Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Molecules ; 24(7)2019 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-30987239

RESUMO

Phloretin is a natural chalcone with antibacterial and anti-inflammatory effects. This study investigated the anti-acne activity of phloretin against Propionibacterium acnes-induced skin infection and the potential target proteins of its anti-inflammatory and antibacterial effects. Phloretin potently inhibited the growth of P. acnes and P. acnes-induced Toll-like receptor (TLR) 2-mediated inflammatory signaling in human keratinocytes. Secreted embryonic alkaline phosphatase assay confirmed that the anti-inflammatory activity of phloretin is associated with the P. acnes-stimulated TLR2-mediated NF-κB signaling pathway. Phloretin significantly decreased the level of phosphorylated c-Jun N-terminal kinase (JNK), showing a binding affinity of 1.184 × 10-5 M-1. We also found that phloretin binds with micromolar affinity to P. acnes ß-ketoacyl acyl carrier protein (ACP) synthase III (KAS III), an enzyme involved in fatty acid synthesis. Conformation-sensitive native polyacrylamide gel electrophoresis showed that phloretin reduced KAS III-mediated 3-ketoacyl ACP production by over 66%. A docking study revealed that phloretin interacts with the active sites of JNK1 and KAS III, suggesting their involvement in P. acnes-induced inflammation and their potential as targets for the antibacterial activity of phloretin. These results demonstrate that phloretin may be useful in the prevention or treatment of P. acnes infection.


Assuntos
Antibacterianos/farmacologia , Infecções por Bactérias Gram-Positivas/metabolismo , Infecções por Bactérias Gram-Positivas/microbiologia , Floretina/farmacologia , Propionibacterium acnes/efeitos dos fármacos , Dermatopatias Bacterianas/metabolismo , Dermatopatias Bacterianas/microbiologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Antibacterianos/química , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocinas/biossíntese , Relação Dose-Resposta a Droga , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Floretina/química , Propionibacterium acnes/enzimologia , Propionibacterium acnes/imunologia , Ligação Proteica , Dermatopatias Bacterianas/tratamento farmacológico , Relação Estrutura-Atividade , Receptor 2 Toll-Like/metabolismo
2.
FEBS J ; 285(15): 2900-2921, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29917313

RESUMO

Vibrio cholerae, the causative pathogen of the life-threatening infection cholera, encodes two copies of ß-ketoacyl-acyl carrier protein synthase III (vcFabH1 and vcFabH2). vcFabH1 and vcFabH2 are pathogenic proteins associated with fatty acid synthesis, lipid metabolism, and potential applications in biofuel production. Our biochemical assays characterize vcFabH1 as exhibiting specificity for acetyl-CoA and CoA thioesters with short acyl chains, similar to that observed for FabH homologs found in most gram-negative bacteria. vcFabH2 prefers medium chain-length acyl-CoA thioesters, particularly octanoyl-CoA, which is a pattern of specificity rarely seen in bacteria. Structural characterization of one vcFabH1 and six vcFabH2 structures determined in either apo form or in complex with acetyl-CoA/octanoyl-CoA indicate that the substrate-binding pockets of vcFabH1 and vcFabH2 are of different sizes, accounting for variations in substrate chain-length specificity. An unusual and unique feature of vcFabH2 is its C-terminal fragment that interacts with both the substrate-entrance loop and the dimer interface of the enzyme. Our discovery of the pattern of substrate specificity of both vcFabH1 and vcFabH2 can potentially aid the development of novel antibacterial agents against V. cholerae. Additionally, the distinctive substrate preference of FabH2 in V. cholerae and related facultative anaerobes conceivably make it an attractive component of genetically engineered bacteria used for commercial biofuel production.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Vibrio cholerae/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Acetilcoenzima A/metabolismo , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Antibacterianos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Biocombustíveis , Cristalografia por Raios X , Cisteína/genética , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Relação Estrutura-Atividade , Especificidade por Substrato
3.
Mol Microbiol ; 108(5): 567-577, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29528170

RESUMO

Originally annotated as the initiator of fatty acid synthesis (FAS), ß-ketoacyl-acyl carrier protein synthase III (KAS III) is a unique component of the bacterial FAS system. Novel variants of KAS III have been identified that promote the de novo use of additional extracellular fatty acids by FAS. These KAS III variants prefer longer acyl-groups, notably octanoyl-CoA. Acinetobacter baumannii, a clinically important nosocomial pathogen, contains such a multifunctional KAS III (AbKAS III). To characterize the structural basis of its substrate specificity, we determined the crystal structures of AbKAS III in the presence of different substrates. The acyl-group binding cavity of AbKAS III and co-crystal structure of AbKAS III and octanoyl-CoA confirmed that the cavity can accommodate acyl groups with longer alkyl chains. Interestingly, Cys264 formed a disulfide bond with residual CoA used in the crystallization, which distorted helices at the putative interface with acyl-carrier proteins. The crystal structure of KAS III in the alternate conformation can also be utilized for designing novel antibiotics.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Acinetobacter baumannii/enzimologia , Sequência de Aminoácidos , Ácidos Graxos/biossíntese , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Acinetobacter baumannii/genética , Acinetobacter baumannii/patogenicidade , Acil Coenzima A/química , Acil Coenzima A/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cisteína/química , Cisteína/metabolismo , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Difração de Raios X
4.
Sci Rep ; 5: 11213, 2015 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-26063537

RESUMO

The beta-ketoacyl-ACP synthase II (KASII) is an enzyme in fatty acid biosynthesis, catalyzing the elongation of 16:0-acyl carrier protein (ACP) to 18:0-ACP in plastids. Mutations in KASII genes in higher plants can lead to lethality, which makes it difficult to utilize the gene for lipid metabolic engineering. We demonstrated previously that transient expression of plastid-directed fatty acyl reductases and wax ester synthases could result in different compositions of wax esters. We hypothesized that changing the ratio between C16 (palmitoyl-compounds) and C18 (stearoyl-compounds) in the plastidic acyl-ACP pool by inhibition of KASII expression would change the yield and composition of wax esters via substrate preference of the introduced enzymes. Here, we report that transient inhibition of KASII expression by three different RNAi constructs in leaves of N. benthamiana results in almost complete inhibition of KASII expression. The transient RNAi approach led to a shift of carbon flux from a pool of C18 fatty acids to C16, which significantly increased wax ester production in AtFAR6-containing combinations. The results demonstrate that transient inhibition of KASII in vegetative tissues of higher plants enables metabolic studies towards industrial production of lipids such as wax esters with specific quality and composition.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Inativação Gênica , Engenharia Metabólica , Nicotiana/genética , Nicotiana/metabolismo , Proteínas de Plantas/metabolismo , Sintase do Amido/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Sequência de Bases , Ésteres , Ácidos Graxos/metabolismo , Expressão Gênica , Dados de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/metabolismo , Interferência de RNA , Alinhamento de Sequência , Transcrição Gênica , Triglicerídeos/metabolismo
5.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 10): 1359-70, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22993090

RESUMO

Some bacterial type II fatty-acid synthesis (FAS II) enzymes have been shown to be important candidates for drug discovery. The scientific and medical quest for new FAS II protein targets continues to stimulate research in this field. One of the possible additional candidates is the acyl-carrier-protein synthase (AcpS) enzyme. Its holo form post-translationally modifies the apo form of an acyl carrier protein (ACP), which assures the constant delivery of thioester intermediates to the discrete enzymes of FAS II. At the Center for Structural Genomics of Infectious Diseases (CSGID), AcpSs from Staphylococcus aureus (AcpS(SA)), Vibrio cholerae (AcpS(VC)) and Bacillus anthracis (AcpS(BA)) have been structurally characterized in their apo, holo and product-bound forms, respectively. The structure of AcpS(BA) is emphasized because of the two 3',5'-adenosine diphosphate (3',5'-ADP) product molecules that are found in each of the three coenzyme A (CoA) binding sites of the trimeric protein. One 3',5'-ADP is bound as the 3',5'-ADP part of CoA in the known structures of the CoA-AcpS and 3',5'-ADP-AcpS binary complexes. The position of the second 3',5'-ADP has never been described before. It is in close proximity to the first 3',5'-ADP and the ACP-binding site. The coordination of two ADPs in AcpS(BA) may possibly be exploited for the design of AcpS inhibitors that can block binding of both CoA and ACP.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Bacillus anthracis/enzimologia , Proteínas de Bactérias/química , Staphylococcus aureus/enzimologia , Vibrio cholerae/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , Apoenzimas/química , Bacillus anthracis/patogenicidade , Proteínas de Bactérias/antagonistas & inibidores , Catálise , Cristalografia por Raios X , Holoenzimas/química , Staphylococcus aureus/patogenicidade , Vibrio cholerae/patogenicidade
6.
Biochemistry ; 50(49): 10678-86, 2011 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-22017312

RESUMO

ß-Ketoacyl-ACP synthase (KAS) enzymes catalyze Claisen condensation reactions in the fatty acid biosynthesis pathway. These reactions follow a ping-pong mechanism in which a donor substrate acylates the active site cysteine residue after which the acyl group is condensed with the malonyl-ACP acceptor substrate to form a ß-ketoacyl-ACP. In the priming KASIII enzymes the donor substrate is an acyl-CoA while in the elongating KASI and KASII enzymes the donor is an acyl-ACP. Although the KASIII enzyme in Escherichia coli (ecFabH) is essential, the corresponding enzyme in Mycobacterium tuberculosis (mtFabH) is not, suggesting that the KASI or II enzyme in M. tuberculosis (KasA or KasB, respectively) must be able to accept a CoA donor substrate. Since KasA is essential, the substrate specificity of this KASI enzyme has been explored using substrates based on phosphopantetheine, CoA, ACP, and AcpM peptide mimics. This analysis has been extended to the KASI and KASII enzymes from E. coli (ecFabB and ecFabF) where we show that a 14-residue malonyl-phosphopantetheine peptide can efficiently replace malonyl-ecACP as the acceptor substrate in the ecFabF reaction. While ecFabF is able to catalyze the condensation reaction when CoA is the carrier for both substrates, the KASI enzymes ecFabB and KasA have an absolute requirement for an ACP substrate as the acyl donor. Provided that this requirement is met, variation in the acceptor carrier substrate has little impact on the k(cat)/K(m) for the KASI reaction. For the KASI enzymes we propose that the binding of ecACP (AcpM) results in a conformational change that leads to an open form of the enzyme to which the malonyl acceptor substrate binds. Finally, the substrate inhibition observed when palmitoyl-CoA is the donor substrate for the KasA reaction has implications for the importance of mtFabH in the mycobacterial FASII pathway.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Escherichia coli/enzimologia , Mycobacterium tuberculosis/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Coenzima A/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/genética , Ácido Graxo Sintase Tipo II/metabolismo , Cinética , Dados de Sequência Molecular , Mutação , Palmitoil Coenzima A/metabolismo , Panteteína/análogos & derivados , Panteteína/química , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Especificidade por Substrato
7.
Biochemistry ; 50(25): 5743-56, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21615093

RESUMO

KasA (ß-ketoacyl ACP synthase I) is involved in the biosynthetic pathway of mycolic acids, an essential component of the cell wall in Mycobacterium tuberculosis. It was shown that KasA is essential for the survival of the pathogen and thus could serve as a new drug target for the treatment of tuberculosis. The active site of KasA was previously characterized by X-ray crystallography. However, questions regarding the protonation state of specific amino acids, the orientation of the histidine groups within the active site, and additional conformers being accessible at ambient temperatures remain open and have to be addressed prior to the design of new inhibitors. We investigate the active site of KasA in this work by means of structural motifs and relative energies. Molecular dynamics (MD) simulations, free energy perturbation computations, and calculations employing the hybrid quantum mechanics/molecular mechanics (QM/MM) method made it possible to determine the protonation status and reveal important details about the catalytic mechanism of KasA. Additionally, we can rationalize the molecular basis for the acyl-transfer activity in the H311A mutant. Our data strongly suggest that inhibitors should be able to inhibit different protonation states because the enzyme can switch easily between a zwitterionic and neutral state.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Desenho de Fármacos , Inibidores Enzimáticos/síntese química , Simulação de Dinâmica Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Prótons , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Alanina/química , Alanina/genética , Antituberculosos/síntese química , Antituberculosos/farmacologia , Domínio Catalítico/efeitos dos fármacos , Domínio Catalítico/genética , Parede Celular/enzimologia , Parede Celular/genética , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Inibidores Enzimáticos/farmacologia , Histidina/química , Histidina/genética , Mycobacterium tuberculosis/genética , Conformação Proteica
8.
Curr Med Chem ; 18(9): 1318-24, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21370994

RESUMO

The continuous preventive measures and control of tuberculosis are often hampered by re-emergence of multi-drug-resistant (MDR) strains of Mycobacterium tuberculosis. A novel drug approach is desperately needed to combat the global threat posed by MDR strains. In spite of current advancement in biological techniques viz. microarray and proteomics data for tuberculosis, no such potent drug has been developed in the past decades yet. Therefore, mycolic acid is an essential constituent which is involved in the formation of cell wall of Mycobacterium species. The biosynthesis of mycolic acid is involved in two fatty acid synthase systems, the multifunctional polypeptide fatty acid synthase I (FASI) which performs de novo fatty acid synthesis and dissociate FASII system. FASII system consists of monofunctional enzymes and acyl carrier protein (ACP), elongating FASI products to long chain mycolic acid precursor. In this review, the ß-ketoacyl-ACP synthases (fadH, kasA and kasB) are distinct and play a vital role in mycolic acid synthesis, cell wall synthesis, biofilm formation and also pathogenesis. On the basis of substantial observation we suggest that these enzymes may be used as promising and attractive targets for novel anti-TB drugs designing and discovery.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Antituberculosos/farmacologia , Mycobacterium tuberculosis/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Antituberculosos/química , Antituberculosos/uso terapêutico , Ácidos Graxos/biossíntese , Humanos , Estrutura Terciária de Proteína , Tuberculose/tratamento farmacológico
9.
Chem Commun (Camb) ; 47(6): 1860-2, 2011 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-21135931

RESUMO

Using site directed mutagenesis we altered an active site residue (Phe107) of the enzyme encoded by fabF3 (SCO3248) in the Streptomyces coelicolor gene cluster required for biosynthesis of the calcium dependent antibiotics (CDAs), successfully generating two novel CDA derivatives comprising truncated (C4) lipid side chains and confirming that fabF3 encodes a KAS-II homologue that is involved in determining CDA fatty acid chain length.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Ácidos Graxos/biossíntese , Lipopeptídeos/biossíntese , Peptídeos/metabolismo , Streptomyces coelicolor/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Domínio Catalítico , Ácidos Graxos/química , Leucina/química , Leucina/metabolismo , Lipopeptídeos/química , Lipopeptídeos/metabolismo , Mutagênese , Peptídeos/química , Fenilalanina/química , Fenilalanina/metabolismo , Streptomyces coelicolor/genética
10.
Mol Biotechnol ; 48(2): 97-108, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21113689

RESUMO

As the world population grows, the demand for food increases. Although vegetable oils provide an affordable and rich source of energy, the supply of vegetable oils available for human consumption is limited by the "fuel vs food" debate. To increase the nutritional value of vegetable oil, metabolic engineering may be used to produce oil crops of desirable fatty acid composition. We have isolated and characterized ß-ketoacyl ACP-synthase II (KASII) cDNA from a high-oleic acid palm, Jessenia bataua. Jessenia KASII (JbKASII) encodes a 488-amino acid polypeptide that possesses conserved domains that are necessary for condensing activities. When overexpressed in E. coli, recombinant His-tagged JbKASII was insoluble and non-functional. However, Arabidopsis plants expressing GFP-JbKASII fusions had elevated levels of arachidic acid (C20:0) and erucic acid (C22:1) at the expense of stearic acid (C18:0) and oleic acid (C18:1). Furthermore, JbKASII failed to complement the Arabidopsis KASII mutant, fab1-2. This suggests that the substrate specificity of JbKASII is similar to that of ketoacyl-CoA synthase (KCS), which preferentially elongates stearic and oleic acids, and not palmitic acid. Our results suggest that the KCS-like JbKASII may elongate C18:0 and C18:1 to yield C20:0 and C22:1, respectively. JbKASII may, therefore, be an interesting candidate gene for promoting the production of very long chain fatty acids in transgenic oil crops.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Arabidopsis/metabolismo , Arecaceae/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Ácidos Esteáricos/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Sequência de Aminoácidos , Arabidopsis/genética , Ácidos Eicosanoicos/metabolismo , Dados de Sequência Molecular , Ácido Oleico/metabolismo , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Homologia de Sequência de Aminoácidos
11.
J Biol Chem ; 285(9): 6161-9, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20018879

RESUMO

Thiolactomycin (TLM), a natural product thiolactone antibiotic produced by species of Nocardia and Streptomyces, is an inhibitor of the beta-ketoacyl-acyl carrier protein synthase (KAS) enzymes in the bacterial fatty acid synthase pathway. Using enzyme kinetics and direct binding studies, TLM has been shown to bind preferentially to the acyl-enzyme intermediates of the KASI and KASII enzymes from Mycobacterium tuberculosis and Escherichia coli. These studies, which utilized acyl-enzyme mimics in which the active site cysteine was replaced by a glutamine, also revealed that TLM is a slow onset inhibitor of the KASI enzymes KasA and ecFabB but not of the KASII enzymes KasB and ecFabF. The differential affinity of TLM for the acyl-KAS enzymes is proposed to result from structural change involving the movement of helices alpha5 and alpha6 that prepare the enzyme to bind malonyl-AcpM or TLM and that is initiated by formation of hydrogen bonds between the acyl-enzyme thioester and the oxyanion hole. The finding that TLM is a slow onset inhibitor of ecFabB supports the proposal that the long residence time of TLM on the ecFabB homologues in Serratia marcescens and Klebsiella pneumonia is an important factor for the in vivo antibacterial activity of TLM against these two organisms despite the fact that the in vitro MIC values are only 100-200 microg/ml. The mechanistic data on the interaction of TLM with KasA will provide an important foundation for the rational development of high affinity KasA inhibitors based on the thiolactone skeleton.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Antibacterianos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Domínio Catalítico/genética , Inibidores Enzimáticos/farmacologia , Escherichia coli/enzimologia , Cinética , Mycobacterium tuberculosis/enzimologia , Ligação Proteica , Conformação Proteica , Especificidade por Substrato , Tiofenos/farmacologia
12.
Chem Biol ; 15(4): 309-10, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18420136

RESUMO

The FabH enzyme from M. tuberculosis binds the acyl tail of large substrates at the end of a buried hydrophobic tunnel. Sachdeva et al. (2008) use reactive chemical probes and X-ray crystallography to show that substrates can bind to an open state of FabH without threading through the tunnel.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Mycobacterium tuberculosis/enzimologia , Ácidos Micólicos/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Sítios de Ligação , Cisteína/metabolismo , Ligantes , Modelos Biológicos , Mutação , Ligação Proteica
13.
Chem Biol ; 15(4): 402-12, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18420147

RESUMO

Mycobacterium tuberculosis FabH initiates type II fatty acid synthase-catalyzed formation of the long chain (C(16)-C(22)) acyl-coenzyme A (CoA) precursors of mycolic acids, which are major constituents of the bacterial cell envelope. Crystal structures of M. tuberculosis FabH (mtFabH) show the substrate binding site to be a buried, extended L-shaped channel with only a single solvent access portal. Entrance of an acyl-CoA substrate through the solvent portal would require energetically unfavorable reptational threading of the substrate to its reactive position. Using a class of FabH inhibitors, we have tested an alternative hypothesis that FabH exists in an "open" form during substrate binding and product release, and a "closed" form in which catalysis and intermediate steps occur. This hypothesis is supported by mass spectrometric analysis of the product profile and crystal structures of complexes of mtFabH with these inhibitors.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Mycobacterium tuberculosis/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Acil Coenzima A/antagonistas & inibidores , Acil Coenzima A/metabolismo , Sítios de Ligação , Domínio Catalítico , Cristalografia por Raios X , Cisteína/metabolismo , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Modelos Moleculares , Mutação , Ácidos Micólicos/metabolismo , Ligação Proteica , Solventes/química , Espectrometria de Massas por Ionização por Electrospray
14.
Bioorg Chem ; 36(2): 85-90, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18096200

RESUMO

The dimeric Mycobacterium tuberculosis FabH (mtFabH) catalyses a Claisen-type condensation between an acyl-CoA and malonyl-acyl carrier protein (ACP) to initiate the Type II fatty acid synthase cycle. To analyze the initial covalent acylation of mtFabH with acyl-CoA, we challenged it with mixture of C6-C20 acyl-CoAs and the ESI-MS analysis showed reaction at both subunits and a strict specificity for C12 acyl CoA. Crystallographic and ESI-MS studies of mtFabH with a decyl-CoA disulfide inhibitor revealed a decyl chain bound in acyl-binding channels of both subunits through disulfide linkage to the active site cysteine. These data provide the first unequivocal evidence that both subunits of mtFabH can react with substrates or inhibitor. The discrepancy between the observed C12 acyl-CoA substrate specificity in the initial acylation step and the higher catalytic efficiency of mtFabH for C18-C20 acyl-CoA substrates in the overall mtFabH catalyzed reaction suggests a role for M. tuberculosis ACP as a specificity determinant in this reaction.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Mycobacterium tuberculosis/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/antagonistas & inibidores , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Acil Coenzima A , Acilação , Proteínas de Bactérias , Catálise , Dimerização , Subunidades Proteicas , Especificidade por Substrato
15.
Chem Biol ; 14(12): 1377-85, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18096506

RESUMO

Expression, characterization, and mutagenesis of a series of N-terminal fragments of an animal fatty acid synthase, containing the beta-ketoacyl synthase, acyl transferase, and dehydratase domains, demonstrate that the dehydratase domain consists of two pseudosubunits, derived from contiguous regions of the same polypeptide, in which a single active site is formed by the cooperation of the catalytic histidine 878 residue of the first pseudosubunit with aspartate 1032 of the second pseudosubunit. Mutagenesis and modeling studies revealed an essential role for glutamine 1036 in anchoring the position of the catalytic aspartate. These findings establish that sequence elements previously assigned to a central structural core region of the type I fatty acid synthases and some modular polyketide synthase counterparts play an essential catalytic role as part of the dehydratase domain.


Assuntos
Domínio Catalítico , Ácido Graxo Sintase Tipo I/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Aciltransferases/química , Substituição de Aminoácidos , Animais , Catálise , Dimerização , Ácido Graxo Sintase Tipo I/genética , Ácido Graxo Sintase Tipo I/metabolismo , Hidroliases/química , Cinética , Modelos Químicos , Modelos Moleculares , Peso Molecular , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo
16.
Protein Sci ; 16(2): 261-72, 2007 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17242430

RESUMO

Two distinct ways of organizing fatty acid biosynthesis exist: the multifunctional type I fatty acid synthase (FAS) of mammals, fungi, and lower eukaryotes with activities residing on one or two polypeptides; and the dissociated type II FAS of prokaryotes, plastids, and mitochondria with individual activities encoded by discrete genes. The beta-ketoacyl [ACP] synthase (KAS) moiety of the mitochondrial FAS (mtKAS) is targeted by the antibiotic cerulenin and possibly by the other antibiotics inhibiting prokaryotic KASes: thiolactomycin, platensimycin, and the alpha-methylene butyrolactone, C75. The high degree of structural similarity between mitochondrial and prokaryotic KASes complicates development of novel antibiotics targeting prokaryotic KAS without affecting KAS domains of cytoplasmic FAS. KASes catalyze the C(2) fatty acid elongation reaction using either a Cys-His-His or Cys-His-Asn catalytic triad. Three KASes with different substrate specificities participate in synthesis of the C(16) and C(18) products of prokaryotic FAS. By comparison, mtKAS carries out all elongation reactions in the mitochondria. We present the X-ray crystal structures of the Cys-His-His-containing human mtKAS and its hexanoyl complex plus the hexanoyl complex of the plant mtKAS from Arabidopsis thaliana. The structures explain (1) the bimodal (C(6) and C(10)-C(12)) substrate preferences leading to the C(8) lipoic acid precursor and long chains for the membranes, respectively, and (2) the low cerulenin sensitivity of the human enzyme; and (3) reveal two different potential acyl-binding-pocket extensions. Rearrangements taking place in the active site, including subtle changes in the water network, indicate a change in cooperativity of the active-site histidines upon primer binding.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Ácido Graxo Sintases/química , Proteínas Mitocondriais/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Cerulenina/química , Cerulenina/metabolismo , Cristalografia por Raios X , Ácido Graxo Sintases/metabolismo , Humanos , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade
17.
J Bacteriol ; 188(24): 8376-84, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17028280

RESUMO

Pseudomonas syringae pv. tabaci 6605 possesses a genetic region involved in flagellin glycosylation. This region is composed of three open reading frames: orf1, orf2, and orf3. Our previous study revealed that orf1 and orf2 encode glycosyltransferases; on the other hand, orf3 has no role in posttranslational modification of flagellin. Although the function of Orf3 remained unclear, an orf3 deletion mutant (Deltaorf3 mutant) had reduced virulence on tobacco plants. Orf3 shows significant homology to a 3-oxoacyl-(acyl carrier protein) synthase III in the fatty acid elongation cycle. The Deltaorf3 mutant had a significantly reduced ability to form acyl homoserine lactones (AHLs), which are quorum-sensing molecules, suggesting that Orf3 is required for AHL synthesis. In comparison with the wild-type strain, swarming motility, biosurfactant production, and tolerance to H2O2 and antibiotics were enhanced in the Deltaorf3 mutant. A scanning electron micrograph of inoculated bacteria on the tobacco leaf surface revealed that there is little extracellular polymeric substance matrix surrounding the cells in the Deltaorf3 mutant. The phenotypes of the Deltaorf3 mutant and an AHL synthesis (DeltapsyI) mutant were similar, although the mutant-specific characteristics were more extreme in the Deltaorf3 mutant. The swarming motility of the Deltaorf3 mutant was greater than that of the DeltapsyI mutant. This was attributed to the synergistic effects of the overproduction of biosurfactants and/or alternative fatty acid metabolism in the Deltaorf3 mutant. Furthermore, the amounts of iron and biosurfactant seem to be involved in biofilm development under quorum-sensing regulation in P. syringae pv. tabaci 6605.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , 4-Butirolactona/análogos & derivados , Ácidos Graxos/metabolismo , Regulação Bacteriana da Expressão Gênica , Pseudomonas syringae/crescimento & desenvolvimento , Fatores de Virulência/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , 4-Butirolactona/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Flagelina/metabolismo , Glicosilação , Mutação , Fases de Leitura Aberta/genética , Folhas de Planta/microbiologia , Pseudomonas syringae/enzimologia , Pseudomonas syringae/genética , Pseudomonas syringae/patogenicidade , Nicotiana/microbiologia , Fatores de Virulência/genética
18.
J Biol Chem ; 280(37): 32539-47, 2005 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-16040614

RESUMO

Mycolic acids are the dominant feature of the Mycobacterium tuberculosis cell wall. These alpha-alkyl, beta-hydroxy fatty acids are formed by the condensation of two fatty acids, a long meromycolic acid and a shorter C(24)-C(26) fatty acid. The component fatty acids are produced via a combination of type I and II fatty acid synthases (FAS) with FAS-I products being elongated by FAS-II toward meromycolic acids. The beta-ketoacyl-acyl carrier protein (ACP) synthase III encoded by mtfabH (mtFabH) links FAS-I and FAS-II, catalyzing the condensation of FAS-I-derived acyl-CoAs with malonyl-acyl carrier protein (ACP). The acyl-CoA chain length specificity of mtFabH was assessed in vitro; the enzyme extended longer, physiologically relevant acyl-CoA primers when paired with AcpM, its natural partner, than with Escherichia coli ACP. The ability of the enzyme to use E. coli ACP suggests that a similar mode of binding is likely with both ACPs, yet it is clear that unique factors inherent to AcpM modulate the substrate specificity of mtFabH. Mutation of proposed key mtFabH residues was used to define their catalytic roles. Substitution of supposed acyl-CoA binding residues reduced transacylation, with double substitutions totally abrogating activity. Mutation of Arg(46) revealed its more critical role in malonyl-AcpM decarboxylation than in the acyl-CoA binding role. Interestingly, this effect was suppressed intragenically by Arg(161) --> Ala substitution. Our structural studies suggested that His(258), previously implicated in malonyl-ACP decarboxylation, also acts as an anchor point for a network of water molecules that we propose promotes deprotonation and transacylation of Cys(122).


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/genética , Mycobacterium tuberculosis/enzimologia , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Proteína de Transporte de Acila/química , Arginina/química , Sítios de Ligação , Carbono/química , Catálise , Domínio Catalítico , Parede Celular , Cristalografia por Raios X , Cisteína/química , Elétrons , Escherichia coli/enzimologia , Ácidos Graxos/metabolismo , Genes Dominantes , Modelos Químicos , Modelos Moleculares , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica , Especificidade por Substrato , Fatores de Tempo , Raios X
19.
J Mol Biol ; 346(5): 1313-21, 2005 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-15713483

RESUMO

Beta-ketoacyl-acyl carrier protein synthase III (FabH) catalyzes a two step reaction that initiates the pathway of fatty acid biosynthesis in plants and bacteria. In Mycobacterium tuberculosis, FabH catalyzes extension of lauroyl, myristoyl and palmitoyl groups from which cell wall mycolic acids of the bacterium are formed. The first step of the reaction is an acyl group transfer from acyl-coenzyme A to the active-site cysteine of the enzyme; the second step is acyl chain extension by two carbon atoms through Claisen condensation with malonyl-acyl carrier protein. We have previously determined the crystal structure of a type II, dissociated M.tuberculosis FabH, which catalyzes extension of lauroyl, myristoyl and palmitoyl groups. Here we describe the first long-chain Michaelis substrate complex of a FabH, that of lauroyl-coenzyme A with a catalytically disabled Cys-->Ala mutant of M.tuberculosis FabH. An elongated channel extending from the mutated active-site cysteine defines the acyl group binding locus that confers unique acyl substrate specificity on M.tuberculosis FabH. CoA lies in a second channel, bound primarily through interactions of its nucleotide group at the enzyme surface. The apparent weak association of CoA in this complex may play a role in the binding and dissociation of long chain acyl-CoA substrates and products and poses questions pertinent to the mechanism of this enzyme.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Acil Coenzima A/metabolismo , Mycobacterium tuberculosis/enzimologia , Ácidos Micólicos/metabolismo , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Sítios de Ligação , Catálise , Cristalografia por Raios X , Cisteína/química , Cisteína/genética , Modelos Moleculares , Mutação , Conformação Proteica , Especificidade por Substrato
20.
Proteins ; 52(3): 427-35, 2003 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-12866053

RESUMO

A detailed comparison of the active sites in beta-ketoacyl synthases (KAS) and related enzymes has been made. Using three-dimensional templates of the three catalytic residues to scan the protein structural database reveals differences in both the geometry and the catalytic role of equivalent residues in different members of the family. The template based on the catalytic cysteine and two histidines in the KAS I and II is totally specific for this family, with no false hits. However, the role of the histidines in catalysis is different between KAS I/II and thiolase on the one hand and KAS III/chalcone synthase on the other. In contrast, a template comprising only cysteine and one histidine is not specific with many hits including members of the KAS family, metal binding sites, other active sites in nonhomologous proteins, and some "random" nonactive sites.


Assuntos
3-Oxoacil-(Proteína de Transporte de Acila) Sintase/química , Biologia Computacional/métodos , 3-Oxoacil-(Proteína de Transporte de Acila) Sintase/metabolismo , Sítios de Ligação , Cisteína/química , Cisteína/metabolismo , Bases de Dados de Proteínas , Enzimas/química , Enzimas/metabolismo , Histidina/química , Histidina/metabolismo , Isoenzimas/química , Isoenzimas/metabolismo , Malonil Coenzima A/metabolismo , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA