Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
1.
Gene ; 920: 148519, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-38703867

RESUMO

Epithelial-mesenchymal transition (EMT) plays a crucial role in regulating inflammatory responses and fibrosis formation. This study aims to explore the molecular mechanisms of EMT-related genes in Crohn's disease (CD) through bioinformatics methods and identify potential key biomarkers. In our research, we identified differentially expressed genes (DEGs) related to EMT based on the GSE52746 dataset and the gene set in the GeneCards database. Key genes were identified through Lasso-cox and Random Forest and validated using the external dataset GSE10616. Immune infiltration analysis showed that Lysophosphatidylcholine acyltransferase 1 (LPCAT1) was positively correlated with Neutrophils and Macrophages M1. The Gene Set Enrichment Analysis (GSEA) results for LPCAT1 showed associations with celladhesionmolecules and ECM receptor interaction. Additionally, a lncRNA-miRNA-mRNA ceRNA network was constructed. Finally, we validated that knocking down LPCAT1 could inhibit the release of inflammatory factors, EMT, and the elevation of fibrosis indices as well as the activation of NF-κB signaling pathway in LPS-induced HT-29 cells. LPCAT1 plays an important role in the occurrence and development of CD and may become a new biomarker.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Biomarcadores , Biologia Computacional , Doença de Crohn , Aprendizado de Máquina , Humanos , Doença de Crohn/genética , Biologia Computacional/métodos , Biomarcadores/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Transição Epitelial-Mesenquimal/genética , Células HT29 , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , Redes Reguladoras de Genes , Perfilação da Expressão Gênica/métodos , Transdução de Sinais/genética
2.
Nat Cell Biol ; 26(5): 811-824, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38671262

RESUMO

The mechanisms underlying the dynamic remodelling of cellular membrane phospholipids to prevent phospholipid peroxidation-induced membrane damage and evade ferroptosis, a non-apoptotic form of cell death driven by iron-dependent lipid peroxidation, remain poorly understood. Here we show that lysophosphatidylcholine acyltransferase 1 (LPCAT1) plays a critical role in ferroptosis resistance by increasing membrane phospholipid saturation via the Lands cycle, thereby reducing membrane levels of polyunsaturated fatty acids, protecting cells from phospholipid peroxidation-induced membrane damage and inhibiting ferroptosis. Furthermore, the enhanced in vivo tumour-forming capability of tumour cells is closely associated with the upregulation of LPCAT1 and emergence of a ferroptosis-resistant state. Combining LPCAT1 inhibition with a ferroptosis inducer synergistically triggers ferroptosis and suppresses tumour growth. Therefore, our results unveil a plausible role for LPCAT1 in evading ferroptosis and suggest it as a promising target for clinical intervention in human cancer.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Ferroptose , Fosfolipídeos , Humanos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Animais , Fosfolipídeos/metabolismo , Linhagem Celular Tumoral , Peroxidação de Lipídeos , Camundongos Nus , Membrana Celular/metabolismo , Camundongos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Proliferação de Células
3.
Oncol Rep ; 51(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38551165

RESUMO

Melanoma is the most lethal type of skin cancer with an increasing cutaneous cancer­related mortality rate worldwide. Despite therapeutic advances in targeted therapy and immunotherapy, the overall survival of patients with melanoma remains unsatisfactory. Thus, a further understanding of the pathogenesis of melanoma may aid towards the development of therapeutic strategies. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is a key enzyme that converts lysophosphatidylcholine into phosphatidylcholine in lipid remodeling. In the present study, LPCAT1 was found to play a pro­proliferative role in melanoma. Firstly, the expression of LPCAT1 was found to be upregulated in tissues from patients with melanoma compared with that in benign nevi. Subsequently, LPCAT1 knockdown was performed, utilizing short hairpin RNA, which induced melanoma cell cycle arrest at the G1/S transition and promoted cell death. Moreover, LPCAT1 facilitated melanoma cell growth in an Akt­dependent manner. In summary, the results of the present study indicate that targeting LPCAT1 may impede cell proliferation by inhibiting Akt signaling, thus providing a promising therapeutic strategy for melanoma in clinical practice.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Melanoma , Proteínas Proto-Oncogênicas c-akt , Neoplasias Cutâneas , Humanos , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Melanoma/genética , Melanoma/patologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia
4.
Cell Commun Signal ; 22(1): 189, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519981

RESUMO

The proinflammatory cytokines and arachidonic acid (AA)-derived eicosanoids play a key role in cartilage degeneration in osteoarthritis (OA). The lysophosphatidylcholine acyltransferase 3 (LPCAT3) preferentially incorporates AA into the membranes. Our recent studies showed that MALT1 [mucosa-associated lymphoid tissue lymphoma translocation protein 1]) plays a crucial role in propagating inflammatory signaling triggered by IL-1ß and other inflammatory mediators in endothelial cells. The present study shows that LPCAT3 expression was up-regulated in both human and mice articular cartilage of OA, and correlated with severity of OA. The IL-1ß-induces cell death via upregulation of LPCAT3, MMP3, ADAMTS5, and eicosanoids via MALT1. Gene silencing or pharmacological inhibition of LPCAT3 or MALT1 in chondrocytes and human cartilage explants notably suppressed the IL-1ß-induced cartilage catabolism through inhibition of expression of MMP3, ADAMTS5, and also secretion of cytokines and eicosanoids. Mechanistically, overexpression of MALT1 in chondrocytes significantly upregulated the expression of LPCAT3 along with MMP3 and ADAMTS5 via c-Myc. Inhibition of c-Myc suppressed the IL-1ß-MALT1-dependent upregulation of LPCAT3, MMP3 and ADAMTS5. Consistent with the in vitro data, pharmacological inhibition of MALT1 or gene silencing of LPCAT3 using siRNA-lipid nanoparticles suppressed the synovial articular cartilage erosion, pro-inflammatory cytokines, and eicosanoids such as PGE2, LTB4, and attenuated osteoarthritis induced by the destabilization of the medial meniscus in mice. Overall, our data reveal a previously unrecognized role of the MALT1-LPCAT3 axis in osteoarthritis. Targeting the MALT1-LPCAT3 pathway with MALT1 inhibitors or siRNA-liposomes of LPCAT3 may become an effective strategy to treat OA by suppressing eicosanoids, matrix-degrading enzymes, and proinflammatory cytokines.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Humanos , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Células Cultivadas , Condrócitos/metabolismo , Citocinas/metabolismo , Eicosanoides/metabolismo , Eicosanoides/farmacologia , Eicosanoides/uso terapêutico , Células Endoteliais/metabolismo , Interleucina-1beta/metabolismo , Metaloproteinase 3 da Matriz/metabolismo , Metaloproteinase 3 da Matriz/farmacologia , Metaloproteinase 3 da Matriz/uso terapêutico , Proteína de Translocação 1 do Linfoma de Tecido Linfoide Associado à Mucosa/metabolismo , Osteoartrite/metabolismo , RNA Interferente Pequeno/metabolismo
5.
J Immunother Cancer ; 12(3)2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471712

RESUMO

BACKGROUND: Ferroptosis plays an important role in enhancing the efficacy of anti-programmed cell death 1 (PD-1) immunotherapy; however, the molecular mechanisms by which tumor ferroptosis sensitizes melanoma and lung cancer to anti-PD-1 immunotherapy have not been elucidated. METHODS: Cytotoxicity assays, colony formation assays, flow cytometry and animal experiments were used to evaluate the effects of mefloquine (Mef) on survival and ferroptosis in melanoma and lung cancer. RNA sequencing, Real-time quantitative PCR (qRT-PCR), western blotting, chromatin immunoprecipitation-qPCR and flow cytometry were used to determine the molecular mechanisms by which Mef regulates lysophosphatidylcholine acyltransferase 3 (LPCAT3). The relationship between LPCAT3 and the efficacy of anti-PD-1 immunotherapy was verified via a clinical database and single-cell RNA sequencing (ScRNA-Seq). RESULTS: In this study, we discovered that Mef induces ferroptosis. Furthermore, treatment with Mef in combination with T-cell-derived interferon-γ (IFN-γ) enhanced tumor ferroptosis and sensitized melanoma and lung cancer cells to anti-PD-1 immunotherapy. Mechanistically, Mef upregulated the expression of LPCAT3, a key gene involved in lipid peroxidation, by activating IFN-γ-induced STAT1-IRF1 signaling, and knocking down LPCAT3 impaired the induction of ferroptosis by Mef+IFN-γ. Clinically, analysis of the transcriptome and single-cell sequencing results in patients with melanoma showed that LPCAT3 expression was significantly lower in patients with melanoma than in control individuals, and LPCAT3 expression was positively correlated with the efficacy of anti-PD-1 immunotherapy. CONCLUSIONS: In conclusion, our study demonstrated a novel mechanism by which LPCAT3 is regulated, and demonstrated that Mef is a highly promising new target that can be utilized to enhance the efficacy of anti-PD-1 immunotherapy.


Assuntos
Ferroptose , Neoplasias Pulmonares , Melanoma , Animais , Humanos , Melanoma/tratamento farmacológico , Mefloquina/farmacologia , Mefloquina/uso terapêutico , Interferon gama/metabolismo , Linhagem Celular Tumoral , Neoplasias Pulmonares/genética , Imunoterapia , Fator de Transcrição STAT1/metabolismo , Fator Regulador 1 de Interferon/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia
6.
Int J Mol Med ; 53(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38362962

RESUMO

Phospholipids (PLs) are principle constituents of biofilms, with their fatty acyl chain composition significantly impacting the biophysical properties of membranes, thereby influencing biological processes. Recent studies have elucidated that fatty acyl chains, under the enzymatic action of lyso­phosphatidyl­choline acyltransferases (LPCATs), expedite incorporation into the sn­2 site of phosphatidyl­choline (PC), profoundly affecting pathophysiology. Accumulating evidence suggests that alterations in LPCAT activity are implicated in various diseases, including non­alcoholic fatty liver disease (NAFLD), hepatitis C, atherosclerosis and cancer. Specifically, LPCAT3 is instrumental in maintaining systemic lipid homeostasis through its roles in hepatic lipogenesis, intestinal lipid absorption and lipoprotein secretion. The liver X receptor (LXR), pivotal in lipid homeostasis, modulates cholesterol, fatty acid (FA) and PL metabolism. LXR's capacity to modify PL composition in response to cellular sterol fluctuations is a vital mechanism for protecting biofilms against lipid stress. Concurrently, LXR activation enhances LPCAT3 expression on cell membranes and elevates polyunsaturated PL levels. This activation can ameliorate saturated free FA effects in vitro or endoplasmic reticulum stress in vivo due to lipid accumulation in hepatic cells. Pharmacological interventions targeting LXR, LPCAT and membrane PL components could offer novel therapeutic directions for NAFLD management. The present review primarily focused on recent advancements in understanding the LPCAT3 signaling pathway's role in lipid metabolism related to NAFLD, aiming to identify new treatment targets for the disease.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Receptores X do Fígado/metabolismo , Fígado/metabolismo , Metabolismo dos Lipídeos , Fosfolipídeos/metabolismo , Ácidos Graxos/metabolismo , Transdução de Sinais , Colina/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia
7.
Am J Respir Cell Mol Biol ; 70(6): 482-492, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38377392

RESUMO

Cigarette smoking is known to be the leading cause of chronic obstructive pulmonary disease (COPD). However, the detailed mechanisms have not been elucidated. PAF (platelet-activating factor), a potent inflammatory mediator, is involved in the pathogenesis of various respiratory diseases such as bronchial asthma and COPD. We focused on LPLAT9 (lysophospholipid acyltransferase 9), a biosynthetic enzyme of PAF, in the pathogenesis of COPD. LPLAT9 gene expression was observed in excised COPD lungs and single-cell RNA sequencing data of alveolar macrophages (AMs). LPLAT9 was predominant and upregulated in AMs, particularly monocyte-derived AMs, in patients with COPD. To identify the function of LPLAT9/PAF in AMs in the pathogenesis of COPD, we exposed systemic LPLAT9-knockout (LPALT9-/-) mice to cigarette smoke (CS). CS increased the number of AMs, especially the monocyte-derived fraction, which secreted MMP12 (matrix metalloprotease 12). Also, CS augmented LPLAT9 phosphorylation/activation on macrophages and, subsequently, PAF synthesis in the lung. The LPLAT9-/- mouse lung showed reduced PAF production after CS exposure. Intratracheal PAF administration accumulated AMs by increasing MCP1 (monocyte chemoattractant protein-1). After CS exposure, AM accumulation and subsequent pulmonary emphysema, a primary pathologic change of COPD, were reduced in LPALT9-/- mice compared with LPLAT9+/+ mice. Notably, these phenotypes were again worsened by LPLAT9+/+ bone marrow transplantation in LPALT9-/- mice. Thus, CS-induced LPLAT9 activation in monocyte-derived AMs aggravated pulmonary emphysema via PAF-induced further accumulation of AMs. These results suggest that PAF synthesized by LPLAT9 has an important role in the pathogenesis of COPD.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Macrófagos Alveolares , Camundongos Knockout , Fator de Ativação de Plaquetas , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Animais , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Humanos , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/metabolismo , Enfisema Pulmonar/patologia , Enfisema Pulmonar/genética , Fator de Ativação de Plaquetas/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Camundongos , Masculino , Camundongos Endogâmicos C57BL , Metaloproteinase 12 da Matriz/metabolismo , Metaloproteinase 12 da Matriz/genética , Pulmão/metabolismo , Pulmão/patologia , Fumar Cigarros/efeitos adversos , Fumar Cigarros/metabolismo , Feminino
8.
Cancer Med ; 12(12): 13438-13454, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37184260

RESUMO

BACKGROUND AND AIM: The biological functions and clinical implications of lysophosphatidylcholine acyltransferase 1 (LPCAT1) remain unclarified in gastric cancer (GC). The aim of the current study was to explore the possible clinicopathological significance of LPCAT1 and its perspective mechanism in GC tissues. MATERIALS AND METHODS: The protein expression and mRNA levels of LPCAT1 were detected from in-house immunohistochemistry and public high-throughput RNA arrays and RNA sequencing. To have a comprehensive understanding of the clinical value of LPCAT1 in GC, all enrolled data were integrated to calculate the expression difference and standard mean difference (SMD). The biological mechanism of LPCAT1 in GC was confirmed by computational biology and in vitro experiments. Migration and invasion assays were also conducted to confirm the effect of LPCAT1 in GC. RESULTS: Both protein and mRNA expression levels of LPCAT1 in GC were remarkably higher than those in noncancerous controls. Comprehensively, the SMD of LPCAT1 mRNA was 1.11 (95% CI = 0.86-1.36) in GC, and the summarized AUC was 0.85 based on 15 datasets containing 1727 cases of GC and 940 cases of non-GC controls. Moreover, LPCAT1 could accelerate the invasion and migration of GC by boosting the neutrophil degranulation pathway and disturbing the immune microenvironment. CONCLUSION: An increased level of LPCAT1 may promote the progression of GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Proliferação de Células , Aciltransferases , Biologia Computacional , RNA Mensageiro/genética , Microambiente Tumoral
9.
Ann Clin Lab Sci ; 53(2): 212-221, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37094849

RESUMO

OBJECTIVE: To explore the function of LPCAT1 in hepatocellular carcinoma progression. METHODS: Bioinformatics analysis was utilized to the data from TCGA to explore the level of LPCAT1 between normal and tumor tissues, as well as the relationship between LPCAT1 level and tumor grade and prognosis of HCC. Subsequently, we used siRNA to silence LPCAT1 in HCC cells to detect cell proliferation, migration, and invasion ability. RESULTS: The expression of LPCAT1 was significantly increased in HCC tissues. High LPCAT1 expression was correlated with high histologic grade and poor prognosis of HCC. In addition, silencing of LPCAT1 inhibited the proliferation, migration and invasion of liver cancer cells. Moreover, LPCAT1 knockdown suppressed S100A11 and Snail both at mRNA and protein level. CONCLUSION: LPCAT1 promoted the growth, invasion and migration of HCC cells by regulating S100A11 and Snail. Therefore, LPCAT1 may serve as a potential molecular target for the diagnosis and treatment of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/patologia , Movimento Celular/genética , Invasividade Neoplásica/genética , Prognóstico , Proliferação de Células/genética , Aciltransferases/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral , Proteínas S100/genética , Proteínas S100/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
10.
Mol Biol Rep ; 50(6): 4955-4963, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37079124

RESUMO

BACKGROUND: Overexpression of lysophosphatidylcholine acyltransferase 1 (LPCAT1) has been found in various solid cancers and is associated with disease progression, metastasis, and recurrence. However, the expression pattern of LPCAT1 in acute myeloid leukemia (AML) bone marrow remains unknown. The present study aimed to compare LPCAT1 expression differences in bone marrow samples from AML patients and healthy controls and assess the clinical relevance of LPCAT1 in AML. METHODS AND RESULTS: LPCAT1 expression in bone marrow was significantly lower in AML than in healthy controls predicted by public databases. Furthermore, real-time quantitative PCR (RQ-PCR) validated that LPCAT1 expression in bone marrow was significantly down-regulated in AML compared to healthy controls [0.056 (0.000-0.846) vs 0.253 (0.031-1.000)]. The DiseaseMeth version 2.0 and The Cancer Genome Atlas analysis revealed that the LPCAT1 promoter was hypermethylated in AML, and there was a strong negative correlation between LPCAT1 expression and methylation (R = - 0.610, P < 0.001). RQ-PCR revealed that the frequency of LPCAT1 low expression was lower in the FAB-M4/M5 subtype than in the other subtypes (P = 0.018). The ROC curve revealed that LPCAT1 expression could serve as a potential diagnostic marker for differentiating AML from controls with an area under the ROC curve of 0.819 (95% CI 0.743-0.894, P < 0.001). In cytogenetically normal AML, patients with LPCAT1 low expression had significantly longer overall survival than those without LPCAT1 low expression (median 19 versus 5.5 months, P = 0.036). CONCLUSIONS: LPCAT1 is down-regulated in AML bone marrow, and LPCAT1 down-regulation could be used as a potential biomarker for AML diagnosis and prognosis.


Assuntos
Relevância Clínica , Leucemia Mieloide Aguda , Humanos , Regulação para Baixo/genética , Leucemia Mieloide Aguda/metabolismo , Medula Óssea/metabolismo , Curva ROC , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
11.
Mediators Inflamm ; 2023: 6051946, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687218

RESUMO

Based on the multiomics analysis, this study is aimed at investigating the underlying mechanism of didymin against acute liver injury (ALI). The mice were administrated with didymin for 2 weeks, followed by injection with lipopolysaccharide (LPS) plus D-galactosamine (D-Gal) to induce ALI. The pathological examination revealed that didymin significantly ameliorated LPS/D-Gal-induced hepatic damage. Also, it markedly reduced proinflammatory cytokines release by inhibiting the TLR4/NF-κB pathway activation, alleviating inflammatory injury. A transcriptome analysis proved 2680 differently expressed genes (DEGs) between the model and didymin groups and suggested that the PI3K/Akt and metabolic pathways might be the most relevant targets. Meanwhile, the metabolome analysis revealed 67 differently expressed metabolites (DEMs) between the didymin and model groups that were mainly clustered into the glycerophospholipid metabolism, which was consistent with the transcriptome study. Importantly, a comprehensive analysis of both the omics indicated a strong correlation between the DEGs and DEMs, and an in-depth study demonstrated that didymin alleviated metabolic disorder and hepatocyte injury likely by inhibiting the glycerophospholipid metabolism pathway through the regulation of PLA2G4B, LPCAT3, and CEPT1 expression. In conclusion, this study demonstrates that didymin can ameliorate LPS/D-Gal-induced ALI by inhibiting the glycerophospholipid metabolism and PI3K/Akt and TLR4/NF-κB pathways.


Assuntos
NF-kappa B , Proteínas Proto-Oncogênicas c-akt , Animais , Camundongos , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Lipopolissacarídeos/farmacologia , Transcriptoma , Receptor 4 Toll-Like/metabolismo , Fígado/metabolismo , Metaboloma , Glicerofosfolipídeos/metabolismo , Glicerofosfolipídeos/farmacologia , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/farmacologia , Fosfolipases A2 do Grupo IV/genética , Fosfolipases A2 do Grupo IV/metabolismo , Fosfolipases A2 do Grupo IV/farmacologia
12.
Angew Chem Int Ed Engl ; 62(6): e202215556, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36478519

RESUMO

Lysophosphatidylcholine acyltransferase-1 (LPCAT1) plays a critical role in the remodeling of phosphatidylcholines (PCs) in cellular lipidome. However, evidence is scarce regarding its sn-selectivity, viz. the preference of assembling acyl-Coenzyme A (CoA) at the C1 or C2-hydroxyl on a glycerol backbone because of difficulty to quantify the thus-formed PC sn-isomers. We have established a multiplexed assay to measure both sn- and acyl-chain selectivity of LPCAT1 toward a mixture of acyl-CoAs by integrating isomer-resolving tandem mass spectrometry. Our findings reveal that LPCAT1 shows exclusive sn-1 specificity regardless of the identity of acyl-CoAs. We further confirm that elevated PC 18 : 1/16:0 relative to its sn-isomer results from an increased expression of LPCAT1 in human hepatocellular carcinoma (HCC) tissue as compared to normal liver tissue. MS imaging via desorption electrospray ionization of PC 18 : 1/16:0 thus enables visualization of HCC margins in human liver tissue at a molecular level.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Acil Coenzima A/metabolismo , Aciltransferases/metabolismo , Fosfatidilcolinas/metabolismo , Especificidade por Substrato , Espectrometria de Massas em Tandem
13.
Eur J Med Res ; 27(1): 216, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307879

RESUMO

BACKGROUND: Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is overexpressed in multiple human tumors. However, the role of LPCAT1 in hepatocellular carcinoma (HCC) has not been understood. We aim to explore the relationships between LPCAT1 expression and prognosis, clinicopathological features, tumor microenvironment (TME), immune cell infiltration, immune checkpoint gene expression, and related signaling pathways in HCC. Furthermore, we also explored the relationship between LPCAT1 expression and drug sensitivity to HCC treatment. METHODS: The expression profiles were acquired from the Cancer Genome Atlas (TCGA) and the Human Protein Atlas (THPA). Immune status and infiltration in cancer tissues were explored using the single sample gene set enrichment analysis (ssGSEA) and CIBERSORT algorithm. RESULTS: LPCAT1 was overexpressed in HCC, and its expression was related to poor prognosis, LPCAT1 was an independent prognostic biomarker in HCC. Expression of LPCAT1 increased statistically with the increase of clinical stage and grade of HCC patients. GO and KEGG network analysis revealed that LPCAT1 positively associated molecules were mostly enriched in functions related to cell adhesion. The TME score of high-LPCAT1 group was significantly higher than that of low-LPCAT1 group. Immune infiltrating cells positively correlated with LPCAT1 expression were Macrophages M0, B cells memory, Dendritic cells activated, T cells regulatory and T cells gamma delta in HCC. We found a positive correlation between LPCAT1 and most immune checkpoint gene expression. The IC50 of 5-Fluorouracil, Gemcitabine, Mitomycin C, Sorafenib and Cabozantinib in patients with high-LPCAT1 expression was lower than that in patients with low-LPCAT1 expression. Our findings provide a wealth of information for further understanding of the biological functions and signaling pathways of LPCAT1 in HCC. CONCLUSIONS: LPCAT1 is an independent prognostic biomarker and associated with tumor microenvironment, immune cell infiltration, immune checkpoint expression and drug sensitivity in hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Prognóstico , Neoplasias Hepáticas/patologia , Sorafenibe , Biomarcadores , Microambiente Tumoral/genética , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo
14.
Biomed Pharmacother ; 155: 113638, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36099794

RESUMO

Silicosis is an incurable lung disease that can progress even when exposure to silica dust has ended. Lipid metabolism plays an important role in the occurrence and development of silicosis. However, the mechanistic details have not been fully elucidated. This was investigated in the current study by high-performance liquid chromatography-mass spectrometry-based lipidomic analysis of lung tissue in a mouse model of silicosis. Lipid profiles and key metabolic enzymes were compared between silica and control groups. The lipidomic analysis revealed differentially-expressed lipids in the lungs of silicosis mice compared with controls. Among the identified lipid metabolism-related enzymes, the expression of lysophosphatidylcholine acyltransferase 1 (LPCAT1) was significantly down-regulated at the transcript and protein levels. LPCAT1 overexpression in vivo using adeno-associated virus altered the balance between phosphatidylcholine and lysophosphatidylcholine and inhibited the development of silicosis in mice. These results indicate that LPCAT1 dysregulation leads to abnormal lipid metabolism and silicosis, and is a potential therapeutic target for the treatment of silica-induced pulmonary fibrosis.


Assuntos
Fibrose Pulmonar , Silicose , Animais , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Aciltransferases/metabolismo , Poeira , Metabolismo dos Lipídeos , Lisofosfatidilcolinas , Fosfatidilcolinas/uso terapêutico , Fibrose Pulmonar/induzido quimicamente , Dióxido de Silício/toxicidade , Silicose/tratamento farmacológico
15.
Exp Cell Res ; 421(1): 113360, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36122769

RESUMO

Cervical cancer is a major gynecological tumor worldwide. Unfortunately, the molecular mechanisms involved in cervical cancer tumorigenesis still requires more clarification. Lysophosphatidylcholine acyltransferase 1 (LPCAT1), an enzyme involved in phosphatidylcholine metabolism, has been reported to regulate the proliferation, epithelial-mesenchymal transition (EMT) and recurrence of malignancies. Here in our study, we found that LPAT1 was over-expressed in clinical cervical cancer tissues, and its high expression was closely correlated with poor outcomes of patients. We further showed that LPCAT1 knockdown remarkably restrained the proliferation, migration and invasion of cervical cancer cells, while it significantly induced apoptosis. RNA-seq and bioinformatics assays initially showed that interleukin-6/signal transducer and activator of transcription 3 (IL-6/STAT3) pathway was a key mechanism for LPCAT1 to regulate cervical cancer progression. LPCAT1 silence strongly decreased IL-6, p-Janus kinase 2 (JAK2) and p-STAT3 expression levels in cervical cancer cells. Similarly, the expression levels of IL-6/STAT3 target genes were also highly down-regulated in cervical cancer cells with LPCAT1 deletion. Importantly, we found that human recombinant IL-6 addition considerably abolished the function of LPCAT1-knockdown to suppress the proliferation and EMT process in cervical cancer cells, accompanied with mitigated apoptotic cell death. Furthermore, our animal experiment results validated that stable LPCAT1 deletion efficiently reduced the tumor growth rates of xenograft mouse models and lung metastasis in vivo. Collectively, all our findings revealed that LPCAT1 may be a promising alternative prognostic biomarker and therapeutic target for cervical cancer through regulating JAK2/STAT3 signaling pathway.


Assuntos
Janus Quinase 2 , Neoplasias do Colo do Útero , Animais , Feminino , Humanos , Camundongos , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Biomarcadores , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Transição Epitelial-Mesenquimal/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Oncogenes , Fosfatidilcolinas , Transdução de Sinais/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias do Colo do Útero/patologia , Proteínas Oncogênicas
16.
Mol Biol (Mosk) ; 56(4): 574-584, 2022.
Artigo em Russo | MEDLINE | ID: mdl-35964314

RESUMO

Colorectal cancer (CRC) is a malignancy featured by a poor overall survival and a high recurrence rate, whereas the biomarkers for CRC remain to be investigated. Herein, it was found that lysophosphatidylcholine acyltransferase 1 (LPCAT1) was highly expressed in CRC, and LPCAT1 overexpression significantly promoted CRC cell proliferation, while it was reversed by LPCAT1 depletion. In addition, HECT domain-containing 2 (HECTD2) protein was determined as a post-translational mediator of LPCAT1 because HECTD2 co-immunoprecipitated with high ubiquitinated LPCAT1. Furthermore, upregulated LPCAT1 rescued the impairment of CRC cell proliferation caused by HECTD2 overexpression. In conclusion, our findings supported HECTD2/LPCAT1 axis as a potential prognostic biomarker in CRC.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Neoplasias Colorretais , Ubiquitina-Proteína Ligases/metabolismo , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Proliferação de Células/genética , Neoplasias Colorretais/genética , Humanos , Processamento de Proteína Pós-Traducional , Ubiquitinação
17.
Acta Biochim Biophys Sin (Shanghai) ; 54(7): 904-916, 2022 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-35880567

RESUMO

The incidence of endometrial cancer (EC) increases annually and tends to occur in younger women. A particularly important relationship exists between EC and metabolic disorders. As one of the most important components of lipid metabolism, phospholipids play an indispensable role in metabolic balance. LPCAT1 is a key enzyme regulating phospholipid metabolism. In this study, we perform further investigations to seek mechanistic insight of LPCAT1 in EC. Our results demonstrate that silencing of LPCAT1 inhibits the growth of endometrial cancer, while overexpression of LPCAT1 results in enhanced stemness and metastasis in endometrial cancer cell lines. Meanwhile, the contents of various phospholipids including phosphatidylethanolamine (PE), phosphatidylcholine (PC), and triglyceride (TG) change significantly after overexpression of LPCAT1. In addition, through RNA-sequencing and western blot analysis, we observe that the TGF-ß/Smad2/3 signaling pathway is of great importance in the tumor-promoting function of LPCAT1. LPCAT1 promotes the expressions of stem cell-related transcription factors and epithelial-mesenchymal transition (EMT) related proteins through the TGF-ß/Smad2/3 signaling pathway. Moreover, we find that TSI-01, which can inhibit the activity of LPCAT1, is able to restrain the proliferation of EC cell lines and promote cell apoptosis. Collectively, we demonstrate that LPCAT1 enhances the stemness and metastasis of EC by activating the TGF-ß/Smad2/3 signaling pathway and that TSI-01 may have potential use for the treatment of EC.


Assuntos
Neoplasias do Endométrio , Transdução de Sinais , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Neoplasias do Endométrio/metabolismo , Transição Epitelial-Mesenquimal/genética , Feminino , Humanos , Fosfolipídeos , Proteína Smad2/genética , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/metabolismo
18.
Fish Shellfish Immunol ; 126: 12-20, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35526799

RESUMO

LPCAT3, a subtype of lysophosphatidylcholine acyltransferases, is a key enzyme in phosphatidylcholine remodeling pathway and plays a significant role in mediating inflammatory response in mammals. However, its inflammatory function in fish has yet to be discovered. Herein, this study aimed to investigate its role in inflammation in Larimichthys crocea. We analyzed the coding sequence of Larimichthys crocea LPCAT3 (Lc-LPCAT3) and explored the effect of Lc-LPCAT3 on palmitate (PA)-induced inflammation. We found that in macrophage cell line of Larimichthys crocea, the mRNA expression of Lc-lpcat3 was upregulated by PA with the elevated pro-inflammatory genes expression, including il1ß, il6, il8, tnfα and ifnγ. Next, the role of Lc-LPCAT3 in inflammation induced by PA was further investigated. Results showed that knockdown of Lc-LPCAT3 mitigated PA-induced pro-inflammatory genes mRNA expression, including il1ß, il8, tnfα and ifnγ, in which JNK signaling pathway was involved. In contrast, overexpression of Lc-LPCAT3 induced pro-inflammatory genes expression including il1ß, tnfα and ifnγ. Furthermore, several transcription factors with negative regulation of Lc-LPCAT3 promoter activity were discovered including LXRα, RXRα, PPARα, PPARγ, CEBPα, CEBPß, CEBPδ, SREBP1 and SREBP2, and SREBP1 had the strongest regulatory effect. In conclusion, we first discovered that fish LPCAT3 participated in PA-induced inflammation, and targeting SREBP1 might be an effective coping strategy.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase , Perciformes , 1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Proteínas de Peixes/genética , Proteínas de Peixes/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/veterinária , Interleucina-8 , Macrófagos/metabolismo , Mamíferos/genética , Mamíferos/metabolismo , Palmitatos/metabolismo , Perciformes/genética , Perciformes/metabolismo , RNA Mensageiro/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
J Clin Invest ; 132(11)2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35380992

RESUMO

Enhanced de novo lipogenesis mediated by sterol regulatory element-binding proteins (SREBPs) is thought to be involved in nonalcoholic steatohepatitis (NASH) pathogenesis. In this study, we assessed the impact of SREBP inhibition on NASH and liver cancer development in murine models. Unexpectedly, SREBP inhibition via deletion of the SREBP cleavage-activating protein (SCAP) in the liver exacerbated liver injury, fibrosis, and carcinogenesis despite markedly reduced hepatic steatosis. These phenotypes were ameliorated by restoring SREBP function. Transcriptome and lipidome analyses revealed that SCAP/SREBP pathway inhibition altered the fatty acid (FA) composition of phosphatidylcholines due to both impaired FA synthesis and disorganized FA incorporation into phosphatidylcholine via lysophosphatidylcholine acyltransferase 3 (LPCAT3) downregulation, which led to endoplasmic reticulum (ER) stress and hepatocyte injury. Supplementation with phosphatidylcholines significantly improved liver injury and ER stress induced by SCAP deletion. The activity of the SCAP/SREBP/LPCAT3 axis was found to be inversely associated with liver fibrosis severity in human NASH. SREBP inhibition also cooperated with impaired autophagy to trigger liver injury. Thus, excessively strong and broad lipogenesis inhibition was counterproductive for NASH therapy; this will have important clinical implications in NASH treatment.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Hepáticas , Proteínas de Membrana , Hepatopatia Gordurosa não Alcoólica , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Animais , Carcinogênese , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/metabolismo , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fosfatidilcolinas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo
20.
Inflammation ; 45(4): 1765-1779, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35338433

RESUMO

Chronic obstructive pulmonary disease (COPD) is primarily caused by inhalation of cigarette smoke and is the third leading cause of death worldwide. Pulmonary surfactant, a complex of phospholipids and proteins, plays an essential role in respiration by reducing the surface tension in the alveoli. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) is an enzyme that catalyzes the biosynthesis of surfactant lipids and is expressed in type 2 alveolar epithelial cells. Its dysfunction is suggested to be involved in various lung diseases; however, the relationship between LPCAT1 and COPD remains unclear. To investigate the role of LPCAT1 in the pathology of COPD, we analyzed an elastase-induced emphysema model using Lpcat1 knockout (KO) mice. In Lpcat1 KO mice, elastase-induced emphysema was significantly exacerbated with increased apoptotic cells, which was not ameliorated by supplementation with dipalmitoylphosphatidylcholine, which is a major component of the surfactant synthesized by LPCAT1. We subsequently evaluated the effects of cigarette smoking on primary human type 2 alveolar epithelial cells (hAEC2s) and found that cigarette smoke extract (CSE) downregulated the expression of Lpcat1. Furthermore, RNA sequencing analysis revealed that the apoptosis pathway was significantly enriched in CSE-treated primary hAEC2s. Finally, we downregulated the expression of Lpcat1 using small interfering RNA, which resulted in enhanced CSE-induced apoptosis in A549 cells. Taken together, cigarette smoke-induced downregulation of LPCAT1 can promote the exacerbation of pulmonary emphysema by increasing the susceptibility of alveolar epithelial cells to apoptosis, thereby suggesting that Lpcat1 is a novel therapeutic target for irreversible emphysema.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Enfisema , Enfisema Pulmonar , 1-Acilglicerofosfocolina O-Aciltransferase/genética , Células Epiteliais Alveolares/metabolismo , Animais , Apoptose , Células Cultivadas , Fumar Cigarros , Células Epiteliais/metabolismo , Humanos , Camundongos , Camundongos Knockout , Elastase Pancreática , Enfisema Pulmonar/metabolismo , Tensoativos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA