Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
1.
Sci Rep ; 14(1): 9196, 2024 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-38649699

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human malignancies. Uncontrolled cell proliferation, invasion and migration of pancreatic cancer cells are the fundamental causes of death in PDAC patients. Our previous studies showed that KLF9 inhibits the proliferation, invasion and migration of pancreatic cancer cells. However, the underlying mechanisms are not fully understood. In this study, we found that platelet-activating factor acetylhydrolase IB3 (PAFAH1B3) is highly expressed in pancreatic cancer tissues and cells. In vitro and in vivo studies showed that overexpression of PAFAH1B3 promoted the proliferation and invasion of pancreatic cancer cells, while downregulation of PAFAH1B3 inhibited these processes. We found that KLF9 expression is negatively correlated with PAFAH1B3 expression in pancreatic cancer tissues and cells. Western blotting revealed that KLF9 negatively regulates the expression of PAFAH1B3 in pancreatic cancer tissues and cells. Rescue experiments showed that overexpression of PAFAH1B3 could partially attenuate the suppression of pancreatic cancer cell proliferation, invasion and migration induced by KLF9 overexpression. Finally, chromatin immunoprecipitation (ChIP) and dual-luciferase reporter assays were carried out, and the results showed that KLF9 directly binds to the promoter of PAFAH1B3 and inhibits its transcriptional activity. In conclusion, our study indicated that KLF9 can inhibit the proliferation, invasion, migration and metastasis of pancreatic cancer cells by inhibiting PAFAH1B3.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Fatores de Transcrição Kruppel-Like , Neoplasias Pancreáticas , Animais , Feminino , Humanos , Masculino , Camundongos , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos Nus , Invasividade Neoplásica , Metástase Neoplásica , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/metabolismo
2.
Front Biosci (Landmark Ed) ; 29(1): 39, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38287833

RESUMO

BACKGROUND: Antigen presentation may be an important factor contributing to immune evasion in cancer. This study investigated antigen-presenting prognostic related genes (APPGs) and their potential mechanisms in hepatocellular carcinoma (HCC). METHODS: We constructed a score built upon the core APPGs (APP.Score) through nonnegative matrix factorization (NMF) clustering, weighted gene co-expression network analysis (WGCNA), random forest (RF), and least absolute shrinkage and selection operator (LASSO) methods. We also compared the clinical and molecular characteristics of different APP.Score. Furthermore, in vitro experiments were conducted to validate the expression of core APPGs and investigate the effects of phospholipase A2, group 7 (PLA2G7) knockdown on HCC cell development and programmed death-ligand 1 (PD-L1) expression. RESULTS: APP.Score was positively correlated with immune cell infiltration and levels of immune checkpoint inhibitor-related genes, and negatively correlated with overall survival (OS). The area under the curve values were 0.734, 0.747, and 0.679 for survival periods of 1, 2, and 3 years, respectively, indicating that APP.Score could be an independent prognostic factor for patients with HCC. OS of the high expression group of these genes, including PLA2G7, musculin, heat shock protein family A, secreted phosphoprotein 1, and neutrophil cytosolic factor 2 (NCF2) was lower than that of their low expression group. Moreover, the upregulation of key components of APPGs, except NCF2, was observed in HCC. The inhibition of PLA2G7 suppressed HCC progression and reduced PD-L1 and phosphorylated signal transducer and activator of transcription 1 (p-STAT1)/STAT1 levels in HepG2 and Huh-7 cells. Remarkably, the decrease in PD-L1 expression caused by PLA2G7 silencing was reversed upon treatment with a STAT1 activator. CONCLUSION: The results of this study show that APP.Score could be an independent prognostic factor for patients with HCC, and that PLA2G7 silencing inhibits cancer cell development and PD-L1 expression. We provide a new perspective and potential target for immune research on antigen presentation in HCC.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Fosfolipases A2/metabolismo , Prognóstico , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo
3.
Nat Commun ; 14(1): 7221, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37940657

RESUMO

Cytoplasmic dynein drives the motility and force generation functions towards the microtubule minus end. The assembly of dynein with dynactin and a cargo adaptor in an active transport complex is facilitated by Lis1 and Nde1/Ndel1. Recent studies proposed that Lis1 relieves dynein from its autoinhibited conformation, but the physiological function of Nde1/Ndel1 remains elusive. Here, we investigate how human Nde1 and Lis1 regulate the assembly and subsequent motility of mammalian dynein using in vitro reconstitution and single molecule imaging. We find that Nde1 recruits Lis1 to autoinhibited dynein and promotes Lis1-mediated assembly of dynein-dynactin adaptor complexes. Nde1 can compete with the α2 subunit of platelet activator factor acetylhydrolase 1B (PAF-AH1B) for the binding of Lis1, which suggests that Nde1 may disrupt PAF-AH1B recruitment of Lis1 as a noncatalytic subunit, thus promoting Lis1 binding to dynein. Before the initiation of motility, the association of dynactin with dynein triggers the dissociation of Nde1 from dynein by competing against Nde1 binding to the dynein intermediate chain. Our results provide a mechanistic explanation for how Nde1 and Lis1 synergistically activate the dynein transport machinery.


Assuntos
Dineínas , Proteínas Associadas aos Microtúbulos , Animais , Humanos , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Complexo Dinactina/metabolismo , Microtúbulos/metabolismo , Citoesqueleto/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Mamíferos/metabolismo
4.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 31(2): 448-454, 2023 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-37096518

RESUMO

OBJECTIVE: To investigate the association between the expression level of platelet-activating factor acetylhydrolase 1B3 (PAFAH1B3 ) gene in bone marrow CD138+ cells of patients with multiple myeloma (MM) treated with autologous hematopoietic stem cell transplantation (AHSCT) and the prognosis within 2 years. METHODS: 147 MM patients treated with AHSCT in The First and The Second Affiliated Hospital of Nantong University from May 2014 to May 2019 were included in the study. Expression level of PAFAH1B3 mRNA in bone marrow CD138+ cells of the patients was detected. Patients with disease progression or death during 2 years of follow-up were included in progression group, and the rest were included in good prognosis group. After comparing the clinical data and PAFAH1B3 mRNA expression levels of the two groups, the patients were divided into high PAFAH1B3 expression group and low PAFAH1B3 expression group based on the median PAFAH1B3 mRNA expression level of the enrolled patients. Progression-free survival rate (PFSR) between the two groups was compared by the Kaplan-Meier method. The related factors of prognosis within 2 years were analyzed by univariate analysis and multivariate COX regression analysis. RESULTS: At the end of follow-up, there were 13 patients lost to follow-up. Finally, 44 patients were included in the progression group and 90 patients were included in the good prognosis group. Age in the progression group was higher than that in the good prognosis group, the proportion of patients with CR+VGPR after transplantation in the progression group was lower than that in the good prognosis group, and there was a statistical difference between two groups in the cases distribution of ISS stage (all P<0.05). PAFAH1B3 mRNA expression level and the proportion of patients with LDH>250U/L in the progression group were higher than those in the good prognosis group, and platelet count in the progression group was lower than that in the good prognosis group (all P<0.05). Compared with the low PAFAH1B3 expression group, the 2-year PFSR of the high PAFAH1B3 expression group was significantly lower (log-rank χ2=8.167, P=0.004). LDH>250U/L (HR=3.389, P=0.010), PAFAH1B3 mRNA expression (HR=50.561, P=0.001) and ISS stage Ⅲ(HR=1.000, P=0.003) were independent risk factors for prognosis in MM patients, and ISS stage Ⅰ (HR=0.133, P=0.001) was independent protective factor. CONCLUSION: The expression level of PAFAH1B3 mRNA in bone marrow CD138+ cells is related to the prognosis of MM patients treated with AHSCT, and detecting PAFAH1B3 mRNA expression can bring some information for predicting PFSR and prognostic stratification of patients.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Transplante de Células-Tronco Hematopoéticas , Mieloma Múltiplo , Humanos , Progressão da Doença , Mieloma Múltiplo/tratamento farmacológico , Prognóstico , Estudos Retrospectivos , Transplante Autólogo , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética
5.
J Biol Chem ; 299(6): 104735, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37086789

RESUMO

Dynein is the primary minus-end-directed microtubule motor protein. To achieve activation, dynein binds to the dynactin complex and an adaptor to form the "activated dynein complex." The protein Lis1 aids activation by binding to dynein and promoting its association with dynactin and the adaptor. Ndel1 and its paralog Nde1 are dynein- and Lis1-binding proteins that help control dynein localization within the cell. Cell-based assays suggest that Ndel1-Nde1 also work with Lis1 to promote dynein activation, although the underlying mechanism is unclear. Using purified proteins and quantitative binding assays, here we found that the C-terminal region of Ndel1 contributes to dynein binding and negatively regulates binding to Lis1. Using single-molecule imaging and protein biochemistry, we observed that Ndel1 inhibits dynein activation in two distinct ways. First, Ndel1 disfavors the formation of the activated dynein complex. We found that phosphomimetic mutations in the C-terminal domain of Ndel1 increase its ability to inhibit dynein-dynactin-adaptor complex formation. Second, we observed that Ndel1 interacts with dynein and Lis1 simultaneously and sequesters Lis1 away from its dynein-binding site. In doing this, Ndel1 prevents Lis1-mediated dynein activation. Together, our work suggests that in vitro, Ndel1 is a negative regulator of dynein activation, which contrasts with cellular studies where Ndel1 promotes dynein activity. To reconcile our findings with previous work, we posit that Ndel1 functions to scaffold dynein and Lis1 together while keeping dynein in an inhibited state. We speculate that Ndel1 release can be triggered in cellular settings to allow for timed dynein activation.


Assuntos
Proteínas de Transporte , Complexo Dinactina , Dineínas , Proteínas Associadas aos Microtúbulos , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Citoesqueleto/metabolismo , Complexo Dinactina/genética , Complexo Dinactina/metabolismo , Dineínas/genética , Dineínas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Humanos , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo
6.
Anticancer Drugs ; 34(3): 439-450, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36441004

RESUMO

BACKGROUND: Dysregulation of cancer-associated fibroblasts (CAFs) still greatly challenges the treatments for bladder cancer (BC), where exosomal miRNAs derived from CAFs are one of the essential effectors for tumor progression. miR-93-5p is reported to be upregulated in BC, however, it is barely investigated in BC-derived CAFs. METHOD: The CAF markers were immunofluorescent-labeled and examined by western blotting assay in CAFs and normal fibroblasts (NFs). CAFs- and NFs-derived exosomes (CAFs-exo/NFs-exo) were authenticated by transmission electron microscope and nanoparticle tracking analysis. Cell viability was determined by cell counting kit-8 assay, and cell mobility was evaluated by wound healing and transwell assays. Real-time quantitative PCR was used to quantify the RNA expressions, and a western blotting assay was used for protein expression. Interaction between miR-93-5p and Platelet-Activating Factor Acetylhydrolase IB Subunit Beta (PAFAH1B1) was verified by luciferase reporter assay. HE staining assay was applied to assess the histological changes of xenografts. RESULTS: CAFs-exo notably enhanced cell mobility and the expression levels of miR-93-5p of BC cells compared to NFs-exo. However, inhibition of miR-93-5p in CAFs-exo exhibited attenuated pro-metastatic ability on BC cells. PAFAH1B1 was one of the predicted targets of miR-93-5p, whose mRNA level was most significantly downregulated after miR-93-5p transfection. The interaction between PAFAH1B1 and miR-93-5p was verified, and miR-93-5p negatively regulated the protein level of PAFAH1B1. Overexpression of PAFAH1B1 could efficiently reverse the effects of miR-93-5p mimic on BC cell mobility. Finally, inhibition of miR-93-5p was proved to impair the carcinogenic function of CAFs-exo in vivo . CONCLUSION: Exosomal miR-93-5p derived from CAFs confers oncogenicity on BC cells via sponging PAFAH1B1, suggesting a novel therapeutic strategy for BC.


Assuntos
Fibroblastos Associados a Câncer , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , MicroRNAs/genética , Neoplasias da Bexiga Urinária/patologia , Fibroblastos , Linhagem Celular Tumoral , Fenótipo , Proliferação de Células , Proteínas Associadas aos Microtúbulos/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo
7.
J Cell Sci ; 136(5)2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36274587

RESUMO

Mitotic cell division requires that kinetochores form microtubule attachments that can segregate chromosomes and control mitotic progression via the spindle assembly checkpoint. During prometaphase, kinetochores shed a domain called the fibrous corona as microtubule attachments form. This shedding is mediated, in part, by the minus-end directed motor dynein, which 'strips' cargoes along K-fibre microtubules. Despite its essentiality, little is known about how dynein stripping is regulated and how it responds to attachment maturation. Lis1 (also known as PAFAH1B1) is a conserved dynein regulator that is mutated in the neurodevelopmental disease lissencephaly. Here, we have combined loss-of-function studies, high-resolution imaging and separation-of-function mutants to define how Lis1 contributes to dynein-mediated corona stripping in HeLa cells. Cells depleted of Lis1 fail to disassemble the corona and show a delay in metaphase as a result of persistent checkpoint activation. Furthermore, we find that although kinetochore-tethered Lis1-dynein is required for error-free microtubule attachment, the contribution of Lis1 to corona disassembly can be mediated by a cytoplasmic pool. These findings support the idea that Lis1 drives dynein function at kinetochores to ensure corona disassembly and prevent chromosome mis-segregation.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Dineínas , Cinetocoros , Proteínas Associadas aos Microtúbulos , Humanos , Dineínas/metabolismo , Células HeLa , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Mitose , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo
8.
Biofactors ; 48(6): 1189-1202, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36029481

RESUMO

Platelet-activating factor (PAF) is a phospholipid-derived mediator with an established role in multiple inflammatory states. PAF is synthesized and secreted by multiple cell types and is then rapidly hydrolyzed and degraded to an inactive metabolite, lyso-PAF, by the enzyme PAF acetylhydrolase. In addition to its role in platelet aggregation and activation, PAF contributes to allergic and nonallergic inflammatory diseases such as anaphylaxis, sepsis, cardiovascular disease, neurological disease, and malignancy as demonstrated in multiple animal models and, increasingly, in human disease states. Recent research has demonstrated the importance of the PAF pathway in multiple conditions including the prediction of severe pediatric anaphylaxis, effects on blood-brain barrier permeability, effects on reproduction, ocular diseases, and further understanding of its role in cardiovascular risk. Investigation of PAF as both a biomarker and a therapeutic target continues because of the need for directed management of inflammation. Collectively, studies have shown that therapies focused on the PAF pathway have the potential to provide targeted and effective treatments for multiple inflammatory conditions.


Assuntos
Anafilaxia , Fator de Ativação de Plaquetas , Animais , Humanos , Criança , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Inflamação/genética
9.
Pharmacol Res ; 182: 106286, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35662628

RESUMO

Pulmonary fibrosis (PF) is the pathological change of end-stage interstitial lung diseases with high mortality and limited therapeutic options. Lung macrophages have distinct subsets with divergent functions, and play critical roles in the pathogenesis of PF. In this study, integrative analysis of lung single-cell and bulk RNA-seq data from patients with fibrotic hypersensitivity pneumonitis and idiopathic pulmonary fibrosis was utilized to identify particular macrophage subsets during the development of PF. We find a specific macrophage subpopulation highly expressing PLA2G7 in fibrotic lungs. We performed additional single-cell RNA-seq analysis to identify analogous macrophage population in bleomycin (BLM)-induced mouse pulmonary fibrosis models. By in vitro and in vivo experiments, we further reveal the pro-fibrotic role for this PLA2G7high macrophage subset in fibroblast-to-myofibroblast transition (FMT) during pulmonary fibrosis. PLA2G7 promotes FMT via LPC/ATX/LPA/LPA2 axis in macrophages. Moreover, PLA2G7 is regulated by STAT1, and pharmacological inhibition of PLA2G7 by Darapladib ameliorates pulmonary fibrosis in BLM-induced mice. The results of this study support the view that PLA2G7high macrophage subpopulation contributes importantly to the pathogenesis of PF, which provides a potential way for targeted therapy.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Fibrose Pulmonar Idiopática , Macrófagos , 1-Alquil-2-acetilglicerofosfocolina Esterase/efeitos adversos , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Bleomicina , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Análise de Célula Única
10.
Artigo em Inglês | MEDLINE | ID: mdl-35462067

RESUMO

Breast cancer is primarily classified into ductal and lobular types, as well as into noninvasive and invasive cancer. Invasive cancer involves lymphatic and hematogenous metastasis. In breast cancer patients with distant metastases, a neutrophil-derived serine protease; cathepsin G (Cat G), is highly expressed in breast cancer cells. Cat G induces cell migration and multicellular aggregation of MCF-7 human breast cancer cells; however, the mechanism is not clear. Recently, platelet-activating factor (PAF)-acetylhydrolase (PAF-AH), the enzyme responsible for PAF degradation, was reported to be overexpressed in some tumor types, including pancreatic and breast cancers. In this study, we investigated whether PAF-AH is involved in Cat G-induced aggregation and migration of MCF-7 cells. We first showed that Cat G increased PAF-AH activity and elevated PAFAH1B2 expression in MCF-7 cells. The elevated expression of PAFAH1B2 was also observed in human breast cancer tissue specimens by immunohistochemical analysis. Furthermore, knockdown of PAFAH1B2 in MCF-7 cells suppressed the cell migration and aggregation induced by low concentrations, but not high concentrations, of Cat G. Carbamoyl PAF (cPAF), a nonhydrolyzable PAF analog, completely suppressed Cat G-induced migration of MCF-7 cells. In addition, PAF receptor (PAFR) inhibition induced cell migration of MCF-7 cells even in the absence of Cat G, suggesting that Cat G suppresses the activation of PAFR through enhanced PAF degradation due to elevated expression of PAFAH1B2 and thereby induces malignant phenotypes in MCF-7 cells. Our findings may lead to a novel therapeutic modality for treating breast cancer by modulating the activity of Cat G/PAF signaling.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase , Neoplasias da Mama , Catepsina G , Proteínas Associadas aos Microtúbulos , Fator de Ativação de Plaquetas , 1-Alquil-2-acetilglicerofosfocolina Esterase/biossíntese , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Movimento Celular , Feminino , Humanos , Células MCF-7 , Proteínas Associadas aos Microtúbulos/biossíntese , Proteínas Associadas aos Microtúbulos/genética , Neutrófilos/metabolismo , Neutrófilos/patologia , Fator de Ativação de Plaquetas/metabolismo
11.
Int J Mol Sci ; 23(6)2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35328531

RESUMO

Disruptive neuronal migration during early brain development causes severe brain malformation. Characterized by mislocalization of cortical neurons, this condition is a result of the loss of function of migration regulating genes. One known neuronal migration disorder is lissencephaly (LIS), which is caused by deletions or mutations of the LIS1 (PAFAH1B1) gene that has been implicated in regulating the microtubule motor protein cytoplasmic dynein. Although this class of diseases has recently received considerable attention, the roles of non-synonymous polymorphisms (nsSNPs) in LIS1 on lissencephaly progression remain elusive. Therefore, the present study employed combined bioinformatics and molecular modeling approach to identify potential damaging nsSNPs in the LIS1 gene and provide atomic insight into their roles in LIS1 loss of function. Using this approach, we identified three high-risk nsSNPs, including rs121434486 (F31S), rs587784254 (W55R), and rs757993270 (W55L) in the LIS1 gene, which are located on the N-terminal domain of LIS1. Molecular dynamics simulation highlighted that all variants decreased helical conformation, increased the intermonomeric distance, and thus disrupted intermonomeric contacts in the LIS1 dimer. Furthermore, the presence of variants also caused a loss of positive electrostatic potential and reduced dimer binding potential. Since self-dimerization is an essential aspect of LIS1 to recruit interacting partners, thus these variants are associated with the loss of LIS1 functions. As a corollary, these findings may further provide critical insights on the roles of LIS1 variants in brain malformation.


Assuntos
Lisencefalia , Malformações do Sistema Nervoso , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Dineínas/metabolismo , Humanos , Lisencefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Malformações do Sistema Nervoso/genética , Nucleotídeos/metabolismo
12.
Science ; 375(6581): 671-677, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143297

RESUMO

The extension of life span driven by 40% caloric restriction (CR) in rodents causes trade-offs in growth, reproduction, and immune defense that make it difficult to identify therapeutically relevant CR-mimetic targets. We report that about 14% CR for 2 years in healthy humans improved thymopoiesis and was correlated with mobilization of intrathymic ectopic lipid. CR-induced transcriptional reprogramming in adipose tissue implicated pathways regulating mitochondrial bioenergetics, anti-inflammatory responses, and longevity. Expression of the gene Pla2g7 encoding platelet activating factor acetyl hydrolase (PLA2G7) is inhibited in humans undergoing CR. Deletion of Pla2g7 in mice showed decreased thymic lipoatrophy, protection against age-related inflammation, lowered NLRP3 inflammasome activation, and improved metabolic health. Therefore, the reduction of PLA2G7 may mediate the immunometabolic effects of CR and could potentially be harnessed to lower inflammation and extend the health span.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Tecido Adiposo/metabolismo , Restrição Calórica , Sistema Imunitário/fisiologia , Inflamação , Timo/imunologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Adulto , Envelhecimento , Animais , Regulação para Baixo , Metabolismo Energético , Feminino , Humanos , Inflamassomos/metabolismo , Longevidade , Linfopoese , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Termogênese , Timo/anatomia & histologia , Transcriptoma
13.
Elife ; 112022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34994688

RESUMO

The lissencephaly 1 gene, LIS1, is mutated in patients with the neurodevelopmental disease lissencephaly. The Lis1 protein is conserved from fungi to mammals and is a key regulator of cytoplasmic dynein-1, the major minus-end-directed microtubule motor in many eukaryotes. Lis1 is the only dynein regulator known to bind directly to dynein's motor domain, and by doing so alters dynein's mechanochemistry. Lis1 is required for the formation of fully active dynein complexes, which also contain essential cofactors: dynactin and an activating adaptor. Here, we report the first high-resolution structure of the yeast dynein-Lis1 complex. Our 3.1 Å structure reveals, in molecular detail, the major contacts between dynein and Lis1 and between Lis1's ß-propellers. Structure-guided mutations in Lis1 and dynein show that these contacts are required for Lis1's ability to form fully active human dynein complexes and to regulate yeast dynein's mechanochemistry and in vivo function.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Dineínas do Citoplasma/genética , Dineínas/genética , Regulação da Expressão Gênica , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , 1-Alquil-2-acetilglicerofosfocolina Esterase/química , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Dineínas do Citoplasma/metabolismo , Dineínas/metabolismo , Dineínas/ultraestrutura , Proteínas Associadas aos Microtúbulos/química , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Hum Mol Genet ; 31(6): 942-957, 2022 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-34635911

RESUMO

Human cerebral cortical malformations are associated with progenitor proliferation and neuronal migration abnormalities. Progenitor cells include apical radial glia, intermediate progenitors and basal (or outer) radial glia (bRGs or oRGs). bRGs are few in number in lissencephalic species (e.g. the mouse) but abundant in gyrencephalic brains. The LIS1 gene coding for a dynein regulator, is mutated in human lissencephaly, associated also in some cases with microcephaly. LIS1 was shown to be important during cell division and neuronal migration. Here, we generated bRG-like cells in the mouse embryonic brain, investigating the role of Lis1 in their formation. This was achieved by in utero electroporation of a hominoid-specific gene TBC1D3 (coding for a RAB-GAP protein) at mouse embryonic day (E) 14.5. We first confirmed that TBC1D3 expression in wild-type (WT) brain generates numerous Pax6+ bRG-like cells that are basally localized. Second, using the same approach, we assessed the formation of these cells in heterozygote Lis1 mutant brains. Our novel results show that Lis1 depletion in the forebrain from E9.5 prevented subsequent TBC1D3-induced bRG-like cell amplification. Indeed, we observe perturbation of the ventricular zone (VZ) in the mutant. Lis1 depletion altered adhesion proteins and mitotic spindle orientations at the ventricular surface and increased the proportion of abventricular mitoses. Progenitor outcome could not be further altered by TBC1D3. We conclude that disruption of Lis1/LIS1 dosage is likely to be detrimental for appropriate progenitor number and position, contributing to lissencephaly pathogenesis.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Lisencefalia , Proteínas Associadas aos Microtúbulos/genética , Malformações do Sistema Nervoso , Animais , Dineínas/genética , Células Ependimogliais/metabolismo , Proteínas Ativadoras de GTPase/genética , Lisencefalia/genética , Camundongos , Mitose , Mutação , Malformações do Sistema Nervoso/genética
15.
BMC Cancer ; 21(1): 927, 2021 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-34404374

RESUMO

BACKGROUND: Diffuse large B-cell lymphoma is the most common form of non-Hodgkin lymphoma globally, and patients with relapsed or refractory DLBCL typically experience poor long-term outcomes. METHODS: Differentially expressed genes associated with DLBCL were identified using two GEO datasets in an effort to detect novel diagnostic or prognostic biomarkers of this cancer type, after which receiver operating characteristic curve analyses were conducted. Genes associated with DLBCL patient prognosis were additionally identified via WCGNA analyses of the TCGA database. The expression of PLA2G7 in DLBCL patient clinical samples was further assessed, and the functional role of this gene in DLBCL was assessed through in vitro and bioinformatics analyses. RESULTS: DLBCL-related DEGs were found to be most closely associated with immune responses, cell proliferation, and angiogenesis. WCGNA analyses revealed that PLA2G7 exhibited prognostic value in DLBCL patients, and the upregulation of this gene in DLBCL patient samples was subsequently validated. PLA2G7 was also found to be closely linked to tumor microenvironmental composition such that DLBCL patients expressing higher levels of this gene exhibited high local monocyte and gamma delta T cell levels. In vitro experiments also revealed that knocking down PLA2G7 expression was sufficient to impair the migration and proliferation of DLBCL cells while promoting their apoptotic death. Furthmore, the specific inhibitor of PLA2G7, darapladib, could noticeably restrained the DLBCL cell viability and induced apoptosis. CONCLUSIONS: PLA2G7 may represent an important diagnostic, prognostic, or therapeutic biomarker in patients with DLBCL.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Biomarcadores Tumorais/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Transcriptoma , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Apoptose , Biomarcadores Tumorais/genética , Estudos de Casos e Controles , Proliferação de Células , Feminino , Seguimentos , Perfilação da Expressão Gênica , Humanos , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico , Taxa de Sobrevida , Células Tumorais Cultivadas
16.
Front Immunol ; 12: 683623, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220834

RESUMO

Background: B-cell non-Hodgkin's lymphoma (B-NHL) is one of the major complications of primary Sjögren's syndrome (SS). Chronic inflammation and macrophages in SS minor salivary glands have been previously suggested as significant predictors for lymphoma development among SS patients. Lipoprotein-associated phospholipase A2 (Lp-PLA2)-a product mainly of tissue macrophages-is found in the circulation associated with lipoproteins and has been previously involved in cardiovascular, autoimmune, and malignant diseases, including lymphoma. Objective: The purpose of the current study was to investigate the contributory role of Lp-PLA2 in B-NHL development in the setting of primary SS. Methods: Lp-PLA2 activity in serum samples collected from 50 primary SS patients with no lymphoma (SS-nL), 9 primary SS patients with lymphoma (SS-L), and 42 healthy controls (HC) was determined by detection of [3H]PAF degradation products by liquid scintillation counter. Moreover, additional sera from 50 SS-nL, 28 SS-L, and 32 HC were tested for Lp-PLA2 activity using a commercially available ELISA kit. Lp-PLA2 mRNA, and protein expression in minor salivary gland (MSG) tissue samples derived from SS-nL, SS-L patients, and sicca controls (SC) were analyzed by real-time PCR, Western blot, and immunohistochemistry. Results: Serum Lp-PLA2 activity was significantly increased in SS-L compared to both SS-nL and HC by two independent methods implemented [mean ± SD (nmol/min/ml): 62.0 ± 13.4 vs 47.6 ± 14.4 vs 50.7 ± 16.6, p-values: 0.003 and 0.04, respectively, and 19.4 ± 4.5 vs 15.2 ± 3.3 vs 14.5 ± 3.0, p-values: <0.0001, in both comparisons]. ROC analysis revealed that the serum Lp-PLA2 activity measured either by radioimmunoassay or ELISA has the potential to distinguish between SS-L and SS-nL patients (area under the curve [AUC]: 0.8022, CI [95%]: 0.64-0.96, p-value: 0.004 for radioimmunoassay, and AUC: 0.7696, CI [95%]: 0.66-0.88, p-value: <0.0001, for ELISA). Lp-PLA2 expression in MSG tissues was also increased in SS-L compared to SS-nL and SC at both mRNA and protein level. ROC analysis revealed that both MSG mRNA and protein Lp-PLA2 have the potential to distinguish between SS-nL and SS-L patients (area under the curve [AUC] values of 0.8490, CI [95%]: 0.71-0.99, p-value: 0.0019 and 0.9444, CI [95%]: 0.79-1.00, p- value: 0.0389 respectively). No significant difference in either serum Lp-PLA2 activity or MSG tissue expression was observed between SS-nL and HC. Conclusions: Lp-PLA2 serum activity and MSG tissue mRNA/protein expression could be a new biomarker and possibly a novel therapeutic target for B-cell lymphoproliferation in the setting of SS.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Linfoma/etiologia , Linfoma/patologia , Síndrome de Sjogren/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Adolescente , Adulto , Estudos de Casos e Controles , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Linfoma/sangue , Masculino , Pessoa de Meia-Idade , RNA Mensageiro/análise , Radioimunoensaio , Reação em Cadeia da Polimerase em Tempo Real , Síndrome de Sjogren/etiologia , Adulto Jovem
17.
Front Immunol ; 12: 670971, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093570

RESUMO

Purpose: Chronic obstructive pulmonary disease (COPD) is a complex and persistent lung disease and lack of biomarkers. The aim of this study is to screen and verify effective biomarkers for medical practice. Methods: Differential expressed genes analysis and weighted co-expression network analysis were used to explore potential biomarker. Gene Ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis and Gene set enrichment analysis (GSEA) analysis were used to explore potential mechanism. CIBERSORTx website was used to evaluate tissue-infiltrating immune cells. Enzyme-linked immunosorbent assay (ELISA) was used to assess the concentrations of the Lp-PLA2 in serum. Results: Ten genes were selected via combined DEGs and WGCNA. Furthermore, PLA2G7 was choose based on validation from independent datasets. Immune infiltrate and enrichment analysis suggest PLA2G7 may regulate immune pathway via macrophages. Next, Lp-PLA2(coded by PLA2G7 gene) level was upregulated in COPD patients, increased along with The Global Average of COPD (GOLD) stage. In additional, Lp-PLA2 level was significant correlate with FEV1/FVC, BMI, FFMI, CAT score, mMRC score and 6MWD of COPD patients. Finally, the predictive efficiency of Lp-PLA2 level (AUC:0.796) and derived nomogram model (AUC:0.884) in exercise tolerance was notably superior to that of the sit-to-stand test and traditional clinical features. Conclusion: Lp-PLA2 is a promising biomarker for COPD patients and is suitable for assessing exercise tolerance in clinical practice.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Pulmão/patologia , Macrófagos/fisiologia , Doença Pulmonar Obstrutiva Crônica/imunologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Biomarcadores/metabolismo , Conjuntos de Dados como Assunto , Exercício Físico , Ontologia Genética , Humanos , Inflamação/genética , Doença Pulmonar Obstrutiva Crônica/genética , Testes de Função Respiratória , Regulação para Cima
18.
Sci Rep ; 11(1): 6811, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762651

RESUMO

High rate of cardiovascular disease (CVD) has been reported among patients with coronavirus disease 2019 (COVID-19). Importantly, CVD, as one of the comorbidities, could also increase the risks of the severity of COVID-19. Here we identified phospholipase A2 group VII (PLA2G7), a well-studied CVD biomarker, as a hub gene in COVID-19 though an integrated hypothesis-free genomic analysis on nasal swabs (n = 486) from patients with COVID-19. PLA2G7 was further found to be predominantly expressed by proinflammatory macrophages in lungs emerging with progression of COVID-19. In the validation stage, RNA level of PLA2G7 was identified in nasal swabs from both COVID-19 and pneumonia patients, other than health individuals. The positive rate of PLA2G7 were correlated with not only viral loads but also severity of pneumonia in non-COVID-19 patients. Serum protein levels of PLA2G7 were found to be elevated and beyond the normal limit in COVID-19 patients, especially among those re-positive patients. We identified and validated PLA2G7, a biomarker for CVD, was abnormally enhanced in COVID-19 at both nucleotide and protein aspects. These findings provided indications into the prevalence of cardiovascular involvements seen in patients with COVID-19. PLA2G7 could be a potential prognostic and therapeutic target in COVID-19.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , COVID-19/metabolismo , Doenças Cardiovasculares/metabolismo , Macrófagos/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/sangue , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Biomarcadores/metabolismo , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/patologia , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/virologia , China/epidemiologia , Mineração de Dados/métodos , Humanos , Macrófagos/imunologia , Macrófagos/patologia , Polimorfismo de Nucleotídeo Único , SARS-CoV-2/isolamento & purificação , Ativação Transcricional , Regulação para Cima
19.
Mol Med Rep ; 23(5)2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33760156

RESUMO

Hydrogen sulfide (H2S) exerts an anti­atherosclerotic effect and decreases foam cell formation. Lipoprotein­associated phospholipase A2 (Lp­PLA2) is a key factor involved in foam cell formation. However, the association between H2S and Lp­PLA2 expression levels with respect to foam cell formation has not yet been elucidated. The present study investigated whether H2S can affect foam cell formation and potential signalling pathways via regulation of the expression and activity of Lp­PLA2. Using human monocytic THP­1 cells as a model system, it was observed that oxidized low­density lipoprotein (ox­LDL) not only upregulates the expression level and activity of Lp­PLA2, it also downregulates the expression level and activity of Cystathionine γ lyase. Exogenous supplementation of H2S decreased the expression and activity of Lp­PLA2 induced by ox­LDL. Moreover, ox­LDL induced the expression level and activity of Lp­PLA2 via activation of the p38MAPK signalling pathway. H2S blocked the expression levels and activity of Lp­PLA2 induced by ox­LDL via inhibition of the p38MAPK signalling pathway. Furthermore, H2S inhibited Lp­PLA2 activity by blocking the p38MAPK signaling pathway and significantly decreased lipid accumulation in ox­LDL­induced macrophages, as detected by Oil Red O staining. The results of the present study indicated that H2S inhibited ox­LDL­induced Lp­PLA2 expression levels and activity by blocking the p38MAPK signalling pathway, thereby improving foam cell formation. These findings may provide novel insights into the role of H2S intervention in the progression of atherosclerosis.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Cistationina gama-Liase/genética , Sulfeto de Hidrogênio/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Aterosclerose/tratamento farmacológico , Aterosclerose/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Células Espumosas/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Sulfeto de Hidrogênio/metabolismo , Lipoproteínas LDL/genética , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacologia , Macrófagos/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Monócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos
20.
PLoS One ; 16(3): e0249146, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33760887

RESUMO

Vascular remodeling and contraction contribute to the development of hypertension. We investigated the role of miR-212-5p and its downstream target in vascular smooth muscle cell (VSMC) proliferation, migration, and contraction. MicroRNA microarray and PCR analyses showed that miR-212-5p expression was increased with angiotensin II treatment in vivo and in vitro. Moreover, miR-212-5p mimic treatment attenuated and miR-212-5p inhibitor treatment increased VSMC proliferation and migration. Additionally, miR-212-5p mimic treatment suppressed VSMC contraction and related gene expression [Ras homolog gene family member A (RhoA) and Rho-associated protein kinase 2], while miR-212-5p inhibitor treatment exerted opposite effects. Bioinformatics analysis revealed that platelet-activating factor acetylhydrolase 1B2 (PAFAH1B2) is a target of miR-212-5p. miR-212-5p mimic treatment significantly reduced and miR-212-5p inhibitor treatment increased PAFAH1B2 expression. Furthermore, PAFAH1B2 expression was decreased in angiotensin II-treated aortic tissues and VSMCs. PAFAH1B2 was ubiquitously expressed in most adult rat tissues. In the vasculature, PAFAH1B2 was only distributed in the cytoplasm. PAFAH1B2 overexpression decreased A10 cell proliferation, while PAFAH1B2 knockdown increased A10 cell proliferation and cyclin D1 mRNA levels. PAFAH1B2 knockdown stimulated VSMC contraction and RhoA expression. These results suggest that miR-212-5p and PAFAH1B2 are novel negative regulators of VSMC proliferation, migration, and contraction in hypertension.


Assuntos
1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , MicroRNAs/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , 1-Alquil-2-acetilglicerofosfocolina Esterase/antagonistas & inibidores , 1-Alquil-2-acetilglicerofosfocolina Esterase/genética , Angiotensina II/farmacologia , Animais , Antagomirs/metabolismo , Movimento Celular , Proliferação de Células , Células Cultivadas , Ciclina D1/genética , Ciclina D1/metabolismo , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Hipertensão/metabolismo , Hipertensão/patologia , MicroRNAs/antagonistas & inibidores , MicroRNAs/genética , Contração Muscular/fisiologia , Músculo Liso Vascular/citologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ratos , Remodelação Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA