Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 533
Filtrar
1.
Mol Biol (Mosk) ; 57(6): 925-937, 2023.
Artigo em Russo | MEDLINE | ID: mdl-38062950

RESUMO

Experimental data were summarized to assume that dinitrosyl iron complexes (DNICs) with thiol-containing ligands are an endogenous "working form" of the nitric oxide (NO) system in living organisms. DNICs can function as donors of both neutral NO molecules, which are responsible for positive regulatory effects of the NO system on various physiological and biochemical processes in humans and animals, and nitrosonium cations (NO^(+)), which are responsible mostly for negative cytotoxic activity of the system. Special attention is paid to the finding that DNICs, especially in combination with dithiocarbamate derivatives, suppress SARS-CoV-2 infection in Syrian hamsters.


Assuntos
Óxido Nítrico , Compostos de Sulfidrila , Humanos , Animais , Compostos de Sulfidrila/química , Óxidos de Nitrogênio/química , Ferro/química , Ligantes
2.
Int J Mol Sci ; 24(24)2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38139065

RESUMO

Dinitrosyl iron complexes (DNICs) are important physiological derivatives of nitric oxide. These complexes have a wide range of biological activities, with antioxidant and antiradical ones being of particular interest and importance. We studied the interaction between DNICs associated with the dipeptide L-carnosine or serum albumin and prooxidants under conditions mimicking oxidative stress. The ligands of these DNICs were histidine residues of carnosine or His39 and Cys34 in bovine serum albumin. Carnosine-bound DNICs reduced the level of piperazine free radicals in the reaction system containing tert-butyl hydroperoxide (t-BOOH), bivalent iron ions, a nitroxyl anion donor (Angeli's salt), and HEPES buffer. The ability of carnosine DNICs to intercept organic free radicals produced from t-BOOH decay could lead to this effect. In addition, carnosine DNICs reacted with the superoxide anion radical (O2•-) formed in the xanthine/xanthine oxidase enzymatic system. They also reduced the oxoferryl form of the heme group formed in the reaction of myoglobin with t-BOOH. DNICs associated with serum albumin were found to be rapidly destroyed in a model system containing metmyoglobin and t-BOOH. At the same time, these protein DNICs inhibited the t-BOOH-induced oxidative degradation of coenzymes Q9 and Q10 in rat myocardial homogenate. The possible mechanisms of the antioxidant and antiradical action of the DNICs studied and their role in the metabolism of reactive oxygen and nitrogen species are discussed.


Assuntos
Antioxidantes , Carnosina , Ratos , Animais , Antioxidantes/farmacologia , Histidina , Carnosina/farmacologia , Óxidos de Nitrogênio/química , Ferro/metabolismo , Óxido Nítrico/metabolismo , Radicais Livres , Superóxidos/metabolismo , Oxigênio , Albumina Sérica
3.
ACS Chem Biol ; 18(12): 2524-2534, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38012810

RESUMO

Bacillithiol (BSH) replaces glutathione (GSH) as the most prominent low-molecular-weight thiol in many low G + C gram-positive bacteria. BSH plays roles in metal binding, protein/enzyme regulation, detoxification, redox buffering, and bacterial virulence. Given the small amounts of BSH isolated from natural sources and relatively lengthy chemical syntheses, the reactions of BSH with pertinent reactive oxygen, nitrogen, and sulfur species remain largely unexplored. We prepared BSH and exposed it to nitroxyl (HNO), a reactive nitrogen species that influences bacterial sulfur metabolism. The profile of this reaction was distinct from HNO oxidation of GSH, which yielded mixtures of disulfide and sulfinamide. The reaction of BSH and HNO (generated from Angeli's salt) gives only sulfinamide products, including a newly proposed cyclic sulfinamide. Treatment of a glucosamine-cysteine conjugate, which lacks the malic acid group, with HNO forms disulfide, implicating the malic acid group in sulfinamide formation. This finding supports a mechanism involving the formation of an N-hydroxysulfenamide intermediate that dehydrates to a sulfenium ion that can be trapped by water or internally trapped by an amide nitrogen to give the cyclic sulfinamide. The biological relevance of BSH reactivity toward HNO is provided through in vivo experiments demonstrating that Bacillus subtilis exposed to HNO shows a growth phenotype, and a strain unable to produce BSH shows hypersensitivity toward HNO in minimal medium cultures. Thiol analysis of HNO-exposed cultures shows an overall decrease in reduced BSH levels, which is not accompanied by increased levels of BSSB, supporting a model involving the formation of an oxidized sulfinamide derivative, identified in vivo by high-pressure liquid chromatography/mass spectrometry. Collectively, these findings reveal the unique chemistry and biology of HNO with BSH in bacteria that produce this biothiol.


Assuntos
Cisteína , Óxidos de Nitrogênio , Cisteína/química , Óxidos de Nitrogênio/química , Compostos de Sulfidrila/química , Glucosamina , Glutationa/química , Enxofre , Dissulfetos , Nitrogênio
4.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36901870

RESUMO

Nitric oxide (NO) is a gaseous molecule which plays a key role in wound healing. Previously, we identified the optimal conditions for wound healing strategies using NO donors and an air plasma generator. The aim of this study was to compare the wound healing effects of binuclear dinitrosyl iron complexes with glutathione (B-DNIC-GSH) and NO-containing gas flow (NO-CGF) at their optimal NO doses (0.04 mmol for B-DNIC-GSH and 1.0 mmol for NO-CGF per 1 cm2) in a rat full-thickness wound model over a 3-week period. Excised wound tissues were studied by light and transmission electron microscopy and immunohistochemical, morphometrical and statistical methods. Both treatments had an identical stimulating impact on wound healing, which indicated a higher dosage effectiveness of B-DNIC-GSH compared to the NO-CGF. B-DNIC-GSH spray application reduced inflammation and promoted fibroblast proliferation, angiogenesis and the growth of granulation tissue during the first 4 days after injury. However, prolonged NO spray effects were mild compared to NO-CGF. Future studies should determine the optimal B-DNIC-GSH solution course for a more effective wound healing stimulation.


Assuntos
Óxido Nítrico , Óxidos de Nitrogênio , Ratos , Animais , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Ferro/química , Cicatrização , Glutationa/química
5.
Dalton Trans ; 52(16): 5176-5191, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36970749

RESUMO

Nitrosyl ruthenium complexes are promising platforms for nitric oxide (NO) and nitroxyl (HNO) release, which exert their therapeutic application. In this context, we developed two polypyridinic compounds with the general formula cis-[Ru(NO)(bpy)2(L)]n+, where L is an imidazole derivative. These species were characterized by spectroscopic and electrochemical techniques, including XANES/EXAFS experiments, and further supported by DFT calculations. Interestingly, assays using selective probes evidenced that both complexes can release HNO on reaction with thiols. This finding was biologically validated by HIF-1α detection. The latter protein is related to angiogenesis and inflammation processes under hypoxic conditions, which is selectively destabilized by nitroxyl. These metal complexes also presented vasodilating properties using isolated rat aorta rings and demonstrated antioxidant properties in free radical scavenging experiments. Based on these results, the new nitrosyl ruthenium compounds showed promising characteristics as potential therapeutic agents for the treatment of cardiovascular conditions such as atherosclerosis, deserving further investigation.


Assuntos
Complexos de Coordenação , Rutênio , Animais , Ratos , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Rutênio/química , Compostos de Sulfidrila/química , Doenças Cardiovasculares
6.
Dalton Trans ; 52(9): 2641-2662, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36744818

RESUMO

In this work, a new binuclear nitrosyl complex with 3.4-dichlorothiophenolyl ligands [Fe2(SC6H3Cl2)2(NO)4] has been synthesized. Nitrosyl iron complexes (NICs) are systems for the storage and delivery of NO in the body. There is a dynamic equilibrium between dinitrosyl iron units bound to low molecular weight ligands and high molecular weight (protein) ligands in vivo. From this point of view, the transformation of the studied complex in DMSO and buffer, as well as in biological systems, has been analyzed. In DMSO, it decomposes into mononuclear NICs, which quickly decay in buffer solutions with NO release. The high molecular weight product is formed as a result of the binding of the complex to bovine serum albumin (the Stern-Volmer constant is 2.1 × 105 M-1). In this case, the complex becomes a prolonged NO-donor. Such a long-term effect has been observed for the first time. Similarly, in a system with oxyhemoglobin, NO generation is slower; the UV-vis spectra show a gradual formation of methemoglobin. On the other hand, reduced glutathione has little effect on the NO-donor properties of the complex despite the fact that ligand substitution is observed in the system and a binuclear product is formed. Mucin binds the complex, and the decomposition mechanism is different from that for buffer solutions. Thus, these proteins and glutathione are able to participate in the transformation of the complex and modulate its properties as a potential drug.


Assuntos
Dimetil Sulfóxido , Ferro , Ferro/química , Ligantes , Óxidos de Nitrogênio/química , Óxido Nítrico/química , Doadores de Óxido Nítrico , Glutationa/química
7.
Biochemistry (Mosc) ; 87(11): 1367-1386, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36509730

RESUMO

The proposed in our studies mechanism of dinitrosyl iron complex (DNIC) formation through the main step of disproportionation of two NO molecules in complex with Fe2+ ion leads to emergence of the resonance structure of dinitrosyl-iron fragment of DNIC, [Fe2+(NO)(NO+)]. The latter allowed suggesting capacity of these complexes to function as donor of both neutral NO molecules as well as nitrosonium cations (NO+), which has been demonstrated in experiments. Analysis of biological activity of DNICs with thiol-containing ligands presented in this review demonstrates that NO molecules and nitrosonium cations released from the complexes exert respectively positive (regulatory) and negative (cytotoxic) effects on living organisms. It has been suggested to use dithiocarbamate derivatives to enhance selective release of nitrosonium cations from DNIC in living organisms followed by simultaneous incorporation of the released NO molecules into the biologically non-active mononitrosyl iron complexes with dithiocarbamate derivatives.


Assuntos
Óxido Nítrico , Óxidos de Nitrogênio , Óxido Nítrico/metabolismo , Espectroscopia de Ressonância de Spin Eletrônica , Óxidos de Nitrogênio/química , Ferro/química
8.
Int J Mol Sci ; 23(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36142666

RESUMO

The catalytic performance of Fe-catalysts in selective catalytic reduction of nitrogen oxides with ammonia (NH3-SCR) strongly depends on the nature of iron sites. Therefore, we aimed to prepare and investigate the catalytic potential of Fe-MCM-22 with various Si/Fe molar ratios in NH3-SCR. The samples were prepared by the one-pot synthesis method to provide high dispersion of iron and reduce the number of synthesis steps. We have found that the sample with the lowest concentration of Fe exhibited the highest catalytic activity of ca. 100% at 175 °C, due to the abundance of well-dispersed isolated iron species. The decrease of Si/Fe limited the formation of microporous structure and resulted in partial amorphization, formation of iron oxide clusters, and emission of N2O during the catalytic reaction. However, an optimal concentration of FexOy oligomers contributed to the decomposition of nitrous oxide within 250-400 °C. Moreover, the acidic character of the catalysts was not a key factor determining the high conversion of NO. Additionally, we conducted NH3-SCR catalytic tests over the samples after poisoning with sulfur dioxide (SO2). We observed that SO2 affected the catalytic performance mainly in the low-temperature region, due to the deposition of thermally unstable ammonium sulfates.


Assuntos
Amônia , Compostos de Amônio , Amônia/química , Catálise , Ferro/química , Óxidos de Nitrogênio/química , Óxido Nitroso , Oxirredução , Óxidos , Sulfatos , Dióxido de Enxofre/química
9.
J Inorg Biochem ; 235: 111926, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35843200

RESUMO

Dinitrosyl iron complexes (DNICs) are a depot and potential source of free NO in organisms. Their synthetic analog, N-ethylthiourea DNIC [Fe(SC(NH2)(NHC2H5))2(NO)2]+Cl-∙[Fe(SC(NH2)(NHC2H5))Cl(NO)2]0 (complex 1), as cardioprotective and cytostatic agent is a promising prodrug for the treatment of socially relevant diseases. In this work, transformation mechanism of complex 1 has been studied in anaerobic aqueous solution (pH = 7.0), DMSO, and ethanol. It was shown that the solvent has a significant effect on the decomposition of complex. According to EPR-spectroscopy, only cationic part of complex is found upon its dissolution in water; only neutral part is retained in DMSO, and both fragments are present in ethanol. Effective generation of NO occurs in an aqueous solution. The structures of the decomposition products were proposed for all solvents, their UV-spectra and rate constants were calculated. From the experimental and theoretical data obtained, it follows that complex 1 is most stable in DMSO. Solutions of complex in a DMSO-water mixture can be used to improve its bioavailability in further in vitro and in vivo studies. Also, we have analyzed its interaction with glutathione (GSH), which can participate in the metabolism of this compound. This study shows that complex 1 reacts with GSH to form a new binuclear DNIC with two GS--ligands. It was found that the resulting complex is a more prolonged NO-donor than the initial one: k = 6.1∙10-3·s-1 in buffer, k = 6.4∙10-5 s-1 with GSH. This reaction may prevent S-glutathionylation of the essential enzyme systems and is important for metabolism of complex, associated with its antitumor activity.


Assuntos
Dimetil Sulfóxido , Óxidos de Nitrogênio , Etanol , Glutationa/química , Ferro/química , Ligantes , Modelos Teóricos , Óxido Nítrico , Óxidos de Nitrogênio/química , Solventes , Tioureia/análogos & derivados , Água
10.
Dalton Trans ; 51(22): 8893-8905, 2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635550

RESUMO

The cytotoxic activity of a series of dinitrosyl iron complexes (DNICs) with thioureas against cells of different origin has been studied in this work. The cytotoxicity of the studied DNICs proved to be substantially different depending on the structure of the complexes and cell line. Complexes with thiourea and 1,3-dimethylthiourea were found to induce notable cell death in different cell lines of both cancerous and non-cancerous origin, while the N-ethylthiourea-bearing complex induced cell death in cells derived from brain tumors. The studied DNICs effectively release NO while decomposing in solutions, as follows from the electrochemical analysis. It was found that the cytotoxic effects of the studied DNICs did not correlate with their NO-donating ability, hence suggesting that their cytotoxic activity is, in a big part, defined by the long-lived nitrosyl iron-sulfur intermediates formed during the decomposition of the complexes. The structures of the products formed upon hydrolytic decomposition of all studied DNICs have been studied by electrospray ionization mass spectrometry. Stable high-molecular cluster ions containing NO groups namely [Fe4S3(NO)7]- (Roussin's "black salt" anion), [Fe4S3(NO)5]-, [Fe4S4(NO)4]-, [Fe4S3(NO)4]- and [Fe4S3(NO)6]- have been detected in the solution of the N-ethylthiourea-bearing complex. The mechanism of Roussin's "black salt" anion formation in a solution of DNIC with N'-ethylthiourea was studied using density functional theory. This moved us near understanding the reasons for the formation of biologically active intermediates upon the decomposition of the complex with N'-ethylthiourea, which are apparently responsible for the unique antiglioma activity of the complex.


Assuntos
Neoplasias Encefálicas , Óxidos de Nitrogênio , Ânions , Cátions , Humanos , Ferro/química , Óxido Nítrico/química , Óxidos de Nitrogênio/química , Tioureia/farmacologia
11.
Dalton Trans ; 51(16): 6473-6485, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35394482

RESUMO

High-molecular-weight dinitrosyl iron complexes (DNICs) are formed in living systems and are a stable depot of nitrogen monoxide (NO). In this work, using experimental and theoretical methods, we investigated the interaction of their synthetic analog, a promising cardiotropic complex of the composition [Fe(SC(NH2)2)2(NO)2]2[Fe2(S2O3)2(NO)4], with bovine serum albumin (BSA) in aqueous aerobic solutions. We suggested that, under these conditions, the decomposition product of the initial complex with oxygen, the [Fe(NO)(NO2)]+ fragment, can bind in the hydrophobic pocket of the protein. As a result of this interaction, high-molecular-weight Fe(Cys34)(His39)(NO)(NO2) is formed. The binding constant of the complex with protein measured by the quenching of intrinsic fluorescence of BSA is 7.2 × 105 M-1. According to EPR and UV-spectroscopy data, the interaction of the complex with the protein leads to its significant stabilization. In addition to coordination binding, the studied complex can be adsorbed onto the protein surface due to weak intermolecular interactions, resulting in the prolonged generation of NO.


Assuntos
Óxido Nítrico , Tiossulfatos , Ferro/química , Ligantes , Dióxido de Nitrogênio , Óxidos de Nitrogênio/química , Estudos Prospectivos , Soroalbumina Bovina/química , Tioureia
12.
Nitric Oxide ; 118: 49-58, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34715361

RESUMO

Redox signaling, wherein reactive and diffusible small molecules are channeled into specific messenger functions, is a critical component of signal transduction. A central principle of redox signaling is that the redox modulators are produced in a highly controlled fashion to specifically modify biotargets. Thiols serve as primary mediators of redox signaling as a function of the rich variety of adducts, which allows initiation of distinct cellular effects. Coupling the inherent reactivity of thiols with highly sensitive and selective chemical analysis protocols can facilitate identification of redox signaling agents, both in solution and in cultured cells. Here, we describe use of capillary zone electrophoresis to both identify and quantify sulfinamides, which are specific markers of the reaction of thiols with nitroxyl (HNO), a putative biologically relevant reactive nitrogen species.


Assuntos
Óxidos de Nitrogênio/análise , Linhagem Celular Tumoral , Eletroforese Capilar , Glutationa/análogos & derivados , Glutationa/análise , Glutationa/química , Humanos , Óxidos de Nitrogênio/química
13.
Antioxid Redox Signal ; 36(1-3): 95-121, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34148403

RESUMO

Significance:In vivo assessment of paramagnetic and diamagnetic conversions of nitroxyl radicals based on cyclic redox mechanism can be an index of tissue redox status. The redox mechanism of nitroxyl radicals, which enables their use as a normal tissue-selective radioprotector, is seen as being attractive on planning radiation therapy. Recent Advances:In vivo redox imaging using nitroxyl radicals as redox-sensitive contrast agents has been developed to assess tissue redox status. Chemical and biological behaviors depending on chemical structures of nitroxyl radical compounds have been understood in detail. Polymer types of nitroxyl radical contrast agents and/or nitroxyl radical-labeled drugs were designed for approaching theranostics. Critical Issues: Nitroxyl radicals as magnetic resonance imaging (MRI) contrast agents have several advantages compared with those used in electron paramagnetic resonance (EPR) imaging, while support by EPR spectroscopy is important to understand information from MRI. Redox-sensitive paramagnetic contrast agents having a medicinal benefit, that is, nitroxyl-labeled drug, have been developed and proposed. Future Directions: A development of suitable nitroxyl contrast agent for translational theranostic applications with high reaction specificity and low normal tissue toxicity is under progress. Nitroxyl radicals as redox-sensitive magnetic resonance contrast agents can be a useful tool to detect an abnormal tissue redox status such as disordered oxidative stress. Antioxid. Redox Signal. 36, 95-121.


Assuntos
Meios de Contraste , Medicina de Precisão , Meios de Contraste/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética , Óxidos de Nitrogênio/química , Oxirredução
14.
Chem Rev ; 121(24): 14682-14905, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34902255

RESUMO

Nitric oxide (NO) is an important signaling molecule that is involved in a wide range of physiological and pathological events in biology. Metal coordination chemistry, especially with iron, is at the heart of many biological transformations involving NO. A series of heme proteins, nitric oxide synthases (NOS), soluble guanylate cyclase (sGC), and nitrophorins, are responsible for the biosynthesis, sensing, and transport of NO. Alternatively, NO can be generated from nitrite by heme- and copper-containing nitrite reductases (NIRs). The NO-bearing small molecules such as nitrosothiols and dinitrosyl iron complexes (DNICs) can serve as an alternative vehicle for NO storage and transport. Once NO is formed, the rich reaction chemistry of NO leads to a wide variety of biological activities including reduction of NO by heme or non-heme iron-containing NO reductases and protein post-translational modifications by DNICs. Much of our understanding of the reactivity of metal sites in biology with NO and the mechanisms of these transformations has come from the elucidation of the geometric and electronic structures and chemical reactivity of synthetic model systems, in synergy with biochemical and biophysical studies on the relevant proteins themselves. This review focuses on recent advancements from studies on proteins and model complexes that not only have improved our understanding of the biological roles of NO but also have provided foundations for biomedical research and for bio-inspired catalyst design in energy science.


Assuntos
Hemeproteínas , Óxido Nítrico , Eletrônica , Heme/química , Ferro/química , Óxido Nítrico/química , Óxidos de Nitrogênio/química
15.
Molecules ; 26(24)2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34946616

RESUMO

The structure-function and materials paradigms drive research on the understanding of structures and structural heterogeneity of molecules and solids from materials science to structural biology. Functional insights into complex architectures are often gained from a suite of complementary physicochemical methods. In the context of biomacromolecular structures, the use of pulse dipolar electron paramagnetic resonance spectroscopy (PDS) has become increasingly popular. The main interest in PDS is providing long-range nanometre distance distributions that allow for identifying macromolecular topologies, validating structural models and conformational transitions as well as docking of quaternary complexes. Most commonly, cysteines are introduced into protein structures by site-directed mutagenesis and modified site-specifically to a spin-labelled side-chain such as a stable nitroxide radical. In this contribution, we investigate labelling by four different commercial labelling agents that react through different sulfur-specific reactions. Further, the distance distributions obtained are between spin-bearing moieties and need to be related to the protein structure via modelling approaches. Here, we compare two different approaches to modelling these distributions for all four side-chains. The results indicate that there are significant differences in the optimum labelling procedure. All four spin-labels show differences in the ease of labelling and purification. Further challenges arise from the different tether lengths and rotamers of spin-labelled side-chains; both influence the modelling and translation into structures. Our comparison indicates that the spin-label with the shortest tether in the spin-labelled side-group, (bis-(2,2,5,5-Tetramethyl-3-imidazoline-1-oxyl-4-yl) disulfide, may be underappreciated and could increase the resolution of structural studies by PDS if labelling conditions are optimised accordingly.


Assuntos
Cisteína/química , Óxidos de Nitrogênio/química , Marcadores de Spin , Espectroscopia de Ressonância de Spin Eletrônica
16.
Int J Mol Sci ; 22(24)2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34948445

RESUMO

Dinitrosyl iron complexes (DNICs) are a physiological form of nitric oxide (•NO) in an organism. They are able not only to deposit and transport •NO, but are also to act as antioxidant and antiradical agents. However, the mechanics of hemoglobin-bound DNICs (Hb-DNICs) protecting Hb against peroxynitrite-caused, mediated oxidative modification have not yet been scrutinized. Through EPR spectroscopy we show that Hb-DNICs are destroyed under the peroxynitrite action in a dose-dependent manner. At the same time, DNICs inhibit the oxidation of tryptophan and tyrosine residues and formation of carbonyl derivatives. They also prevent the formation of covalent crosslinks between Hb subunits and degradation of a heme group. These effects can arise from the oxoferryl heme form being reduced, and they can be connected with the ability of DNICs to directly intercept peroxynitrite and free radicals, which emerge due to its homolysis. These data show that DNICs may ensure protection from myocardial ischemia.


Assuntos
Ferro/química , Metemoglobina/metabolismo , Óxidos de Nitrogênio/química , Ácido Peroxinitroso/efeitos adversos , Animais , Bovinos , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Metemoglobina/química , Oxirredução , Triptofano/química , Tirosina/química
17.
Molecules ; 26(21)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34771157

RESUMO

Prooxidative therapy is a well-established concept in infectiology and parasitology, in which prooxidative drugs like artemisinin and metronidazole play a pivotal clinical role. Theoretical considerations and earlier studies have indicated that prooxidative therapy might also represent a promising strategy in oncology. Here, we have investigated a novel class of prooxidative drugs, namely chain-transfer agents, as cytostatic agents in a series of human tumor cell lines in vitro. We have found that different chain-transfer agents of the lipophilic thiol class (like dodecane-1-thiol) elicited half-maximal effective concentrations in the low micromolar range in SY5Y cells (human neuroblastoma), Hela cells (human cervical carcinoma), HEK293 cells (immortalized human kidney), MCF7 cells (human breast carcinoma), and C2C12 cells (mouse myoblast). In contrast, HepG2 cells (human hepatocellular carcinoma) were resistant to toxicity, presumably through their high detoxification capacity for thiol groups. Cytotoxicity was undiminished by hypoxic culture conditions, but substantially lowered after cellular differentiation. Compared to four disparate, clinically used reference compounds in vitro (doxorubicin, actinomycin D, 5-fluorouracil, and hydroxyurea), chain-transfer agents emerged as comparably potent on a molar basis and on a maximum-effect basis. Our results indicate that chain-transfer agents possess a promising baseline profile as cytostatic drugs and should be explored further for anti-tumor chemotherapy.


Assuntos
Antineoplásicos/farmacologia , Antioxidantes/farmacologia , Complexos de Coordenação/farmacologia , Citostáticos/farmacologia , Óxidos de Nitrogênio/farmacologia , Compostos de Sulfidrila/farmacologia , Antineoplásicos/química , Antioxidantes/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/química , Citostáticos/química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Óxidos de Nitrogênio/química , Compostos de Sulfidrila/química , Células Tumorais Cultivadas
18.
Bull Exp Biol Med ; 171(5): 606-610, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34617179

RESUMO

In a relatively isolated system of avian embryo, the metabolism of NO, a component of the dinitrosyl iron complexes (DNIC), the main NO donor in most tissues, depends on the ligands that make up the complex. This fact corroborates the earlier hypothesis that these ligands perform a regulatory function in NO metabolism. It is also shown that nitrite injected into the embryo is not oxidized to nitrate like NO in DNIC, but is accumulated outside the amniotic sac. Normally, nitrite is present in an embryo in trace amounts. These facts suggest that NO in the embryo is transferred from the donor molecule to a target in the embryo tissues further transformed with minimum oxidation to nitrite.


Assuntos
Quelantes de Ferro/farmacologia , Ferro/metabolismo , Ferro/farmacologia , Óxidos de Nitrogênio/metabolismo , Óxidos de Nitrogênio/farmacologia , Animais , Catalase/antagonistas & inibidores , Catalase/efeitos dos fármacos , Catalase/metabolismo , Embrião de Galinha , Ácido Cítrico/farmacologia , Desenvolvimento Embrionário/efeitos dos fármacos , Glutationa , Hemoglobinas/química , Hemoglobinas/metabolismo , Hemoglobinas/farmacologia , Ferro/química , Ferro/fisiologia , Quelantes de Ferro/metabolismo , Ligantes , Nitratos/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/química , Doadores de Óxido Nítrico/metabolismo , Nitritos/metabolismo , Óxidos de Nitrogênio/química , Oxirredução/efeitos dos fármacos , Fenantrolinas/farmacologia
19.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-34638698

RESUMO

In this article we minutely discuss the so-called "oxidative" mechanism of mononuclear form of dinitrosyl iron complexes (M-DNICs) formations proposed by the author. M-DNICs are proposed to be formed from their building material-neutral NO molecules, Fe2+ ions and anionic non-thiol (L-) and thiol (RS-) ligands based on the disproportionation reaction of NO molecules binding with divalent ion irons in pairs. Then a protonated form of nitroxyl anion (NO-) appearing in the reaction is released from this group and a neutral NO molecule is included instead. As a result, M-DNICs are produced. Their resonance structure is described as [(L-)2Fe2+(NO)(NO+)], in which nitrosyl ligands are represented by NO molecules and nitrosonium cations in equal proportions. Binding of hydroxyl ions with the latter causes conversion of these cations into nitrite anions at neutral pH values and therefore transformation of DNICs into the corresponding high-spin mononitrosyl iron complexes (MNICs) with the resonance structure described as [(L-)2Fe2+(NO)]. In case of replacing L- by thiol-containing ligands, which are characterized by high π-donor activity, electron density transferred from sulfur atoms to iron-dinitrosyl groups neutralizes the positive charge on nitrosonium cations, which prevents their hydrolysis, ensuring relatively a high stability of the corresponding M-DNICs with the resonance structure [(RS-)2Fe2+ (NO, NO+)]. Therefore, M-DNICs with thiol-containing ligands, as well as their binuclear analogs (B-DNICs, respective resonance structure [(RS-)2Fe2+2 (NO, NO+)2]), can serve donors of both NO and NO+. Experiments with solutions of B-DNICs with glutathione or N-acetyl-L-cysteine (B-DNIC-GSH or B-DNIC-NAC) showed that these complexes release both NO and NO+ in case of decomposition in the presence of acid or after oxidation of thiol-containing ligands in them. The level of released NO was measured via optical absorption intensity of NO in the gaseous phase, while the number of released nitrosonium cations was determined based on their inclusion in S-nitrosothiols or their conversion into nitrite anions. Biomedical research showed the ability of DNICs with thiol-containing ligands to be donors of NO and NO+ and produce various biological effects on living organisms. At the same time, NO molecules released from DNICs usually have a positive and regulatory effect on organisms, while nitrosonium cations have a negative and cytotoxic effect.


Assuntos
Ferro , Modelos Biológicos , Modelos Químicos , Óxidos de Nitrogênio , Acetilcisteína/química , Acetilcisteína/metabolismo , Ferro/química , Ferro/metabolismo , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/metabolismo , Oxirredução
20.
Nitric Oxide ; 117: 46-52, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34678508

RESUMO

Nitric oxide (NO) mediates diverse physiological processes in living organisms. Small molecular NO donors usually lack stability and have a short half-life in human tissues, limiting the therapeutic application. The anionic tetranitrosyl iron complex with thiosulfate ligands (TNIC) is one of the most promising NO donors. This study shows that bovine serum albumin (BSA) can effectively stabilize the TNIC complex under aerobic (physiological) conditions, which contributes to its prolonged action as NO donor. Our results demonstrated that TNIC-BSA inhibits formation of TBARS - standard biomarker for the lipid peroxidation induced oxidative stress. Also, it was found that TNIC-BSA inhibits the catalytic activity of mitochondrial membrane-bound enzymes: cytochrome c oxidase and monoamine oxidase A. Together, these results demonstrate that, stabilization of TNIC with BSA opens up the possibility of its practical application in chemotherapy of socially significant diseases.


Assuntos
Ferro , Peroxidação de Lipídeos/efeitos dos fármacos , Mitocôndrias , Óxidos de Nitrogênio , Soroalbumina Bovina , Tiossulfatos , Animais , Encéfalo/citologia , Ferro/química , Ferro/farmacologia , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Monoaminoxidase/metabolismo , Óxidos de Nitrogênio/química , Óxidos de Nitrogênio/farmacologia , Soroalbumina Bovina/química , Soroalbumina Bovina/farmacologia , Tiossulfatos/química , Tiossulfatos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA