Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 365
Filtrar
1.
Zhongguo Zhong Yao Za Zhi ; 49(11): 3021-3030, 2024 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-39041162

RESUMO

This study aimed to investigate the protective effect and its underlying mechanism of n-butanol extract of Pulsatilla Decoction(BEPD) containing medicinal serum on vaginal epithelial cells under Candida glabrata stimulation via the epidermal growth factor receptor/mitogen activated protein kinase( EGFR/MAPK) pathway based on transcriptomics. A vulvovaginal candidiasis(VVC) mouse model was established first and transcriptome sequencing was performed for the vaginal mucosa tissues to analyze the gene expression differences among the control, VVC model, and BEPD intervention groups. Simultaneously, BEPD-containing serum and fluconazole-containing serum were prepared. A431 cells were divided into the control, model, blank serum, fluconazole-containing serum, BEPD-containing serum, EGFR agonist and EGFR inhibitor groups. Additionally, in vitro experiments were conducted using BEPD-containing serum, fluconazole-containing serum, and an EGFR agonist and inhibitor to investigate the intervention mechanisms of BEPD on C. glabrata-induced vaginal epithelial cell damage. Cell counting kit-8(CCK-8) assay was utilized to determine the safe concentrations of C. glabrata, drug-containing serum, and compounds on A431 cells. Enzyme-linked immunosorbent assay(ELISA)was employed to measure the expression levels of interleukin(IL)-1ß, IL-6, granulocyte-macrophage colony-stimulating factor(GMCSF), granulocyte CSF(G-CSF), chemokine(C-X-C motif) ligand 20(CCL20), and lactate dehydrogenase(LDH). Gram staining was used to evaluate the adhesion of C. glabrata to vaginal epithelial cells. Flow cytometry was utilized to assess the effect of C.glabrata on A431 cell apoptosis. Based on the transcriptomics results, immunofluorescence was performed to measure the expressions of p-EGFR and p-ERK1/2 proteins, while Western blot validated the expressions of p-EGFR, p-ERK1/2, p-C-Fos, p-P38, Bax and Bcl-2 proteins. Sequencing results showed that compared with the VVC model, BEPD treatment up-regulated 1 075 genes and downregulated 927 genes, mainly enriched in immune-inflammatory pathways, including MAPK. Mechanistically, BEPD significantly reduced the expression of p-EGFR, p-ERK1/2, p-C-Fos and p-P38, as well as the secretion of IL-1ß, IL-6, GM-CSF, G-CSF and CCL20, LDH release induced by C. glabrata, and the adhesion of C. glabrata to A431 cells, suggesting that BEPD exerts a protective effect on vaginal epithelial cells damaged by C. glabrata infection by modulating the EGFR/MAPK axis. In addition, BEPD downregulated the pro-apoptotic protein Bax expression and up-regulated the anti-apoptotic protein Bcl-2 expression, leading to a reduction in C. glabrata-induced cell apoptosis. In conclusion, this study reveals that the intervention of BEPD in C. glabrata-induced VVC may be attributed to its regulation of the EGFR/MAPK pathway, which protects vaginal epithelial cells.


Assuntos
Candida albicans , Células Epiteliais , Receptores ErbB , Pulsatilla , Vagina , Feminino , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Vagina/microbiologia , Vagina/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Camundongos , Humanos , Animais , Pulsatilla/química , Transcriptoma/efeitos dos fármacos , 1-Butanol/química , Medicamentos de Ervas Chinesas/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Substâncias Protetoras/farmacologia , Substâncias Protetoras/química , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Candida glabrata/efeitos dos fármacos , Candida glabrata/genética
2.
Zhongguo Zhong Yao Za Zhi ; 49(10): 2566-2574, 2024 May.
Artigo em Chinês | MEDLINE | ID: mdl-38812157

RESUMO

This study aims to investigate the mitigating effect and mechanism of Cichorium glandulosum n-butanol extraction site(CGE) on the disease in carbon tetrachloride(CCl_4)-induced chronic liver injury model in rats. A chronic liver injury model was constructed by subcutaneous injection of CCl_4 olive oil solution, and after four weeks of CGE treatment, serum levels of aspartate aminotransferase(AST), alanine aminotransferase(ALT), alkaline phosphatase(AKP), hydroxyproline(HYP), interleukin-4(IL-4), interleukin-6(IL-6), malondialdehyde(MDA), superoxide dismutase(SOD), and tumor necrosis factor-α(TNF-α) were detected. Liver tissue was processed by hematoxylin-eosin(HE) staining and Masson staining to observe the structure of the rat liver. qPCR and Western blot were used to examine the expression of transforming growth factor-ß1(TGF-ß1)/small mothers against decapentaplegic(Smad), Toll-like receptor 4(TLR4), α-smooth muscle actin(α-SMA), and fibronectin(Fn) in rat liver tissue and hepatic stellate-T6(HSC-T6) and evaluate the inhibitory effect of CGE on HSC activation. The results showed that CGE could significantly reduce the serum levels of AST, ALT, AKP, HYP, and affect the levels of related inflammatory indexes including IL-4, IL-6, and TNF-α, and MDA in CCl_4-induced chronic liver injury in rats and had no effect on SOD activity, which could delay the process of liver injury, alleviate the hepatic collagen deposition and inflammatory infiltration, and had significant efficacy in mitigating chronic liver injury in rats. CGE could inhibit α-SMA and TLR4 protein expression in the liver tissue and reverse the increased TGF-ß1/Smad, Fn, and TLR4-related expression in HSC-T6 in vitro. The above results indicated that CGE exerted hepatoprotective effects in rats by inhibiting HSC activation and alleviated CCl_4-induced chronic liver injury in rats and could ameliorate inflammatory response and slight liver fibrosis in rat liver tissue. Its pharmacodynamic mechanism might be related to TGF-ß1/Smad and TLR4-related expression.


Assuntos
Tetracloreto de Carbono , Fígado , Ratos Sprague-Dawley , Animais , Ratos , Tetracloreto de Carbono/efeitos adversos , Masculino , Fígado/metabolismo , Fígado/efeitos dos fármacos , Fígado/lesões , 1-Butanol/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/administração & dosagem , Humanos , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Superóxido Dismutase/metabolismo , Superóxido Dismutase/genética , Alanina Transaminase/sangue , Aspartato Aminotransferases/sangue , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Interleucina-6/genética , Interleucina-6/metabolismo , Malondialdeído/metabolismo , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Interleucina-4/genética , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Doença Hepática Induzida por Substâncias e Drogas/genética
3.
BMC Complement Med Ther ; 24(1): 122, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486187

RESUMO

BACKGROUND: The Convolvulus genus is distributed all over the world and has a long history in traditional medicine. As nanotechnology expands its reach into areas like drug delivery and biomedicine, this study intends to assess the potential of Convolvulus arvensis L. extracts as anti-bacterial, anti-inflammatory and anti-cancer agents, along with chemical profiling of the methanolic (MeOH) extract active ingredients. METHODS: The chemical composition of an 85% MeOH extract was investigated by liquid chromatography with an electrospray source connected to mass spectrometry (LC-ESI-MS). Both the 85% MeOH extract and n-butanol fraction of C. arvensis were loaded for the first time on alginate/chitosan nanoparticles. The 85% MeOH extract, n-butanol fraction and their loaded nanoparticles were tested for their cytotoxicity, anticancer, anti-inflammatory and antibacterial activity (against pathogenic bacteria, E. coli and S. aureus). RESULTS: The chemical investigation of 85% MeOH extract of C. arvensis underwent LC-ESI-MS analysis, revealing twenty-six phenolic substances, of which 16 were phenolic acids, 6 were flavonoids, 1 glycolipid, 1 sesquiterpene and 2 unknown compounds. The FT-IR spectra confirmed the encapsulation of the 85% MeOH extract and n-butanol fraction onto alginate/chitosan nanoparticles and small size obtained by TEM maintained them nontoxic and enhanced their anti-inflammatory activity (the IC50 was decreased from 1050 to 175 µg/ml). The anti-cancer activity against HepG2 was increased and the cell viability was decreased from 28.59 ± 0.52 to 20.80 ± 0.27 at a maximum concentration of 1000 µg/ml. In addition, the MIC of encapsulated extracts was decreased from 31.25 to7.78 µg/ml in E. coli (Gm-ve) and from 15.56 to 7.78 µg/ml in S. aureus (Gm + ve) bacteria. CONCLUSION: Both alginate and chitosan are excellent natural polymers for the encapsulation process, which affects positively on the bioactive constituents of C. arvensis extracts and improves their biological properties.


Assuntos
Anti-Infecciosos , Quitosana , Convolvulus , 1-Butanol , Quitosana/farmacologia , Escherichia coli , Espectroscopia de Infravermelho com Transformada de Fourier , Staphylococcus aureus , Alginatos , Anti-Inflamatórios , Metanol , Extratos Vegetais/farmacologia
4.
Int J Mol Sci ; 25(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38542218

RESUMO

This study addresses the pressing issues of energy production and consumption, in line with global sustainable development goals. Focusing on the potential of alcohols as "green" alternatives to traditional fossil fuels, especially in biofuel applications, we investigate the thermochemical properties of three alcohols (n-propanol, n-butanol, n-pentanol) blended with sunflower oil. The calorimetric analysis allows for the experimental determination of excess enthalpies in pseudo-binary mixtures at 303.15 K, revealing similarities in the trends of the curves (dependence on concentrations) but with different values for the excess enthalpies for each mixture. Despite the structural differences of the alcohols studied, the molar excess enthalpy values exhibit uniformity, suggesting consistent mixing behavior. The peak values of excess enthalpies for systems with sunflower oil and n-propanol, n-butanol and n-pentanol are, respectively, 3255.2 J/mole, 3297.4 J/mole and 3150.1 J/mole. Both the NRTL and Redlich-Kister equations show satisfactory agreement with the obtained values.


Assuntos
Álcoois , Biocombustíveis , Pentanóis , Álcoois/química , Óleo de Girassol , 1-Propanol , 1-Butanol
5.
Zhongguo Zhong Yao Za Zhi ; 49(2): 471-486, 2024 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-38403323

RESUMO

This study combined network pharmacology, molecular docking, and in vitro experiments to explore the potential mechanism of the active components of the n-butanol fraction of Wenxia Formula(NWXF) combined with gefitinib(GEF) in treating non-small cell lung cancer(NSCLC). Ultra-performance liquid chromatography-quadrupole Orbitrap mass spectrometry(UPLC-Q-Orbitrap MS) was employed to detect the main chemical components of NWXF. The active components of NWXF were retrieved from SwissADME, and the candidate targets of these active components were retrieved from SwissTargetPrediction. Online Mendelian Inheritance in Man(OMIM) and GeneCards were searched for the targets of NSCLC. Cytoscape 3.9.0 and STRING were employed to build the protein-protein interaction(PPI) network with the common targets shared by NWXF and NSCLC. Gene Ontology(GO) annotation and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment were performed in DAVID to predict the potential mechanisms. Finally, molecular docking between the main active ingredients and key targets was conducted in SYBYL-X 2.0. The methyl thiazolyl tetrazolium(MTT) assay was employed to evaluate the inhibitory effects of NWXF and/or GEF on the proliferation of human non-small cell lung cancer cells(A549 and PC-9). Additionally, the impact of NWXF on human embryonic lung fibroblast cells(MRC-5) was assessed. The effectiveness of the drug combination was evaluated based on the Q value. The terminal-deoxynucleoitidyl transferase mediated nick-end labeling(TUNEL) assay was employed to examine the apoptosis of A549 and PC-9 cells treated with NWXF and/or GEF. Quantitative real-time PCR(qRT-PCR) was employed to measure the mRNA levels of epidermal growth factor receptor(EGFR), c-Jun N-terminal kinase(JNK), and Bcl2-associated X protein(Bax) in the A549 and PC-9 cells treated with NWXF and/or GEF. Western blot was employed to determine the protein levels of EGFR, p-EGFR, JNK, p-JNK, and Bax in the A549 and PC-9 cells treated with NWXF and/or GEF. A total of 77 active components, 488 potential targets, and 49 key targets involved in the treatment of NSCLC with NWXF were predicted. The results of GO annotation showed that NWXF may treat NSCLC by regulating the biological processes such as cell proliferation, apoptosis, and protein phosphorylation. KEGG enrichment revealed that the key targets of NWXF in treating NSCLC were enriched in the mitogen-activated protein kinase(MAPK), phosphatidylinositol 3-kinase(PI3K)-protein kinase B(AKT), hypoxia-inducible factor-1(HIF-1), and microRNA-related signaling pathways. Molecular docking results showed that 91.9% of the docking scores were greater than 5, indicating the strong binding capability between main active components and key targets. The cell experiments demonstrated that NWXF combined with GEF synergistically inhibited the proliferation, promoted the apoptosis, decreased p-EGFR/EGFR and p-JNK/JNK values, down-regulated the mRNA levels of EGFR and JNK, and up-regulated the mRNA and protein levels of Bax in A549 and PC-9 cells. In conclusion, NWXF combined with GEF can regulate the EGFR/JNK pathway to promote the apoptosis of NSCLC cells, thus treating NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Medicamentos de Ervas Chinesas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Gefitinibe/farmacologia , 1-Butanol , Proteína X Associada a bcl-2 , Farmacologia em Rede , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Receptores ErbB , RNA Mensageiro , Medicamentos de Ervas Chinesas/farmacologia
6.
Ecotoxicol Environ Saf ; 272: 116055, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38340597

RESUMO

2-Methyl-1-butanol (2MB) and 3-Methyl-1-butanol (3MB) are microbial volatile organic compounds (VOCs) and found in indoor air. Here, we applied rice as a bioindicator to investigate the effects of these indoor microbial volatile pollutants. A remarkable decrease in germination percentage, shoot and root elongation, as well as lateral root numbers were observed in 3MB. Furthermore, ROS production increased by 2MB and 3MB, suggesting that pentanol isomers could induce cytotoxicity in rice seedlings. The enhancement of peroxidase (POD) and catalase (CAT) activity provided evidence that pentanol isomers activated the enzymatic antioxidant scavenging systems, with a more significant effect observed in 3MB. Furthermore, 3MB induced higher activity levels of glutathione (GSH), oxidized glutathione (GSSG), and the GSH/GSSG ratio in rice compared to the levels induced by 2MB. Additionally, qRT-PCR analysis showed more up-regulation in the expression of glutaredoxins (GRXs), peroxiredoxins (PRXs), thioredoxins (TRXs), and glutathione S-transferases (GSTUs) genes in 3MB. Taking the impacts of pentanol isomers together, the present study suggests that 3MB exhibits more cytotoxic than 2MB, as such has critical effects on germination and the early seedling stage of rice. Our results provide molecular insights into how isomeric indoor microbial volatile pollutants affect plant growth through airborne signals.


Assuntos
Poluentes Ambientais , Oryza , Antioxidantes/metabolismo , Plântula , Oryza/metabolismo , Pentanóis/metabolismo , Pentanóis/farmacologia , 1-Butanol/metabolismo , 1-Butanol/farmacologia , Poluentes Ambientais/metabolismo , Dissulfeto de Glutationa/metabolismo , Estresse Oxidativo , Glutationa/metabolismo , Raízes de Plantas/metabolismo
7.
Fitoterapia ; 173: 105825, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38219843

RESUMO

Vulvovaginal candidiasis (VVC) caused by Candida glabrata (C. glabrata) is more persistent and resistant to treatment than when caused by Candida albicans (C. albicans) and has been on the rise in recent years. The n-butanol extract of Pulsatilla Decoction (BEPD) has been shown to be effective in treating VVC caused by C. glabrata, but the underlying mechanism of action remains unclear. In this study, the experimenter conducted in vitro and in vivo experiments to explore the effects of BEPD on the virulence factors of C. glabrata, as well as its efficacy, with a focus on possible immunological mechanism in VVC caused by C. glabrata. The contents of Anemoside B4, Epiberberine, Berberine, Aesculin, Aesculetin, Phellodendrine and Jatrorrhizine in BEPD, detected by high-performance liquid chromatography, were 31,736.64, 13,529.66, 105,143.72, 19,406.20, 4952.67, 10,317.03, 2489.93 µg/g, respectively. In vitro experiments indicated that BEPD moderately inhibited the growth of C. glabrata, its adhesion, and biofilm formation, and affected the expression of efflux transporters in the biofilm state. In vivo experiments demonstrated that BEPD significantly reduced vaginal inflammatory manifestation and the release of proinflammatory cytokines and LDH in mice with VVC caused by C. glabrata. Moreover, it inhibited the Phosphorylation of EGFR, ERK, P38, P65, and C-Fos proteins. The results suggested that although BEPD moderately inhibits the growth and virulence factors of C. glabrata in vitro, it can significantly reduce vaginal inflammation by down-regulating the EGFR/MAPK signaling pathway in mice with VVC infected by C. glabrata.


Assuntos
Candidíase Vulvovaginal , Pulsatilla , Feminino , Humanos , Animais , Camundongos , Candidíase Vulvovaginal/tratamento farmacológico , Candida glabrata , 1-Butanol/farmacologia , Fatores de Virulência/farmacologia , Butanóis/farmacologia , Vagina , Estrutura Molecular , Candida albicans , Extratos Vegetais/farmacologia , Receptores ErbB/farmacologia , Antifúngicos/farmacologia
8.
J Microbiol Biotechnol ; 34(1): 94-102, 2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38282409

RESUMO

Plants contain a large number of phytochemical components, many of which are known as bioactive compounds and responsible for the expression of various pharmacological activities. The extract of Sonneratia caseolaris fruit collected in Vietnam was investigated for its total phenolic and total flavonoid contents using methanol solvent and different fractions of S. caseolaris fruits (hexane, ethyl acetate, n-butanol, and aqueous). GC-MS analysis was conducted to identify the bioactive chemical constituents occurring in the active extract. Further, the antibacterial activity was tested in vitro on bacterial isolates, namely Escherichia coli, Staphylococcus aureus, and Bacillus subtilis, using the disc diffusion method on tryptic soya agar (TSA) medium. The methanol extract showed high total flavonoid (82.3 ± 0.41 mg QE/g extract) and phenolic (41.0 ± 0.34 mg GAE/g extract) content. GC-MS of the methanol extract and different fractions of S. caseolaris fruits detected 20 compounds, principally fatty alcohols, fatty acids, phenols, lipids, terpenes derivatives, and carboxylic acids derivatives. A 50 mg/ml concentration of methanol extract had the strongest antibacterial activity on E. coli, S. aureus, and B. subtilis. Furthermore, ethyl acetate, aqueous, and n-butanol fractions inhibited S. aureus and B. subtilis the most. The results of the present study suggested that the fruits of S. caseolaris are rich sources of phenolic compounds that can contribute to safe and cost-effective treatments.


Assuntos
Acetatos , Frutas , Polifenóis , Polifenóis/análise , Polifenóis/farmacologia , Frutas/química , Extratos Vegetais/química , Metanol/química , Cromatografia Gasosa-Espectrometria de Massas , Staphylococcus aureus , Vietnã , 1-Butanol/farmacologia , Escherichia coli , Antioxidantes/farmacologia , Antibacterianos/farmacologia , Antibacterianos/análise , Fenóis/farmacologia , Flavonoides/farmacologia
9.
Int J Biol Macromol ; 254(Pt 1): 127699, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37913878

RESUMO

Polysaccharides as the biopolymers are showing various structural and modulatory functions. Effective separation of carbohydrate structures is essential to understanding their function. In this study, we choose an efficient organic acid in combination with recyclable organic solvent three-phase partitioning technology for the simultaneous extraction of polysaccharides from Ampelopsis japonica (AJPs) to ensure the integrity of linear and branched polysaccharide. The monosaccharide composition, glycosidic linkage information, structural and physicochemical analyses and associations with antioxidant activities were extensively analyzed. Synergistic extraction was compared with the conventional hot water extraction method and the results showed that AJPs-HNP exhibited better elastic properties and excellent antioxidant activity. Correlation analysis confirmed that the antioxidant activity of AJPs was significantly correlated with relative molecular weight, uronic acid content and terminal glycoside linkage molar ratios. The collaborative processing has significantly improved the utilization potential of AJPs and provides a sound theoretical foundation for the effective extraction and separation of polysaccharides. Overall, this work provides systematic and comprehensive scientific information on the physicochemical, rheological and antioxidant properties of AJPs, revealing their potential as natural antioxidants in the functional food and pharmaceutical industries.


Assuntos
Ampelopsis , Antioxidantes , Antioxidantes/farmacologia , Antioxidantes/química , 1-Butanol , Butanóis , Peso Molecular , Polissacarídeos/química
10.
Eur Arch Otorhinolaryngol ; 281(2): 805-816, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37843616

RESUMO

PURPOSE: The techniques to be performed for bullous middle turbinates are well-defined and widely accepted in the literature. However, in the case of solid middle turbinate hypertrophy, information on surgical techniques that take into account function and sense of smell is very limited in the literature. The aim of this study was to compare the airway patency and olfaction results of patients diagnosed with solid middle turbinate hypertrophy, who underwent subtotal (transverse) resection or medial flap turbinoplasty of the middle turbinates. METHODS: Thirty-five adult patients who were diagnosed with solid middle turbinate hypertrophy were divided into two groups, namely medial flap middle turbinoplasty (study group = 17) and transverse resection to the middle turbinate (control group = 18). Acoustic rhinometry, anterior rhinomanometry, peak nasal inspiratory flowmeter test, odor identification test, and n-butanol threshold measurements were performed before and 3 months after the surgery. In addition, preoperative and postoperative nasal obstruction and olfactory senses of the patients were evaluated with visual analog scale and nasal obstruction symptom evaluation scale. RESULTS: Visual analog scores for olfaction were significantly higher in the study group compared to the control group. In odor identification test, a significant improvement was observed in the study group, while a decrease was observed in the control group. While there was a decrease in the n-butanol thresholds values in the study group, there was an increase in the control group. CONCLUSIONS: Medial mucosal flap technique is an effective and functional turbinoplasty technique that can be used in solid hypertrophy of the middle turbinate, which offers advantages in terms of enhanced airway healing and olfactory results.


Assuntos
Obstrução Nasal , Conchas Nasais , Adulto , Humanos , Conchas Nasais/cirurgia , Olfato , Obstrução Nasal/cirurgia , 1-Butanol , Hipertrofia/cirurgia , Resultado do Tratamento
11.
Biomed Chromatogr ; 38(3): e5809, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38109869

RESUMO

Polygonum cognatum Meisn. (Polygonaceae) is used both as food and as a folk medicine to treat diabetes. This study aimed to evaluate the effect of the extracts, along with isolated compounds, from P. cognatum aerial parts on diabetes. In vitro studies were conducted using an α-glucosidase inhibitory assay, while in vivo antidiabetic studies were carried out on streptozotocin-induced diabetic rats. Effective extracts were subjected to isolation studies, and structures of the compounds were elucidated by spectroscopic methods. The ethyl acetate and n-butanol extracts had the highest effect in both in vitro and in vivo experiments. They also decreased aspartate transaminase, alanine transaminase and malondialdehyde levels, while increasing glutathione and superoxide dismutase activity in rats. From the active extracts, 11 phenolic compounds were isolated and characterized. Among the isolated compounds, quercetin was found to be the most active according to α-glucosidase inhibitory activity studies. This study provided scientific evidence for the traditional use of P. cognatum as a folk medicine for treating diabetes. The findings suggest that the ethyl acetate and n-butanol extracts, as well as quercetin, have the potential for development as antidiabetic agents.


Assuntos
Acetatos , Diabetes Mellitus Experimental , Polygonum , Ratos , Animais , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Antioxidantes/farmacologia , Polygonum/química , Diabetes Mellitus Experimental/tratamento farmacológico , Quercetina , 1-Butanol , alfa-Glucosidases , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Compostos Fitoquímicos/farmacologia
12.
Biomed Pharmacother ; 168: 115678, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37820564

RESUMO

Acute lung injury (ALI) is a serious illness with a high mortality rate of 40-60%. It is characterised by systemic inflammatory processes and oxidative stress. Gram-negative bacterial infections are the major cause of ALI, and lipopolysaccharide (LPS) is the major stimulus for the release of inflammatory mediators. Hence, there is an urgent need to develop new therapies which ameliorate ALI and prevent its serious consequences. The Middle Eastern native plant Tamarix nilotica (Ehrenb) Bunge belongs to the family Tamaricaceae, which exhibits strong anti-inflammatory and antioxidant effects. Thus, the current work aimed to ensure the plausible beneficial effects of T. nilotica different fractions on LPS-induced acute lung injury after elucidating their phytochemical constituents using LC/MS analysis. Mice were randomly allocated into six groups: Control saline, LPS group, and four groups treated with total extract, DCM, EtOAc and n-butanol fractions, respectively, intraperitoneal at 100 mg/kg doses 30 min before LPS injection. The lung expression of iNOS, TGF-ß1, NOX-1, NOX-4 and GPX-1 levels were evaluated. Also, oxidative stress was assessed via measurements of MDA, SOD and Catalase activity, and histopathological and immunohistochemical investigation of TNF-α in lung tissues were performed. T. nilotica n-butanol fraction caused a significant downregulation in iNOS, TGF-ß1, TNF-α, NOX-1, NOX-4, and MDA levels (p ˂ 0.05), and significantly elevated GPX-1 expression levels, SOD, and catalase activity (p ˂ 0.05), and alleviated all histopathological abnormalities confirming its advantageous role in ALI. The antibacterial activities of T. nilotica and its different fractions were investigated by agar well diffusion method and broth microdilution method. Interestingly, the n-butanol fraction exhibited the best antibacterial activity against Klebsiella pneumoniae clinical isolates. It also significantly reduced exopolysaccharide quantity, cell surface hydrophobicity, and biofilm formation.


Assuntos
Lesão Pulmonar Aguda , Tamaricaceae , Camundongos , Animais , Lipopolissacarídeos/efeitos adversos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Catalase/metabolismo , 1-Butanol/farmacologia , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Lesão Pulmonar Aguda/metabolismo , Pulmão , Antioxidantes/metabolismo , Estresse Oxidativo , Superóxido Dismutase/metabolismo
13.
Front Biosci (Landmark Ed) ; 28(8): 184, 2023 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-37664939

RESUMO

BACKGROUND: A previously unstudied medicinal plant, Leucophyllum frutescens (Berland.) I.M. Johnst. (Scrophulariaceae) was investigated to evaluate its potential in preventing and treating neurodegenerative diseases, including Alzheimer's disease. METHODS: Methanolic leaf extract (MELE) and its fractions (HELE, CHLE, and BULE) were evaluated for their polyphenolic content and antioxidant activity by five different methods, including in vitro enzyme inhibition assays, which are clinically linked to neurodegenerative diseases. The potentially active n-butanol fraction (BULE) was further evaluated for its neuroprotective effects using an albino rat animal model and phytoconstituents profiling using Liquid chromatography with tandem mass spectrometry (LC-MS/MS), and in silico molecular docking by Maestro® Schrödinger. RESULTS: The n-butanol fraction (BULE) in the hydroalcoholic leaf extract exhibited the highest total phenolic content (230.435 ± 1.575 mg gallic acid equivalent gm-1± SD). The chloroform leaf extract exhibited the highest total flavonoid content (293.343 ± 3.756 mg quercetin equivalent gm-1± SD) as well as the highest antioxidant content, which was equivalent to Trolox, with five assay methods. Similarly, the chloroform and n-butanol fractions from the hydroalcoholic leaf extract significantly inhibited human acetylcholinesterase and butyrylcholinesterase with their IC50 values of 12.14 ± 0.85 and 129.73 ± 1.14 µg∙mL-1, respectively. The in vivo study revealed that BULE exhibited a significant neuroprotective effect at doses of 200 and 400 mg/kg/day in an aluminum chloride-induced neurodegenerative albino rat model. The LC-MS/MS analysis of BULE tentatively confirmed the presence of biologically active secondary metabolites, such as theobromine, propyl gallate, quercetin-3-O-glucoside, myricetin-3-acetylrhamnoside, isoquercitrin-6'-O-malonate, diosmetin-7-O-glucuronide-3'-O-pentose, pinoresinol diglucoside, asarinin, eridictoyl, epigallocatechin, methyl gallate derivative, and eudesmin. The results from the computational molecular docking of the identified secondary metabolites revealed that diosmetin-7-O-glucuronide-3'-O-pentose had the highest binding affinity to human butyrylcholinesterase, while isoquercetin-6'-O-malonate had the highest to human acetylcholinesterase, and pinoresinol diglucoside to human salivary alpha-amylase. CONCLUSIONS: The present study concluded a need for further exploration into this medicinal plant, including the isolation of the bioactive compounds responsible for its neuroprotective effects.


Assuntos
Fármacos Neuroprotetores , Scrophulariaceae , Ratos , Animais , Humanos , Antioxidantes/farmacologia , Neuroproteção , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase , Cloreto de Alumínio , Butirilcolinesterase , 1-Butanol , Clorofórmio , Cromatografia Líquida , Glucuronídeos , Simulação de Acoplamento Molecular , Espectrometria de Massas em Tandem , Hipocampo , Extratos Vegetais/farmacologia
14.
Artigo em Inglês | MEDLINE | ID: mdl-37619519

RESUMO

Vaccariae Semen, derived from the dried ripe seed of Vaccaria segetalis (Neck.) Garcke, has various therapeutic characteristics in traditional Chinese medicine (TCM), containing promoting blood circulation and unblocking meridians. It exhibits significant anti-cancer activity and is therapeutically utilized to treat and reduce chemotherapy adverse effects in cancer patients, notably those with lung cancer. However, the active ingredients responsible for its anti-lung cancer efficacy remain unknown. In this study, we used A549 cell fishing in conjunction with UHPLC-LTQ Orbitrap MS to screen for anti-lung cancer active components in Vaccariae Semen. The cell counting Kit-8 (CCK-8) assay revealed that the n-butanol extract substantially reduced A549 cell growth. Through the cell fishing assay, we found 14 A549 cell-binding compounds in the n-butanol extract, all of which were identified as triterpenoid saponins. The total saponins of Vaccariae Semen were subsequently purified using macroporous adsorption resin (MAR), and they showed a significant inhibitory effect on the proliferation of A549 lung cancer cells, as well as alterations in cell morphology, apoptosis, and fragmentation. In conclusion, saponins were discovered as the key active components responsible for the anti-lung cancer activity of Vaccariae Semen.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Humanos , 1-Butanol , Células A549 , Cromatografia Líquida de Alta Pressão , Neoplasias Pulmonares/tratamento farmacológico , Sementes
15.
Life Sci ; 329: 121925, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37423377

RESUMO

AIM: The prevalence of metabolic syndrome (MetS), a cluster of serious medical conditions that raise the risk of lung cancer, has increased worldwide. Tobacco smoking (TS) potentially increases the risk of developing MetS. Despite the potential association of MetS with lung cancer, preclinical models that mimic human diseases, including TS-induced MetS, are limited. Here we evaluated the impact of exposure to tobacco smoke condensate (TSC) and two representative tobacco carcinogens, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol (NNK) and benzo[a]pyrene (BaP), on MetS development in mice. MATERIALS AND METHODS: FVB/N or C57BL/6 mice were exposed to vehicle, TSC, or NNK and BaP (NB) twice weekly for 5 months. The serum levels of total cholesterol (TCHO), triglycerides, high-density lipoprotein (HDL), blood glucose, and metabolites, along with glucose tolerance and body weight, were measured. KEY FINDINGS: Compared with those of vehicle-treated mice, mice with TSC or NB exposure displayed major phenotypes associated with MetS, including increased serum levels of TCHO, triglycerides, and fasting and basal blood glucose and decreased glucose tolerance, and serum levels of HDL. These MetS-associated changes were found in both FVB/N and C57BL/6 mice that were susceptible or resistant to carcinogen-induced tumorigenesis, respectively, indicating that tumor formation is not involved in the TSC- or NB-mediated MetS. Moreover, oleic acid and palmitoleic acid, which are known to be associated with MetS, were significantly upregulated in the serum of TSC- or NB-treated mice compared with those in vehicle-treated mice. SIGNIFICANCE: Both TSC and NB caused detrimental health problems, leading to the development of MetS in experimental mice.


Assuntos
Neoplasias Pulmonares , Síndrome Metabólica , Nitrosaminas , Camundongos , Animais , Humanos , Benzo(a)pireno/toxicidade , 1-Butanol/efeitos adversos , Glicemia , Síndrome Metabólica/induzido quimicamente , Camundongos Endogâmicos C57BL , Nitrosaminas/toxicidade , Nitrosaminas/metabolismo , Carcinógenos/toxicidade , Carcinógenos/metabolismo , Neoplasias Pulmonares/induzido quimicamente
16.
Molecules ; 28(13)2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37446686

RESUMO

In this study, we investigated in vitro the potential of Trichoderma harzianum to produce bioactive secondary metabolites that can be used as alternatives to synthetic compounds. The study focused on analyzing two extracts of T. harzianum using ethyl acetate and n-butanol solvents with different polarities. The extracts were examined using phytochemical analysis to determine the content of polyphenols, flavonoids, tannins, and alkaloids. Thin-layer chromatography (TLC) and Gas chromatography-mass spectroscopy (GC-MS) analysis were used to profile volatile organic metabolites (VOCs) present in the extracts. Furthermore, the extracts were tested for their antifungal ability using the poison food technique. For measuring antioxidant activity, the 1,1-diphenyl-2-picryl-hydrazyl (DPPH) test was used. Trichoderma harzianum was shown to have a significantly high content of tannins and alkaloids, with a noticeable difference between the two extracts. GC-MS analysis identified 33 potential compounds with numerous benefits that could be used in agriculture and the medicinal industry. Moreover, strong antifungal activity was identified against Sclerotinia sclerotiorum by 94.44%, Alternaria sp. by 77.04%, and Fusarium solani by 51.48; similarly, the IC50 of antioxidant activity was estimated for ethyl acetate extract by 71.47% and n-butanol extract by 56.01%. This leads to the conclusion that Trichoderma harzianum VOCs play a significant role as an antifungal and antioxidant agent when taking into account the advantageous bioactive chemicals noted in the extracts. However, to our knowledge, this is the first study in Algeria presenting detailed phytochemical analysis and GC-MS profiling of Trichoderma harzianum for two extracts, ethyl acetate and n-butanol.


Assuntos
Antifúngicos , Trichoderma , Antifúngicos/química , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , 1-Butanol , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/metabolismo , Taninos/metabolismo , Extratos Vegetais/química , Trichoderma/metabolismo
17.
Anal Methods ; 15(31): 3843-3853, 2023 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-37493089

RESUMO

One of the most serious problems in waste biodegradation and biofuel production is the lack of adequate systems for monitoring reaction media. It has been demonstrated that the bacteriorhodopsin of Halobacterium salinarum is capable of generating photoelectric signals that can be modulated as a function of a chemical environment containing ethanol, methanol, propanol or butanol. The chemical modification of retinal (proton substitution with a fluorine atom at the 10, 12, or 14 position) and genetic modification of protein (aspartic acid 96 substituted with asparagine) may enhance the responses of bacteriorhodopsin systems. The responses of single elements to alcohols form characteristic response patterns. These patterns constitute the basis for the construction of the biosensor, a bacteriorhodopsin multisensor system equipped with artificial neural network methodology for monitoring these alcohols under extreme environmental conditions such as high or low pH and high temperature. It is, to the author's knowledge, the first time that the application of a constructed biosensor for monitoring thermophilic (55 °C) production of ethanol during paper and pulp wastewater degradation and thermophilic (55 °C) methanol digestion in methanol-rich wastewater from pulp and paper factories has been presented.


Assuntos
Bacteriorodopsinas , Metanol , Metanol/metabolismo , Butanóis , Etanol/metabolismo , Bacteriorodopsinas/metabolismo , 1-Propanol , Águas Residuárias , 1-Butanol
18.
J Ethnopharmacol ; 316: 116689, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37315642

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Traditional Chinese medicine has accumulated valuable experience in the treatment of inflammatory diseases caused by Ferroptosis. Jing Jie and Fang Feng are two warm acrid exterior-resolving medicinal herbs that play an important role in the prevention and treatment of inflammatory diseases. The pairing of the two forms a drug pair (Jing-Fang) that shows significant advantages in fighting oxidative stress and inflammation. Whereas, the underlying mechanism needs to be further improved. AIM OF THE STUDY: In this study, the anti-inflammatory effect of Jing-Fang n-butanol extract (JFNE) and its isolate C (JFNE-C) on LPS-induced RAW264.7 cells and the regulation effect on ferroptosis were investigated, and also the mechanism of STAT3/p53/SLC7A11 signal pathway-related to ferroptosis. MATERIALS AND METHODS: Jing-Fang n-butanol extract (JFNE) and its active isolate (JFNE-C) were extracted and isolated. LPS-induced inflammation model in RAW264.7 cells was established to assess the anti-inflammatory effect and ferroptosis mechanism of JFNE and JFNE-C. The levels of interleukin 6 (IL-6), interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) were measured. The activity levels of antioxidant substances such as glutathione (GSH), glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) were measured. Flow cytometry, immunofluorescence and transmission electron microscopy were used to assess ROS level, ferrous iron content and mitochondrial morphological changes. Through administration of Ferrostatin-1 (Fer-1), an ferroptosis inhibitor, to verify the role of JFNE and JFNE-C in regulating ferroptosis in resistance to the inflammatory response. Western blotting was used to determine whether the JFNE and JFNE-C exerted effectiveness by modulating the STAT3/p53/SLC7A11 signaling pathway. In addition, the important role of STAT3/p53/SLC7A11 signaling pathway in drug regulation of ferroptosis and inflammatory response was further validated by administration of S3I-201 (STAT3 inhibitor). Finally, high performance liquid chromatography-mass spectrometry (HPLC-MS) was used to determine the major active components of JFNE and JFNE-C. RESULTS: The results showed that treated with JFNE-C significantly reduced the contents of interleukin 6 (IL-6), interleukin 1ß (IL-1ß) and tumor necrosis factor α (TNF-α) in the supernatant of LPS-induced RAW264.7 cells. The pretreatment with JFNE and JFNE-C significantly decreased intracellular oxidative stress levels, including reductions of ROS and MDA levels, and increases of GSH-Px, SOD and GSH levels. In addition, JFNE and JFNE-C obviously reduced intracellular ferrous iron level, and JFNE-C was effective in alleviating mitochondrial damage which includes mitochondrial shrinkage, increase of mitochondrial membrane density and reduction and absence of cristae. Further results indicated that JFNE-C showed a reduction of p53 and p-p53 protein levels in LPS-induced RAW264.7 cells, while significantly increasing the protein expression levels of STAT3, p-STAT3, SLC7A11 and GPX4. Besides, JFNE-C contains key active substances such as 5-O-Methylvisammioside, Hesperidin and Luteolin. Remarkably, this is different from JFNE, which is rich in nutrients such as sucrose, choline and various amino acids. CONCLUSION: These results suggest that JFNE and JFNE-C may exert anti-inflammatory effect through activating the STAT3/p53/SLC7A11 signaling pathway to inhibit ferroptosis.


Assuntos
1-Butanol , Ferroptose , Humanos , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Interleucina-1beta/metabolismo , Lipopolissacarídeos/toxicidade , Butanóis , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Transdução de Sinais , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Superóxido Dismutase/metabolismo
19.
PLoS One ; 18(6): e0287147, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310979

RESUMO

OBJECTIVE: To identify the most effective fraction of Nanocnide lobata in the treatment of burn and scald injuries and determine its bioactive constituents. METHODS: Chemical identification methods were used to analyze solutions extracted from Nanocnide lobata using petroleum ether, ethyl acetate, n-butanol using a variety of color reactions. The chemical constituents of the extracts were identified by ultra-performance liquid chromatography (UPLC)-mass spectrometry (MS). A total of 60 female mice were randomly divided into the following 6 groups: the petroleum ether extract-treated group; the ethyl acetate extract-treated group; the n-butanol extract-treated group; the model group; the control group; and the positive drug group. The burn/scald model was established using Stevenson's method. At 24 hours after modeling, 0.1 g of the corresponding ointment was evenly applied to the wound in each group. Mice in the model group did not undergo treatment, while those in the control group received 0.1 g of Vaseline. Wound characteristics, including color, secretions, hardness, and swelling, were observed and recorded. Photos were taken and the wound area calculated on the 1st, 5th, 8th, 12th, 15th, 18th and 21st days. Hematoxylin-eosin (HE) staining was utilized to observe the wound tissue of mice on the 7th, 14th, and 21st days. An enzyme-linked immunosorbent assay (ELISA) kit was used to measure the expression of tumor necrosis factor (TNF)-α, interleukin (IL)-10, vascular endothelial growth factor (VEGF) and transforming growth factor (TGF)-ß1. RESULTS: The chemical constituents of Nanocnide lobata mainly include volatile oils, coumarins, and lactones. UPLC-MS analysis revealed 39 main compounds in the Nanocnide lobata extract. Among them, ferulic acid, kaempferitrin, caffeic acid, and salicylic acid have been confirmed to exhibit anti-inflammatory and antioxidant activity related to the treatment of burns and scalds. HE staining revealed a gradual decrease in the number of inflammatory cells and healing of the wounds with increasing time after Nanocnide lobata extract administration. Compared with the model group, the petroleum ether extract-treated group showed significant differences in the levels of TNF-α (161.67±4.93, 106.33±3.21, 77.67±4.04 pg/mL) and IL-10 (291.77±4.93, 185.09±9.54, 141.33±1.53 pg/mL) on the 7th, 14th, and 21st days; a significant difference in the content of TGF-ß1 (75.68±3.06 pg/mL) on the 21st day; and a significant difference in the level of VEGF (266.67±4.73, 311.33±10.50 pg/mL) on the 7th and 14th days respectively. CONCLUSION: Petroleum ether Nanocnide lobata extract and the volatile oil compounds of Nanocnide lobata might be effective drugs in the treatment of burn and scald injuries, as they exhibited a protective effect on burns and scalds by reducing the expression of TNF-α, IL-10 and TGF-ß1 and increasing the expression of VEGF. In addition, these compounds may also exert pharmacological effects that promote wound tissue repair, accelerate wound healing, and reduce scar tissue proliferation, inflammation and pain.


Assuntos
Queimaduras , Interleucina-10 , Feminino , Animais , Camundongos , Fator de Crescimento Transformador beta1 , Fator A de Crescimento do Endotélio Vascular , 1-Butanol , Cromatografia Líquida , Fator de Necrose Tumoral alfa , Espectrometria de Massas em Tandem , Queimaduras/tratamento farmacológico
20.
BMC Complement Med Ther ; 23(1): 169, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37226153

RESUMO

BACKGROUND: Cancer represents one of the biggest healthcare issues confronting humans and one of the big challenges for scientists in trials to dig into our nature for new remedies or to develop old ones with fewer side effects. Halophytes are widely distributed worldwide in areas of harsh conditions in dunes, and inland deserts, where, to cope with those conditions they synthesize important secondary metabolites highly valued in the medical field. Several Tamarix species are halophytic including T.nilotica which is native to Egypt, with a long history in its tradition, found in its papyri and in folk medicine to treat various ailments. METHODS: LC-LTQ-MS-MS analysis and 1H-NMR were used to identify the main phytoconstituents in the n- butanol fraction of T.nilotica flowers. The extract was tested  in vitro for its cytotoxic effect against breast (MCF-7) and liver cell carcinoma (Huh-7) using SRB assay. RESULTS: T.nilotica n-butanol fraction of the flowers was found to be rich in phenolic content, where, LC-LTQ-MS-MS allowed the tentative identification of thirty-nine metabolites, based on the exact mass, the observed spectra fragmentation patterns, and the literature data, varying between tannins, phenolic acids, and flavonoids. 1H-NMR confirmed the classes tentatively identified. The in-vitro evaluation of the n-butanol fraction showed lower activity on MCF-7 cell lines with IC50 > 100 µg/mL, while the higher promising effect was against Huh-7 cell lines with an IC50= 37 µg/mL. CONCLUSION: Our study suggested that T.nilotica flowers' n-butanol fraction is representing a promising cytotoxic candidate against liver cell carcinoma having potential phytoconstituents with variable targets and signaling pathways.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Neoplasias Hepáticas , Tamaricaceae , Humanos , 1-Butanol , Flores , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA