH hydrogel compared to LPS-stimulated BJ-1 cells. The advantages associated with Hesperidin can be ascribed to its antioxidant and anti-inflammatory attributes. The incorporation of Hesperidin into hydrogels offers promise for the development of a novel, secure, and efficient strategy for wound healing. This innovative approach holds potential as a solution for wound healing, capitalizing on the collaborative qualities of PVA/AH and gamma irradiation, which can be combined to establish a drug delivery platform for Hesperidin.


Assuntos
Alginatos , Hesperidina , Hidrogéis , NF-kappa B , Álcool de Polivinil , Fator de Necrose Tumoral alfa , Hesperidina/farmacologia , Hesperidina/química , Álcool de Polivinil/química , Humanos , Alginatos/química , NF-kappa B/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Hidrogéis/química , Transdução de Sinais/efeitos dos fármacos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Cicatrização/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Antioxidantes/farmacologia , Antioxidantes/química , Inflamação/tratamento farmacológico
14.
Molecules ; 29(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474629

RESUMO

Chamaecyparis obtusa (Siebold & Zucc.) Endl. (C. obtusa) belongs to the Cupressaceae family and is native to East Asian regions. Essential oils extracted from the leaves, bark, branches, and roots of C. obtusa have both aesthetic and medicinal properties and are thus widely used. However, detailed analyses of the active ingredients of C. obtusa extract are lacking. In this study, the sabinene content in the hydro-distillation of C. obtusa leaf essential oil (COD) was analyzed using GC-MS, and the anti-inflammatory effect of COD was compared with that of pure sabinene. Cell viability was evaluated by MTT assay, and nitric oxide (NO) production was measured using Griess reagent. Relative mRNA and protein levels were analyzed using RT-qPCR and western blot, and secreted cytokines were analyzed using a cytokine array kit. The results showed that both COD and sabinene inhibited the expression of inducible nitric oxide synthase (iNOS) and the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 in lipopolysaccharide (LPS)-induced RAW 264.7 cells. COD and sabinene also reduced the production of pro-inflammatory cytokines interleukin (IL)-1ß, IL-6, IL-27, IL-1 receptor antagonist (IL-1ra), and granulocyte-macrophage colony-stimulating factor (GM-CSF). The anti-inflammatory mechanisms of COD and sabinene partially overlap, as COD was shown to inhibit MAPKs and the JAK/STAT axis, and sabinene inhibited MAPKs, thereby preventing LPS-induced macrophage activation.


Assuntos
Monoterpenos Bicíclicos , Chamaecyparis , Óleos Voláteis , Óleos Voláteis/farmacologia , Chamaecyparis/metabolismo , Lipopolissacarídeos/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Folhas de Planta/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
15.
J Pharmacol Sci ; 154(4): 225-235, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38485340

RESUMO

In this study, we investigated the regulatory mechanisms underlying the effects of LPS tolerance on the inflammatory homeostasis of immune cells. LPS priming-induced immune tolerance downregulated cyclooxygenase-2, and lowered the production of prostaglandin-E2 in microglial cells. In addition, LPS tolerance downregulated the expression of suppressor of cytokine signaling 3, and inducible nitric oxide synthase/nitric oxide; suppressed the LPS-mediated induction of tumor necrosis factor-α, interleukin (IL)-6, and IL-1; and reduced reactive oxygen species production in microglial cells. LPS stimulation increased the levels of the adaptive response-related proteins heme oxygenase-1 and superoxide dismutase 2, and the levels of heme oxygenase-1 (HO-1) enhanced after LPS priming. Systemic administration of low-dose LPS (0.5 mg/kg) to mice for 4 consecutive days attenuated high-dose LPS (5 mg/kg)-induced inflammatory response, microglial activation, and proinflammatory cytokine expression. Moreover, repeated exposure to low-dose LPS suppressed the recruitment of peripheral monocytes or macrophages to brain regions and downregulated the expression of proinflammatory cytokines. Notably, LPS-induced social avoidance behaviors in mice were mitigated by immune tolerance. In conclusion, immune tolerance may reduce proinflammatory cytokine expression and reactive oxygen species production. Our findings provide insights into the effects of endotoxin tolerance on innate immune cells and social behaviors.


Assuntos
Heme Oxigenase-1 , Microglia , Animais , Camundongos , Heme Oxigenase-1/metabolismo , Microglia/metabolismo , Lipopolissacarídeos/farmacologia , NF-kappa B/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Aprendizagem da Esquiva , Citocinas/metabolismo , Interleucina-6/metabolismo , Comportamento Social , Tolerância Imunológica , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico/metabolismo
16.
Nat Commun ; 15(1): 2698, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538595

RESUMO

Toxoplasma gondii is an obligate intracellular parasite of rodents and humans. Interferon-inducible guanylate binding proteins (GBPs) are mediators of T. gondii clearance, however, this mechanism is incomplete. Here, using automated spatially targeted optical micro proteomics we demonstrate that inducible nitric oxide synthetase (iNOS) is highly enriched at GBP2+ parasitophorous vacuoles (PV) in murine macrophages. iNOS expression in macrophages is necessary to limit T. gondii load in vivo and in vitro. Although iNOS activity is dispensable for GBP2 recruitment and PV membrane ruffling; parasites can replicate, egress and shed GBP2 when iNOS is inhibited. T. gondii clearance by iNOS requires nitric oxide, leading to nitration of the PV and collapse of the intravacuolar network of membranes in a chromosome 3 GBP-dependent manner. We conclude that reactive nitrogen species generated by iNOS cooperate with GBPs to target distinct structures in the PV that are necessary for optimal parasite clearance in macrophages.


Assuntos
Toxoplasma , Vacúolos , Animais , Humanos , Camundongos , Interferons/metabolismo , Macrófagos/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Toxoplasma/metabolismo , Vacúolos/metabolismo
17.
Microb Pathog ; 190: 106610, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484920

RESUMO

Jorge Lobo's disease (JLD) and lepromatous leprosy (LL) share several clinical, histological and immunological features, especially a deficiency in the cellular immune response. Macrophages participate in innate and adaptive inflammatory immune responses, as well as in tissue regeneration and repair. Macrophage function deficiency results in maintenance of diseases. M1 macrophages produce pro-inflammatory mediators and M2 produce anti-inflammatory cytokines. To better understand JLD and LL pathogenesis, we studied the immunophenotype profile of macrophage subtypes in 52 JLD skin lesions, in comparison with 16 LL samples, using a panmacrophage (CD68) antibody and selective immunohistochemical markers for M1 (iNOS) and M2 (CD163, CD204) responses, HAM56 (resident/fixed macrophage) and MAC 387 (recently infiltrating macrophage) antibodies. We found no differences between the groups regarding the density of the CD163, CD204, MAC387+ immunostained cells, including iNOS, considered a M1 marker. But HAM56+ cell density was higher in LL samples. By comparing the M2 and M1 immunomarkers in each disease separately, some other differences were found. Our results reinforce a higher M2 response in JLD and LL patients, depicting predominant production of anti-inflammatory cytokines, but also some distinction in degree of macrophage activation. Significant amounts of iNOS + macrophages take part in the immune milieu of both LL and JLD samples, displaying impaired microbicidal activity, like alternatively activated M2 cells.


Assuntos
Antígenos CD , Molécula CD68 , Imunofenotipagem , Hanseníase Virchowiana , Macrófagos , Humanos , Macrófagos/imunologia , Hanseníase Virchowiana/imunologia , Hanseníase Virchowiana/patologia , Masculino , Feminino , Citocinas/metabolismo , Antígenos de Diferenciação Mielomonocítica , Lobomicose/imunologia , Lobomicose/patologia , Pessoa de Meia-Idade , Adulto , Pele/patologia , Pele/imunologia , Idoso , Óxido Nítrico Sintase Tipo II/metabolismo , Receptores de Superfície Celular/metabolismo , Receptores de Superfície Celular/imunologia
18.
Transplant Proc ; 56(3): 701-704, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38548510

RESUMO

BACKGROUND: Liver fibrosis is a chronic inflammatory disease that progresses and has a high mortality rate. This study was performed to investigate the protective effect of rapamycin on experimentally induced chronic liver injury in mice models using both biochemical parameters of liver function enzymes. METHODS: Twenty-four mice were divided randomly into 4 equal groups: [1] the normal group, n = 6; [2] the liver fibrosis (LF) group, n = 6; [3] the LF with the treatment of rapamycin group, n = 6; [4] the LF with the treatment of silimaryn, n = 6. RESULTS: In the group receiving oral administration of rapamycin, aspartate aminotransferase, alanine aminotransferase, urea, and creatinine were found to significantly decrease compared to the liver fibrosis group. Rapamycin, in the orally administered group, demonstrated a statistically significant decrease in the expression of interleukin (IL) 10, IL-1B, inducible nitric oxide synthase, and tumor necrosis factor alpha compared to the liver fibrosis group. CONCLUSIONS: In this study, we explored the potential therapeutic effects of rapamycin on liver fibrosis in an animal model.


Assuntos
Modelos Animais de Doenças , Cirrose Hepática , Camundongos Endogâmicos C57BL , Sirolimo , Animais , Sirolimo/farmacologia , Cirrose Hepática/tratamento farmacológico , Cirrose Hepática/patologia , Camundongos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Aspartato Aminotransferases/sangue , Alanina Transaminase/sangue , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Creatinina/sangue
19.
Transplant Proc ; 56(3): 672-677, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38555195

RESUMO

BACKGROUND: Liver ischemia/reperfusion injury (IRI) is a well-documented phenomenon that occurs after liver resection and transplantation, posing a significant clinical challenge. We aim to contribute valuable insights into potential therapeutic interventions for fibrotic liver IRI, ultimately advancing our understanding of liver transplantation and resection outcomes. METHODS: Twenty-four mice were divided randomly into 4 equal groups: [1] the normal group, n = 6; [2] the liver fibrosis (LF) group, n = 6; [3] the LF and IR group, n = 6; and [4] the LF with treatment of rapamycin and IR group; n = 6. RESULTS: Key biomarkers assessing liver function, alanine aminotransferase and aspartate aminotransferase, significantly decreased with Rapamycin administration. There is a substantial decrease observed in inflammatory cytokines such as interleukin (IL) 6, IL-1B, tumor necrosis factor alpha, Transforming growth factor-beta (TGF-beta), and Inducible nitric oxide synthase (iNOS) with rapamycin treatment. Furthermore, NOX levels, caspase-3, and caspase-9 were reduced after rapamycin administration. CONCLUSION: The application of rapamycin demonstrates appropriate effects in anti-inflammation, antioxidation, and anti-apoptosis, indicating significant therapeutic potential for fibrotic liver IRI.


Assuntos
Cirrose Hepática , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão , Sirolimo , Animais , Traumatismo por Reperfusão/prevenção & controle , Traumatismo por Reperfusão/patologia , Sirolimo/farmacologia , Camundongos , Cirrose Hepática/tratamento farmacológico , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Citocinas/metabolismo , Apoptose/efeitos dos fármacos , Aspartato Aminotransferases/sangue , Alanina Transaminase/sangue , Óxido Nítrico Sintase Tipo II/metabolismo
20.
Drug Dev Res ; 85(2): e22173, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38515272

RESUMO

New pyridazine and pyridazinone derivatives 3a-g, 4a-f, 6a, and 6b were designed and synthesized. Cell viability of all compounds was established based on the viability of lipopolysaccharide-induced RAW264.7 macrophage cells determined via the MTT assay. In vitro inhibition assays on human COX-1 and COX-2 enzymes were conducted to probe the newly synthesized compounds' anti-inflammatory activity. The half maximal inhibitory concentration values for the most active compounds, 3d, 3e, and 4e towards COX-2 were 0.425, 0.519, and 0.356 µM, respectively, in comparison with celecoxib. The newly synthesized compounds' ability to inhibit the production of certain proinflammatory cytokines, such as inducible nitric oxide synthase, tumor necrosis factor-α, interleukin-6, and prostaglandin-E2, was also estimated in lipopolysaccharide-induced macrophages (RAW264.7 cells). Compounds 3d and 3e were identified as the most potent cytokine production inhibitors. The results of molecular modeling studies suggested that these compounds were characterized by a reasonable binding affinity toward the active site of COX-2, when compared to a reference ligand. These results might be taken into consideration in further investigations into new anti-inflammatory agents.


Assuntos
Lipopolissacarídeos , Piridazinas , Camundongos , Animais , Humanos , Lipopolissacarídeos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Macrófagos/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo , Células RAW 264.7 , Piridazinas/farmacologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA