Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Chem Biol ; 15(7): 1826-1834, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32568510

RESUMO

The steady increase in the prevalence of multidrug-resistant Staphylococcus aureus has made the search for novel antibiotics to combat this clinically important pathogen an urgent matter. In an effort to discover antibacterials with new chemical structures and mechanisms, we performed a growth inhibition screen of a synthetic library against S. aureus and discovered a promising scaffold with a 1,3,5-oxadiazin-2-one core. These compounds are potent against both methicillin-sensitive and methicillin-resistant S. aureus strains. Isolation of compound-resistant strains followed by whole genome sequencing revealed its cellular target as FabH, a key enzyme in bacterial fatty acid synthesis. Detailed mechanism of action studies suggested the compounds inhibit FabH activity by covalently modifying its active site cysteine residue with high selectivity. A crystal structure of FabH protein modified by a selected compound Oxa1 further confirmed covalency and suggested a possible mechanism for reaction. Moreover, the structural snapshot provided an explanation for compound selectivity. On the basis of the structure, we designed and synthesized Oxa1 derivatives and evaluated their antibacterial activity. The structure-activity relationship supports the hypothesis that noncovalent recognition between compounds and FabH is critical for the activity of these covalent inhibitors. We believe further optimization of the current scaffold could lead to an antibacterial with potential to treat drug-resistant bacteria in the clinic.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Antibacterianos/farmacologia , Inibidores Enzimáticos/farmacologia , Oxazinas/farmacologia , Antibacterianos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Ácido Graxo Sintase Tipo II/antagonistas & inibidores , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxazinas/síntese química , Relação Estrutura-Atividade
2.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987239

RESUMO

Phloretin is a natural chalcone with antibacterial and anti-inflammatory effects. This study investigated the anti-acne activity of phloretin against Propionibacterium acnes-induced skin infection and the potential target proteins of its anti-inflammatory and antibacterial effects. Phloretin potently inhibited the growth of P. acnes and P. acnes-induced Toll-like receptor (TLR) 2-mediated inflammatory signaling in human keratinocytes. Secreted embryonic alkaline phosphatase assay confirmed that the anti-inflammatory activity of phloretin is associated with the P. acnes-stimulated TLR2-mediated NF-κB signaling pathway. Phloretin significantly decreased the level of phosphorylated c-Jun N-terminal kinase (JNK), showing a binding affinity of 1.184 × 10-5 M-1. We also found that phloretin binds with micromolar affinity to P. acnes ß-ketoacyl acyl carrier protein (ACP) synthase III (KAS III), an enzyme involved in fatty acid synthesis. Conformation-sensitive native polyacrylamide gel electrophoresis showed that phloretin reduced KAS III-mediated 3-ketoacyl ACP production by over 66%. A docking study revealed that phloretin interacts with the active sites of JNK1 and KAS III, suggesting their involvement in P. acnes-induced inflammation and their potential as targets for the antibacterial activity of phloretin. These results demonstrate that phloretin may be useful in the prevention or treatment of P. acnes infection.


Assuntos
Antibacterianos/farmacologia , Infecções por Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Floretina/farmacologia , Propionibacterium acnes/efeitos dos fármacos , Dermatopatias Bacterianas/metabolismo , Dermatopatias Bacterianas/microbiologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Antibacterianos/química , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Floretina/química , Propionibacterium acnes/enzimologia , Propionibacterium acnes/imunologia , Ligação Proteica , Dermatopatias Bacterianas/tratamento farmacológico , Relação Estrutura-Atividade , Receptor 2 Toll-Like/metabolismo
3.
Bioorg Med Chem ; 25(1): 372-380, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27840136

RESUMO

To discover potent antibiotics against the Gram-negative bacteria, we performed a structure-activity relationship (SAR) study of YKsa-6, which was the most potent inhibitor of Staphylococcus aureus ß-ketoacyl acyl carrier protein III in our previous study. We identified and selected 11 candidates, and finally screened two active compounds, YKab-4 (4-[(3-chloro-4-methylphenyl)aminoiminomethyl]benzene-1,3-diol) and YKab-6 (4-[[3-(trifluoromethyl)phenyl]aminoiminomethyl]phenol) as inhibitors of Acinetobacter baumannii KAS III (abKAS III). They showed potent antimicrobial activities at 2 or 8 µg/mL, specifically against Acinetobacter baumannii and a strong binding affinity for abKAS III. From the homology modeling, we defined the three-dimensional (3D) structure of abKAS III for the first time and found that it had an extra loop region compared with common Gram-negative bacteria derived KAS IIIs. The docking study revealed that the hydroxyl groups of inhibitors formed extensive hydrogen bonds and the complicated hydrophobic and cation-stacking interactions are important to binding with abKAS III. We confirmed that the hydrophobicity of these compounds might be the essential factor for their antimicrobial activities against Gram-negative bacteria as well as their structural rigidity, a cooperative feature for retaining the hydrophobic interactions between abKAS III and its inhibitors. This study may provide an insight developing strategies for potent antibiotics against A. baumannii.


Assuntos
Acinetobacter baumannii/efeitos dos fármacos , Antibacterianos/farmacologia , Avaliação Pré-Clínica de Medicamentos , Hidrazonas/farmacologia , Fenóis/farmacologia , Resorcinóis/farmacologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Animais , Antibacterianos/química , Anti-Inflamatórios não Esteroides/química , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular Tumoral , Hidrazonas/química , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Camundongos , Simulação de Acoplamento Molecular , Nitritos/metabolismo , Fenóis/química , RNA Mensageiro/metabolismo , Resorcinóis/química , Relação Estrutura-Atividade
4.
Sci Rep ; 5: 11213, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26063537

RESUMO

The beta-ketoacyl-ACP synthase II (KASII) is an enzyme in fatty acid biosynthesis, catalyzing the elongation of 16:0-acyl carrier protein (ACP) to 18:0-ACP in plastids. Mutations in KASII genes in higher plants can lead to lethality, which makes it difficult to utilize the gene for lipid metabolic engineering. We demonstrated previously that transient expression of plastid-directed fatty acyl reductases and wax ester synthases could result in different compositions of wax esters. We hypothesized that changing the ratio between C16 (palmitoyl-compounds) and C18 (stearoyl-compounds) in the plastidic acyl-ACP pool by inhibition of KASII expression would change the yield and composition of wax esters via substrate preference of the introduced enzymes. Here, we report that transient inhibition of KASII expression by three different RNAi constructs in leaves of N. benthamiana results in almost complete inhibition of KASII expression. The transient RNAi approach led to a shift of carbon flux from a pool of C18 fatty acids to C16, which significantly increased wax ester production in AtFAR6-containing combinations. The results demonstrate that transient inhibition of KASII in vegetative tissues of higher plants enables metabolic studies towards industrial production of lipids such as wax esters with specific quality and composition.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Inativação Gênica , Engenharia Metabólica , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Sintase do Amido/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Sequência de Bases , Ésteres , Ácidos Graxos/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/metabolismo , Interferência de RNA , Alinhamento de Sequência , Transcrição Gênica , Triglicerídeos/metabolismo
5.
J Biol Chem ; 289(24): 17184-94, 2014 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-24784139

RESUMO

4-Methylene-2-octyl-5-oxotetrahydrofuran-3-carboxylic acid (C75) is a synthetic fatty-acid synthase (FASN) inhibitor with potential therapeutic effects in several cancer models. Human mitochondrial ß-ketoacyl-acyl carrier protein synthase (HsmtKAS) is a key enzyme in the newly discovered mitochondrial fatty acid synthesis pathway that can produce the substrate for lipoic acid (LA) synthesis. HsmtKAS shares conserved catalytic domains with FASN, which are responsible for binding to C75. In our study, we explored the possible effect of C75 on HsmtKAS and mitochondrial function. C75 treatment decreased LA content, impaired mitochondrial function, increased reactive oxygen species content, and reduced cell viability. HsmtKAS but not FASN knockdown had an effect that was similar to C75 treatment. In addition, an LA supplement efficiently inhibited C75-induced mitochondrial dysfunction and oxidative stress. Overexpression of HsmtKAS showed cellular protection against low dose C75 addition, whereas there was no protective effect upon high dose C75 addition. In summary, the mitochondrial fatty acid synthesis pathway has a vital role in mitochondrial function. Besides FASN, C75 might also inhibit HsmtKAS, thereby reducing LA production, impairing mitochondrial function, and potentially having toxic effects. LA supplements sufficiently ameliorated the toxicity of C75, showing that a combination of C75 and LA may be a reliable cancer treatment.


Assuntos
4-Butirolactona/análogos & derivados , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Mitocôndrias/efeitos dos fármacos , Ácido Tióctico/biossíntese , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , 4-Butirolactona/farmacologia , Sobrevivência Celular , Ácido Graxo Sintase Tipo I/metabolismo , Células HEK293 , Humanos , Mitocôndrias/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Expert Opin Ther Pat ; 24(1): 19-27, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24083428

RESUMO

INTRODUCTION: Fatty acid biosynthesis is essential for the bacterial viability and growth. In recent years, ß-ketoacyl-acyl carrier protein synthase III (FabH) become an attractive new target, which catalyzes the first step of fatty acid biosynthesis, and FabH inhibitors could be potential candidates for antibacterial agents. In this review, recent advances in the research of FabH inhibitors are reviewed. AREAS COVERED: This updated review summarized new patents and articles publications on FabH inhibitors within July 2012 to June 2013. EXPERT OPINION: The review gives the latest development in the area of FabH inhibitors which aim to solve the bacterial resistance. The potent antibacterial activities of the selected compounds are probably correlated to their FabH inhibitory. Molecular docking of the most potent compound in every kind of compounds against FabH was also reviewed to explore the binding mode of the compound at the active site.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Proteínas de Bactérias/antagonistas & inibidores , Desenho de Fármacos , Inibidores Enzimáticos/farmacologia , Terapia de Alvo Molecular , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Animais , Antibacterianos/química , Bactérias/enzimologia , Bactérias/crescimento & desenvolvimento , Proteínas de Bactérias/metabolismo , Resistencia a Medicamentos Antineoplásicos , Inibidores Enzimáticos/química , Humanos , Legislação de Medicamentos , Simulação de Acoplamento Molecular , Estrutura Molecular , Patentes como Assunto , Relação Estrutura-Atividade
7.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 10): 1359-70, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22993090

RESUMO

Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS(SA)), Vibrio cholerae (AcpS(VC)) and Bacillus anthracis (AcpS(BA)) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS(BA) is emphasized because of the two 3',5'-adenosine diphosphate (3',5'-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3',5'-ADP is bound as the 3',5'-ADP part of CoA in the known structures of the CoA-AcpS and 3',5'-ADP-AcpS binary complexes. The position of the second 3',5'-ADP has never been described before. It is in close proximity to the first 3',5'-ADP and the ACP-binding site. The coordination of two ADPs in AcpS(BA) may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Bacillus anthracis/enzimologia , Proteínas de Bactérias/química , Staphylococcus aureus/enzimologia , Vibrio cholerae/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Apoenzimas/química , Bacillus anthracis/patogenicidade , Proteínas de Bactérias/antagonistas & inibidores , Catálise , Cristalografia por Raios X , Holoenzimas/química , Staphylococcus aureus/patogenicidade , Vibrio cholerae/patogenicidade
8.
Biochemistry ; 50(49): 10678-86, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22017312

RESUMO

ß-Ketoacyl-ACP synthase (KAS) enzymes catalyze Claisen condensation reactions in the fatty acid biosynthesis pathway. These reactions follow a ping-pong mechanism in which a donor substrate acylates the active site cysteine residue after which the acyl group is condensed with the malonyl-ACP acceptor substrate to form a ß-ketoacyl-ACP. In the priming KASIII enzymes the donor substrate is an acyl-CoA while in the elongating KASI and KASII enzymes the donor is an acyl-ACP. Although the KASIII enzyme in Escherichia coli (ecFabH) is essential, the corresponding enzyme in Mycobacterium tuberculosis (mtFabH) is not, suggesting that the KASI or II enzyme in M. tuberculosis (KasA or KasB, respectively) must be able to accept a CoA donor substrate. Since KasA is essential, the substrate specificity of this KASI enzyme has been explored using substrates based on phosphopantetheine, CoA, ACP, and AcpM peptide mimics. This analysis has been extended to the KASI and KASII enzymes from E. coli (ecFabB and ecFabF) where we show that a 14-residue malonyl-phosphopantetheine peptide can efficiently replace malonyl-ecACP as the acceptor substrate in the ecFabF reaction. While ecFabF is able to catalyze the condensation reaction when CoA is the carrier for both substrates, the KASI enzymes ecFabB and KasA have an absolute requirement for an ACP substrate as the acyl donor. Provided that this requirement is met, variation in the acceptor carrier substrate has little impact on the k(cat)/K(m) for the KASI reaction. For the KASI enzymes we propose that the binding of ecACP (AcpM) results in a conformational change that leads to an open form of the enzyme to which the malonyl acceptor substrate binds. Finally, the substrate inhibition observed when palmitoyl-CoA is the donor substrate for the KasA reaction has implications for the importance of mtFabH in the mycobacterial FASII pathway.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Escherichia coli/enzimologia , Mycobacterium tuberculosis/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Coenzima A/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Cinética , Dados de Sequência Molecular , Mutação , Palmitoil Coenzima A/metabolismo , Panteteína/análogos & derivados , Panteteína/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Especificidade por Substrato
9.
Biochemistry ; 50(25): 5743-56, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21615093

RESUMO

KasA (ß-ketoacyl ACP synthase I) is involved in the biosynthetic pathway of mycolic acids, an essential component of the cell wall in Mycobacterium tuberculosis. It was shown that KasA is essential for the survival of the pathogen and thus could serve as a new drug target for the treatment of tuberculosis. The active site of KasA was previously characterized by X-ray crystallography. However, questions regarding the protonation state of specific amino acids, the orientation of the histidine groups within the active site, and additional conformers being accessible at ambient temperatures remain open and have to be addressed prior to the design of new inhibitors. We investigate the active site of KasA in this work by means of structural motifs and relative energies. Molecular dynamics (MD) simulations, free energy perturbation computations, and calculations employing the hybrid quantum mechanics/molecular mechanics (QM/MM) method made it possible to determine the protonation status and reveal important details about the catalytic mechanism of KasA. Additionally, we can rationalize the molecular basis for the acyl-transfer activity in the H311A mutant. Our data strongly suggest that inhibitors should be able to inhibit different protonation states because the enzyme can switch easily between a zwitterionic and neutral state.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Prótons , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Alanina/química , Alanina/genética , Antituberculosos/síntese química , Antituberculosos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Parede Celular/enzimologia , Parede Celular/genética , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Inibidores Enzimáticos/farmacologia , Histidina/química , Histidina/genética , Mycobacterium tuberculosis/genética , Conformação Proteica
10.
Curr Med Chem ; 18(9): 1318-24, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21370994

RESUMO

The continuous preventive measures and control of tuberculosis are often hampered by re-emergence of multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis. A novel drug approach is desperately needed to combat the global threat posed by MDR strains. In spite of current advancement in biological techniques viz. microarray and proteomics data for tuberculosis, no such potent drug has been developed in the past decades yet. Therefore, mycolic acid is an essential constituent which is involved in the formation of cell wall of Mycobacterium species. The biosynthesis of mycolic acid is involved in two fatty acid synthase systems, the multifunctional polypeptide fatty acid synthase I (FASI) which performs de novo fatty acid synthesis and dissociate FASII system. FASII system consists of monofunctional enzymes and acyl carrier protein (ACP), elongating FASI products to long chain mycolic acid precursor. In this review, the ß-ketoacyl-ACP synthases (fadH, kasA and kasB) are distinct and play a vital role in mycolic acid synthesis, cell wall synthesis, biofilm formation and also pathogenesis. On the basis of substantial observation we suggest that these enzymes may be used as promising and attractive targets for novel anti-TB drugs designing and discovery.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Antituberculosos/química , Antituberculosos/uso terapêutico , Ácidos Graxos/biossíntese , Humanos , Estrutura Terciária de Proteína , Tuberculose/tratamento farmacológico
11.
Bioorg Med Chem ; 18(7): 2447-55, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20304657

RESUMO

We described here the design, synthesis, molecular modeling, and biological evaluation of a series of peptide and Schiff bases (PSB) small molecules, inhibitors of Escherichia coli beta-Ketoacyl-acyl carrier protein synthase III (ecKAS III). The initial lead compound was reported by us previously, we continued to carry out structure-activity relationship studies and optimize the lead structure to potent inhibitors in this research. The results demonstrated that both N-(2-(3,5-dichloro-2-hydroxybenzylideneamino)propyl)-2-hydroxybenzamide (1f) and 2-hydroxy-N-(2-(2-hydroxy-5-iodobenzylideneamino)propyl)-4-methylbenzamide (3e) posses good ecKAS III inhibitory activity and well binding affinities by bonding Gly152/Gly209 of ecKAS III and fit into the mouth of the substrate tunnel, and can be as potential antibiotics agent, displaying minimal inhibitory concentration values in the range 0.20-3.13microg/mL and 0.39-3.13microg/mL against various bacteria.


Assuntos
Antibacterianos/síntese química , Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/enzimologia , Peptídeos/síntese química , Peptídeos/farmacologia , Bases de Schiff/síntese química , Bases de Schiff/farmacologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Domínio Catalítico/efeitos dos fármacos , Biologia Computacional , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Indicadores e Reagentes , Ligantes , Espectroscopia de Ressonância Magnética , Testes de Sensibilidade Microbiana , Modelos Moleculares , Ligação Proteica , Espectrometria de Massas por Ionização por Electrospray
12.
J Biol Chem ; 285(9): 6161-9, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20018879

RESUMO

Thiolactomycin (TLM), a natural product thiolactone antibiotic produced by species of Nocardia and Streptomyces, is an inhibitor of the beta-ketoacyl-acyl carrier protein synthase (KAS) enzymes in the bacterial fatty acid synthase pathway. Using enzyme kinetics and direct binding studies, TLM has been shown to bind preferentially to the acyl-enzyme intermediates of the KASI and KASII enzymes from Mycobacterium tuberculosis and Escherichia coli. These studies, which utilized acyl-enzyme mimics in which the active site cysteine was replaced by a glutamine, also revealed that TLM is a slow onset inhibitor of the KASI enzymes KasA and ecFabB but not of the KASII enzymes KasB and ecFabF. The differential affinity of TLM for the acyl-KAS enzymes is proposed to result from structural change involving the movement of helices alpha5 and alpha6 that prepare the enzyme to bind malonyl-AcpM or TLM and that is initiated by formation of hydrogen bonds between the acyl-enzyme thioester and the oxyanion hole. The finding that TLM is a slow onset inhibitor of ecFabB supports the proposal that the long residence time of TLM on the ecFabB homologues in Serratia marcescens and Klebsiella pneumonia is an important factor for the in vivo antibacterial activity of TLM against these two organisms despite the fact that the in vitro MIC values are only 100-200 microg/ml. The mechanistic data on the interaction of TLM with KasA will provide an important foundation for the rational development of high affinity KasA inhibitors based on the thiolactone skeleton.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Domínio Catalítico/genética , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Cinética , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Tiofenos/farmacologia
13.
Bioorg Med Chem ; 17(17): 6264-9, 2009 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-19664929

RESUMO

As a naturally wide distributed flavone, chrysin exhibits numerous biological activities including anticancer, anti-inflammatory, and antimicrobials activities. Beta-ketoacyl-acyl carrier protein synthase III (FabH) catalyzes the initial step of fatty acid biosynthesis via a type II fatty acid synthase in most bacteria. The important role of this essential enzyme combined with its unique structural features and ubiquitous occurrence in bacteria has made it an attractive new target for the development of antibacterial agents. We first used a structure-based approach to develop 18 novel chrysin analogues that target FabH for the development of new antibiotics. Structure-based design methods were used for the expansion of the chrysin derivatives including molecular docking and SAR research. Based on the results, 5-hydroxy-2-phenyl-7-(2-(piperazin-1-yl)ethoxy)-4H-chromen-4-one (3g) showed the most potent antibacterial activity with MIC of 1.56-6.25 microg/mL against the test bacterial stains, and docking simulation was performed to position compound 3g into the Escherichia coli FabH active site to determine the probable binding conformation. The biological assays indicated that compound 3g is a potent inhibitor of E.coli FabH as antibiotics.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Antibacterianos/síntese química , Inibidores Enzimáticos/síntese química , Flavonoides/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Sítios de Ligação , Simulação por Computador , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Flavonoides/síntese química , Flavonoides/farmacologia , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
14.
Bioorg Chem ; 36(2): 85-90, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18096200

RESUMO

The dimeric Mycobacterium tuberculosis FabH (mtFabH) catalyses a Claisen-type condensation between an acyl-CoA and malonyl-acyl carrier protein (ACP) to initiate the Type II fatty acid synthase cycle. To analyze the initial covalent acylation of mtFabH with acyl-CoA, we challenged it with mixture of C6-C20 acyl-CoAs and the ESI-MS analysis showed reaction at both subunits and a strict specificity for C12 acyl CoA. Crystallographic and ESI-MS studies of mtFabH with a decyl-CoA disulfide inhibitor revealed a decyl chain bound in acyl-binding channels of both subunits through disulfide linkage to the active site cysteine. These data provide the first unequivocal evidence that both subunits of mtFabH can react with substrates or inhibitor. The discrepancy between the observed C12 acyl-CoA substrate specificity in the initial acylation step and the higher catalytic efficiency of mtFabH for C18-C20 acyl-CoA substrates in the overall mtFabH catalyzed reaction suggests a role for M. tuberculosis ACP as a specificity determinant in this reaction.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Mycobacterium tuberculosis/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Acil Coenzima A , Acilação , Proteínas de Bactérias , Catálise , Dimerização , Subunidades Proteicas , Especificidade por Substrato
15.
Chem Biol ; 14(5): 513-24, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17524982

RESUMO

The first step of the reaction catalyzed by the homodimeric FabH from a dissociated fatty acid synthase is acyl transfer from acyl-CoA to an active site cysteine. We report that C1 to C10 alkyl-CoA disulfides irreversibly inhibit Escherichia coli FabH (ecFabH) and Mycobacterium tuberculosis FabH with relative efficiencies that reflect these enzymes' differential acyl-group specificity. Crystallographic and kinetic studies with MeSSCoA show rapid inhibition of one monomer of ecFabH through formation of a methyl disulfide conjugate with this cysteine. Reaction of the second subunit with either MeSSCoA or acetyl-CoA is much slower. In the presence of malonyl-ACP, the acylation rate of the second subunit is restored to that of the native ecFabH. These observations suggest a catalytic model in which a structurally disordered apo-ecFabH dimer orders on binding either the first substrate, acetyl-CoA, or the inhibitor MeSSCoA, and is restored to a disordered state on binding of malonyl-ACP.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Dissulfetos/síntese química , Dissulfetos/farmacologia , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/farmacologia , Acilação , Sítios de Ligação , Cristalografia por Raios X , Cisteína/química , Dissulfetos/química , Escherichia coli/enzimologia , Fluorescência , Fluorometria , Indicadores e Reagentes , Cinética , Modelos Moleculares , Streptomyces/efeitos dos fármacos , Streptomyces/enzimologia
16.
Biochemistry ; 41(35): 10877-87, 2002 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-12196027

RESUMO

The catalytic mechanism of the beta-ketoacyl synthase domain of the multifunctional fatty acid synthase has been investigated by a combination of mutagenesis, active-site titration, product analysis, and product inhibition. Neither the reactivity of the active-site Cys161 residue toward iodoacetamide nor the rate of unidirectional transfer of acyl moieties to Cys161 was significantly decreased by replacement of any of the conserved residues, His293, His331, or Lys326, with Ala. Decarboxylation of malonyl moieties in the fully-active Cys161Gln background generated equimolar amounts of acetyl-CoA and bicarbonate, rather than carbon dioxide, and was seriously compromised by replacement of any of the conserved basic residues. The ability of bicarbonate to inhibit decarboxylation of malonyl moieties in the Cys161Gln background was significantly reduced by replacement of His293 but less so by replacement of His331. The data are consistent with a reaction mechanism, in which the initial primer transfer reaction is promoted largely through a lowering of the pKa of the Cys161 thiol by a helix dipole effect and activation of the substrate thioester carbon atom by binding of the keto group in an oxyanion hole. The data also indicate that an activated water molecule is present at the active site that is required either for the rapid hydration of carbon dioxide, prior its release as bicarbonate or, alternatively, for an initial attack on the malonyl C3. In the alternative mechanism, a negatively-charged tetrahedral transition state could be generated, stabilized in part by interaction of His293 with the negatively charged oxygen at C3 and interaction of His331 with the negatively charged thioester carbonyl oxygen, that breaks down to generate bicarbonate directly. Finally, the carbanion at C2, attacks the electrophilic C1 of the primer, generating a second tetrahedral transition state, also stabilized through contacts with the oxyanion hole and His331, that breaks down to form the beta-ketoacyl-S-acyl carrier protein product.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Ácido Graxo Sintases/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Acil Coenzima A/biossíntese , Animais , Bicarbonatos/química , Sítios de Ligação/genética , Catálise , Galinhas , Cisteína/química , Cisteína/genética , Descarboxilação , Inibidores Enzimáticos/química , Ácido Graxo Sintases/genética , Humanos , Iodoacetamida/química , Malonil Coenzima A/química , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína/genética , Ratos , Especificidade por Substrato/genética
17.
Antimicrob Agents Chemother ; 46(5): 1310-8, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11959561

RESUMO

Staphylococcus aureus is a versatile and dangerous pathogen and one of the major causes of community-acquired and hospital-acquired infections. The rise of multidrug-resistant strains of S. aureus requires the development of new antibiotics with previously unexploited mechanisms of action, such as inhibition of the beta-ketoacyl-acyl carrier protein (ACP) synthase III (FabH). This enzyme initiates fatty acid biosynthesis in a bacterial type II fatty acid synthase, catalyzing a decarboxylative condensation between malonyl-ACP and an acyl coenzyme A (CoA) substrate and is essential for viability. We have identified only one fabH in the genome of S. aureus and have shown that it encodes a protein with 57, 40, and 34% amino acid sequence identity with the FabH proteins of Bacillus subtilis (bFabH1), Escherichia coli (ecFabH), and Mycobacterium tuberculosis (mtFabH). Additional genomic sequence analysis revealed that this S. aureus FabH (saFabH) is not mutated in certain methicillin-resistant S. aureus (MRSA) and vancomycin-resistant S. aureus (VRSA) strains. saFabH was expressed in E. coli with an N-terminal polyhistidine tag and subsequently purified by metal chelate and size exclusion chromatography. Analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a molecular mass of 37 kDa, while gel filtration demonstrated a mass of 66.7 kDa, suggesting a noncovalent homodimeric structure for saFabH. The apparent K(m) for malonyl-ACP was 1.76 +/- 0.40 microM, and the enzyme was active with acetyl-CoA (k(cat), 16.18 min(-1); K(m), 6.18 +/- 0.9 microM), butyryl-CoA (k(cat), 42.90 min(-1); K(m), 2.32 +/- 0.12 microM), and isobutyryl-CoA (k(cat), 98.0 min(-1); K(m), 0.32 +/- 0.04 microM). saFabH was weakly inhibited by thiolactomycin (50% inhibitory concentration [IC50], >100 microM) yet was efficiently inhibited by two new FabH inhibitors, 5-chloro-4-phenyl-[1,2]-dithiol-3-one (IC50, 1.87 +/- 0.10 microM) and 4-phenyl-5-phenylimino-[1,2,4]dithiazolidin-3-one (IC50, 0.775 +/- 0.08 microM).


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Inibidores Enzimáticos , Staphylococcus aureus/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/isolamento & purificação , Sequência de Aminoácidos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/metabolismo , Humanos , Cinética , Resistência a Meticilina , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Oligopeptídeos/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Especificidade por Substrato , Compostos de Sulfidrila/farmacologia , Tiofenos/farmacologia
18.
J Biol Chem ; 276(32): 30024-30, 2001 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-11375394

RESUMO

In the bacterial type II fatty acid synthase system, beta-ketoacyl-acyl carrier protein (ACP) synthase III (FabH) catalyzes the condensation of acetyl-CoA with malonyl-ACP. We have identified, expressed, and characterized the Streptococcus pneumoniae homologue of Escherichia coli FabH. S. pneumoniae FabH is approximately 41, 39, and 38% identical in amino acid sequence to Bacillus subtilis, E. coli, and Hemophilus influenzae FabH, respectively. The His-Asn-Cys catalytic triad present in other FabH molecules is conserved in S. pneumoniae FabH. The apparent K(m) values for acetyl-CoA and malonyl-ACP were determined to be 40.3 and 18.6 microm, respectively. Purified S. pneumoniae FabH preferentially utilized straight short-chain CoA primers. Similar to E. coli FabH, S. pneumoniae FabH was weakly inhibited by thiolactomycin. In contrast, inhibition of S. pneumoniae FabH by the newly developed compound SB418011 was very potent, with an IC(50) value of 0.016 microm. SB418011 also inhibited E. coli and H. influenzae FabH with IC(50) values of 1.2 and 0.59 microm, respectively. The availability of purified and characterized S. pneumoniae FabH will greatly aid in structural studies of this class of essential bacterial enzymes and facilitate the identification of small molecule inhibitors of type II fatty acid synthase with the potential to be novel and potent antibacterial agents active against pathogenic bacteria.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Streptococcus pneumoniae/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Sequência de Aminoácidos , Antibacterianos/farmacologia , Asparagina/química , Catálise , Cromatografia , Dicroísmo Circular , Clonagem Molecular , Cisteína/química , Relação Dose-Resposta a Droga , Eletroforese em Gel de Poliacrilamida , Inibidores Enzimáticos/farmacologia , Guanidina/farmacologia , Histidina/química , Indóis/farmacologia , Concentração Inibidora 50 , Focalização Isoelétrica , Cinética , Modelos Químicos , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Tiofenos/farmacologia , Raios Ultravioleta
19.
Science ; 272(5268): 1655-8, 1996 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-8658141

RESUMO

Many bacteria, including several pathogens of plants and humans, use a pheromone called an autoinducer to regulate gene expression in a cell density-dependent manner. Agrobacterium autoinducer [AAI, N-(3-oxo-octanoyl)-L-homoserine lactone] of A. tumefaciens is synthesized by the Tral protein, which is encoded by the tumor-inducing plasmid. Purified hexahistidinyl-Tral (H6-Tral) used S-adenosylmethionine to make the homoserine lactone moiety of AAI, but did not use related compounds. H6-Tral used 3-oxo-octanoyl-acyl carrier protein to make the 3-oxo-octanoyl moiety of AAI, but did not use 3-oxo-octanoyl-coenzyme A. These results demonstrate the enzymatic synthesis of an autoinducer through the use of purified substrates.


Assuntos
Agrobacterium tumefaciens/genética , DNA Helicases/metabolismo , Regulação Bacteriana da Expressão Gênica , Homosserina/análogos & derivados , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Proteína de Transporte de Acila/metabolismo , Agrobacterium tumefaciens/metabolismo , Sequência de Bases , Cerulenina/farmacologia , Cromatografia em Gel , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Primers do DNA , Escherichia coli , Proteínas de Escherichia coli , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Homosserina/biossíntese , Malonil Coenzima A/metabolismo , Dados de Sequência Molecular , NADP/metabolismo , Plasmídeos , S-Adenosilmetionina/metabolismo
20.
Proc Natl Acad Sci U S A ; 91(23): 11027-31, 1994 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-7972002

RESUMO

A fourth fatty acid condensing enzyme was isolated from Escherichia coli by its ability to restore elongating activity to a protein extract which had been treated with cerulenin, a condensing enzyme-specific inhibitor. The purified beta-ketoacyl-[acyl carrier protein] (ACP) synthase IV [3-oxoacyl-ACP synthase; acyl-ACP:malonyl-ACP C-acyltransferase (decarboxylating), EC 2.3.1.41] (KAS IV) is specific for short-chain acyl-ACP substrates. The enzyme is stable at 43 degrees C and very sensitive to cerulenin (50% inhibition at 3 microM), which binds covalently. A condensing enzyme-specific antibody raised to an expressed open reading frame from barley was used to identify KAS IV protein in Western blots, and the sequence obtained for 30 amino-terminal residues. This led to the isolation of the fabJ gene located in the fab cluster at 24.8 min of the E. coli chromosome. The fabJ gene encodes a polypeptide of 413 amino acids and molecular mass 43 kDa that shows 38% identity and 64% similarity to the fabB-encoded KAS I. The amino acid sequence of KAS IV, however, is more similar to all other published condensing enzyme sequences than the KAS I sequence is. A specialized putative function for this enzyme is to supply the octanoic substrates for lipoic acid biosynthesis. We predict that an analogue of KAS IV with the same function will be found in plant mitochondria. The described complementation assay can be used to detect condensing enzymes with other substrate specificities by supplementing the cerulenin-treated extract with appropriate purified KAS enzymes.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Cerulenina/farmacologia , Clonagem Molecular , Escherichia coli/enzimologia , Teste de Complementação Genética , Temperatura Alta , Isoenzimas , Dados de Sequência Molecular , Mapeamento por Restrição , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA