Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
1.
J Biol Chem ; 300(2): 105616, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38159854

RESUMO

O-linked ß-N-acetylglucosamine (O-GlcNAcylation) is a dynamic post-translational modification that regulates thousands of proteins and almost all cellular processes. Aberrant O-GlcNAcylation has been associated with numerous diseases, including cancer, neurodegenerative diseases, cardiovascular diseases, and type 2 diabetes. O-GlcNAcylation is highly nutrient-sensitive since it is dependent on UDP-GlcNAc, the end product of the hexosamine biosynthetic pathway (HBP). We previously observed daily rhythmicity of protein O-GlcNAcylation in a Drosophila model that is sensitive to the timing of food consumption. We showed that the circadian clock is pivotal in regulating daily O-GlcNAcylation rhythms given its control of the feeding-fasting cycle and hence nutrient availability. Interestingly, we reported that the circadian clock also modulates daily O-GlcNAcylation rhythm by regulating molecular mechanisms beyond the regulation of food consumption time. A large body of work now indicates that O-GlcNAcylation is likely a generalized cellular status effector as it responds to various cellular signals and conditions, such as ER stress, apoptosis, and infection. In this review, we summarize the metabolic regulation of protein O-GlcNAcylation through nutrient availability, HBP enzymes, and O-GlcNAc processing enzymes. We discuss the emerging roles of circadian clocks in regulating daily O-GlcNAcylation rhythm. Finally, we provide an overview of other cellular signals or conditions that impact O-GlcNAcylation. Many of these cellular pathways are themselves regulated by the clock and/or metabolism. Our review highlights the importance of maintaining optimal O-GlcNAc rhythm by restricting eating activity to the active period under physiological conditions and provides insights into potential therapeutic targets of O-GlcNAc homeostasis under pathological conditions.


Assuntos
Relógios Circadianos , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Animais , Acetilglucosamina/metabolismo , Relógios Circadianos/fisiologia , Açúcares de Uridina Difosfato/metabolismo , Humanos
2.
ACS Chem Biol ; 16(10): 1961-1967, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33835779

RESUMO

Metabolic oligosaccharide engineering (MOE) has fundamentally contributed to our understanding of protein glycosylation. Efficient MOE reagents are activated into nucleotide-sugars by cellular biosynthetic machineries, introduced into glycoproteins and traceable by bioorthogonal chemistry. Despite their widespread use, the metabolic fate of many MOE reagents is only beginning to be mapped. While metabolic interconnectivity can affect probe specificity, poor uptake by biosynthetic salvage pathways may impact probe sensitivity and trigger side reactions. Here, we use metabolic engineering to turn the weak alkyne-tagged MOE reagents Ac4GalNAlk and Ac4GlcNAlk into efficient chemical tools to probe protein glycosylation. We find that bypassing a metabolic bottleneck with an engineered version of the pyrophosphorylase AGX1 boosts nucleotide-sugar biosynthesis and increases bioorthogonal cell surface labeling by up to two orders of magnitude. A comparison with known azide-tagged MOE reagents reveals major differences in glycoprotein labeling, substantially expanding the toolbox of chemical glycobiology.


Assuntos
Galactosamina/análogos & derivados , Galactosamina/metabolismo , Galactosiltransferases/metabolismo , Glucosamina/análogos & derivados , Glucosamina/metabolismo , Alcinos/química , Sequência de Aminoácidos , Animais , Azidas/química , Linhagem Celular Tumoral , Química Click , Corantes Fluorescentes/química , Glicoproteínas/química , Glicoproteínas/metabolismo , Glicosilação , Humanos , Engenharia Metabólica/métodos , Camundongos , Sondas Moleculares/química , Oligossacarídeos/biossíntese , Polissacarídeos/biossíntese , Açúcares de Uridina Difosfato/biossíntese , Açúcares de Uridina Difosfato/metabolismo
3.
Int J Mol Sci ; 21(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326617

RESUMO

The purinergic (P2) receptor P2Y14 is the only P2 receptor that is stimulated by uridine diphosphate (UDP)-sugars and its role in bone formation is unknown. We confirmed P2Y14 expression in primary murine osteoblasts (CB-Ob) and the C2C12-BMP2 osteoblastic cell line (C2-Ob). UDP-glucose (UDPG) had undiscernible effects on cAMP levels, however, induced dose-dependent elevations in the cytosolic free calcium concentration ([Ca2+]i) in CB-Ob, but not C2-Ob cells. To antagonize the P2Y14 function, we used the P2Y14 inhibitor PPTN or generated CRISPR-Cas9-mediated P2Y14 knockout C2-Ob clones (Y14KO). P2Y14 inhibition facilitated calcium signalling and altered basal cAMP levels in both models of osteoblasts. Importantly, P2Y14 inhibition augmented Ca2+ signalling in response to ATP, ADP and mechanical stimulation. P2Y14 knockout or inhibition reduced osteoblast proliferation and decreased ERK1/2 phosphorylation and increased AMPKα phosphorylation. During in vitro osteogenic differentiation, P2Y14 inhibition modulated the timing of osteogenic gene expression, collagen deposition, and mineralization, but did not significantly affect differentiation status by day 28. Of interest, while P2ry14-/- mice from the International Mouse Phenotyping Consortium were similar to wild-type controls in bone mineral density, their tibia length was significantly increased. We conclude that P2Y14 in osteoblasts reduces cell responsiveness to mechanical stimulation and mechanotransductive signalling and modulates osteoblast differentiation.


Assuntos
Proliferação de Células/genética , Osteoblastos/metabolismo , Osteogênese/genética , Antagonistas Purinérgicos/farmacologia , Receptores Purinérgicos P2Y/metabolismo , Transdução de Sinais/genética , Açúcares de Uridina Difosfato/metabolismo , Difosfato de Adenosina/farmacologia , Trifosfato de Adenosina/farmacologia , Animais , Densidade Óssea/genética , Sistemas CRISPR-Cas , Cálcio/metabolismo , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , AMP Cíclico/metabolismo , Técnicas de Inativação de Genes , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Osteogênese/efeitos dos fármacos , Fosforilação , Antagonistas Purinérgicos/metabolismo , Receptores Purinérgicos P2Y/genética , Transdução de Sinais/efeitos dos fármacos , Uridina Difosfato Glucose/metabolismo , Uridina Difosfato Glucose/farmacologia , Açúcares de Uridina Difosfato/farmacologia
4.
Glycobiology ; 29(12): 839-846, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31679023

RESUMO

l-arabinofuranose is a ubiquitous component of the cell wall and various natural products in plants, where it is synthesized from cytosolic UDP-arabinopyranose (UDP-Arap). The biosynthetic machinery long remained enigmatic in terms of responsible enzymes and subcellular localization. With the discovery of UDP-Arap mutase in plant cytosol, the demonstration of its role in cell-wall arabinose incorporation and the identification of UDP-arabinofuranose transporters in the Golgi membrane, it is clear that the cytosolic UDP-Arap mutases are the key enzymes converting UDP-Arap to UDP-arabinofuranose for cell wall and natural product biosynthesis. This has recently been confirmed by several genotype/phenotype studies. In contrast to the solid evidence pertaining to UDP-Arap mutase function in vivo, the molecular features, including enzymatic mechanism and oligomeric state, remain unknown. However, these enzymes belong to the small family of proteins originally identified as reversibly glycosylated polypeptides (RGPs), which has been studied for >20 years. Here, we review the UDP-Arap mutase and RGP literature together, to summarize and systemize reported molecular characteristics and relations to other proteins.


Assuntos
Transferases Intramoleculares/química , Transferases Intramoleculares/metabolismo , Oryza/enzimologia , Açúcares de Uridina Difosfato/química , Açúcares de Uridina Difosfato/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Parede Celular/química , Parede Celular/metabolismo , Oryza/citologia
5.
Int J Mol Sci ; 20(2)2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30641943

RESUMO

Solute carrier family 35 member A5 (SLC35A5) is a member of the SLC35A protein subfamily comprising nucleotide sugar transporters. However, the function of SLC35A5 is yet to be experimentally determined. In this study, we inactivated the SLC35A5 gene in the HepG2 cell line to study a potential role of this protein in glycosylation. Introduced modification affected neither N- nor O-glycans. There was also no influence of the gene knock-out on glycolipid synthesis. However, inactivation of the SLC35A5 gene caused a slight increase in the level of chondroitin sulfate proteoglycans. Moreover, inactivation of the SLC35A5 gene resulted in the decrease of the uridine diphosphate (UDP)-glucuronic acid, UDP-N-acetylglucosamine, and UDP-N-acetylgalactosamine Golgi uptake, with no influence on the UDP-galactose transport activity. Further studies demonstrated that SLC35A5 localized exclusively to the Golgi apparatus. Careful insight into the protein sequence revealed that the C-terminus of this protein is extremely acidic and contains distinctive motifs, namely DXEE, DXD, and DXXD. Our studies show that the C-terminus is directed toward the cytosol. We also demonstrated that SLC35A5 formed homomers, as well as heteromers with other members of the SLC35A protein subfamily. In conclusion, the SLC35A5 protein might be a Golgi-resident multiprotein complex member engaged in nucleotide sugar transport.


Assuntos
Complexo de Golgi/metabolismo , Proteínas de Transporte de Nucleotídeos/genética , Proteínas de Transporte de Nucleotídeos/metabolismo , Proteínas Carreadoras de Solutos/genética , Proteínas Carreadoras de Solutos/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Motivos de Aminoácidos , Proteoglicanas de Sulfatos de Condroitina/metabolismo , Citosol/metabolismo , Técnicas de Inativação de Genes , Glicosilação , Células Hep G2 , Humanos , Proteínas de Transporte de Nucleotídeos/química , Uridina Difosfato Ácido Glucurônico/metabolismo , Uridina Difosfato N-Acetilglicosamina/metabolismo
6.
J Plant Res ; 131(2): 307-317, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29052022

RESUMO

Plant cell walls are composed of polysaccharides such as cellulose, hemicelluloses, and pectins, whose location and function differ depending on plant type. Arabinose is a constituent of many different cell wall components, including pectic rhamnogalacturonan I (RG-I) and II (RG-II), glucuronoarabinoxylans (GAX), and arabinoxyloglucan (AXG). Arabinose is found predominantly in the furanose rather than in the thermodynamically more stable pyranose form. The UDP-arabinopyranose mutases (UAMs) have been demonstrated to convert UDP-arabinopyranose (UDP-Arap) to UDP-arabinofuranose (UDP-Araf) in rice (Oryza sativa L.). The UAMs have been implicated in polysaccharide biosynthesis and developmental processes. Arabinose residues could be a component of many polysaccharides, including branched (1→5)-α-arabinans, arabinogalactans in pectic polysaccharides, and arabinoxyloglucans, which are abundant in the cell walls of solanaceous plants. Therefore, to elucidate the role of UAMs and arabinan side chains, we analyzed the UAM RNA interference transformants in tobacco (Nicotiana tabacum L.). The tobacco UAM gene family consists of four members. We generated RNAi transformants (NtUAM-KD) to down-regulate all four of the UAM members. The NtUAM-KD showed abnormal leaf development in the form of a callus-like structure and many holes in the leaf epidermis. A clear reduction in the pectic arabinan content was observed in the tissue of the NtUAM-KD leaf. The arabinose/xylose ratio in the xyloglucan-rich cell wall fraction was drastically reduced in NtUAM-KD. These results suggest that UAMs are required for Ara side chain biosynthesis in both RG-I and AXG in Solanaceae plants, and that arabinan-mediated cell wall networks might be important for normal leaf expansion.


Assuntos
Expressão Gênica , Transferases Intramoleculares/genética , Nicotiana/genética , Folhas de Planta/crescimento & desenvolvimento , Arabinose/metabolismo , Glucanos , Transferases Intramoleculares/metabolismo , Pectinas/metabolismo , Folhas de Planta/metabolismo , Polissacarídeos/metabolismo , Nicotiana/crescimento & desenvolvimento , Nicotiana/metabolismo , Açúcares de Uridina Difosfato/metabolismo
7.
Acta Crystallogr F Struct Biol Commun ; 73(Pt 4): 241-245, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28368284

RESUMO

The role of seemingly non-enzymatic proteins in complexes interconverting UDP-arabinopyranose and UDP-arabinofuranose (UDP-arabinosemutases; UAMs) in the plant cytosol remains unknown. To shed light on their function, crystallographic and functional studies of the seemingly non-enzymatic UAM2 protein from Oryza sativa (OsUAM2) were undertaken. Here, X-ray diffraction data are reported, as well as analysis of the oligomeric state in the crystal and in solution. OsUAM2 crystallizes readily but forms highly radiation-sensitive crystals with limited diffraction power, requiring careful low-dose vector data acquisition. Using size-exclusion chromatography, it is shown that the protein is monomeric in solution. Finally, limited proteolysis was employed to demonstrate DTT-enhanced proteolytic digestion, indicating the existence of at least one intramolecular disulfide bridge or, alternatively, a requirement for a structural metal ion.


Assuntos
Transferases Intramoleculares/química , Oryza/química , Proteínas de Plantas/química , Açúcares de Uridina Difosfato/química , Sequência de Aminoácidos , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Ditiotreitol/química , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Oryza/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteólise , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Subtilisina/química , Açúcares de Uridina Difosfato/metabolismo , Difração de Raios X
8.
Biochim Biophys Acta Proteins Proteom ; 1865(5): 510-519, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28192204

RESUMO

UDP-arabinopyranose mutase (UAM) is a plant enzyme which interconverts UDP-arabinopyranose (UDP-Arap; a six-membered sugar) to UDP-arabinofuranose (UDP-Araf; a five-membered sugar). Plant mutases belong to a small gene family called Reversibly Glycosylated Proteins (RGPs). So far, UAM has been identified in Oryza sativa (Rice), Arabidopsis thaliana and Hordeum vulgare (Barley). The enzyme requires divalent metal ions for catalytic activity. Here, the divalent metal ion dependency of UAMs from O. sativa (rice) and A. thaliana have been studied using HPLC-based kinetic assays. It was determined that UAM from these species had the highest relative activity in a range of 40-80µM Mn2+. Excess Mn2+ ion concentration decreased the enzyme activity. This trend was observed when other divalent metal ions were used to test activity. To gain a perspective of the role played by the metal ion in activity, an ab initio structural model was generated based on the UAM amino acid sequence and a potential metal binding region was identified. Based on our results, we propose that the probable role of the metal in UAM is stabilizing the diphosphate of the substrate, UDP-Arap.


Assuntos
Arabidopsis/enzimologia , Transferases Intramoleculares/química , Oryza/enzimologia , Açúcares de Uridina Difosfato/química , Sítios de Ligação , Catálise , Parede Celular/enzimologia , Regulação da Expressão Gênica de Plantas , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Íons/química , Cinética , Metais/química , Ligação Proteica , Açúcares de Uridina Difosfato/metabolismo
9.
Plant J ; 89(2): 325-337, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27696560

RESUMO

Because structural modifications of flavonoids are closely related to their properties, such as stability, solubility, flavor and coloration, characterizing the enzymes that catalyze the modification reactions can be useful for engineering agriculturally beneficial traits of flavonoids. In this work, we examined the enzymes involved in the modification pathway of highly glycosylated and acylated anthocyanins that accumulate in Lobelia erinus. Cultivar Aqua Blue (AB) of L. erinus is blue-flowered and accumulates delphinidin 3-O-p-coumaroylrutinoside-5-O-malonylglucoside-3'5'-O-dihydroxycinnamoylglucoside (lobelinins) in its petals. Cultivar Aqua Lavender (AL) is mauve-flowered, and LC-MS analyses showed that AL accumulated delphinidin 3-O-glucoside (Dp3G), which was not further modified toward lobelinins. A crude protein assay showed that modification processes of lobelinin were carried out in a specific order, and there was no difference between AB and AL in modification reactions after rhamnosylation of Dp3G, indicating that the lack of highly modified anthocyanins in AL resulted from a single mutation of rhamnosyltransferase catalyzing the rhamnosylation of Dp3G. We cloned rhamnosyltransferase genes (RTs) from AB and confirmed their UDP-rhamnose-dependent rhamnosyltransferase activities on Dp3G using recombinant proteins. In contrast, the RT gene in AL had a 5-bp nucleotide deletion, resulting in a truncated polypeptide without the plant secondary product glycosyltransferase box. In a complementation test, AL that was transformed with the RT gene from AB produced blue flowers. These results suggest that rhamnosylation is an essential process for lobelinin synthesis, and thus the expression of RT has a great impact on the flower color and is necessary for the blue color of Lobelia flowers.


Assuntos
Antocianinas/metabolismo , Lobelia/fisiologia , Proteínas de Plantas/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Clonagem Molecular , Teste de Complementação Genética , Glucosídeos/metabolismo , Hexosiltransferases/genética , Hexosiltransferases/metabolismo , Lobelia/genética , Lobelia/metabolismo , Filogenia , Pigmentação , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Plant Cell Rep ; 35(11): 2403-2421, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27591771

RESUMO

KEY MESSAGE: The present study first identified the involvement of OcUAXS2 and OcUXS1-3 in anticancer polysaccharides biosynthesis in O. caudatum. UDP-xylose synthase (UXS) and UDP-D-apiose/UDP-D-xylose synthase (UAXS), both capable of converting UDP-D-glucuronic acid to UDP-D-xylose, are believed to transfer xylosyl residue to anticancer polysaccharides biosynthesis in Ornithogalum caudatum Ait. However, the cDNA isolation and functional characterization of genes encoding the two enzymes from O. caudatum has never been documented. Previously, the transcriptome sequencing of O. caudatum was performed in our laboratory. In this study, a total of six and two unigenes encoding UXS and UAXS were first retrieved based on RNA-Seq data. The eight putative genes were then successfully isolated from transcriptome of O. caudatum by reverse transcription polymerase chain reaction (RT-PCR). Phylogenetic analysis revealed the six putative UXS isoforms can be classified into three types, one soluble and two distinct putative membrane-bound. Moreover, the two UAXS isoenzymes were predicted to be soluble forms. Subsequently, these candidate cDNAs were characterized to be bona fide genes by functional expression in Escherichia coli individually. Although UXS and UAXS catalyzed the same reaction, their biochemical properties varied significantly. It is worth noting that a ratio switch of UDP-D-xylose/UDP-D-apiose for UAXS was established, which is assumed to be helpful for its biotechnological application. Furthermore, a series of mutants were generated to test the function of NAD+ binding motif GxxGxxG. Most importantly, the present study determined the involvement of OcUAXS2 and OcUXS1-3 in xylose-containing polysaccharides biosynthesis in O. caudatum. These data provide a comprehensive knowledge for UXS and UAXS families in plants.


Assuntos
Carboxiliases/genética , Genes de Plantas , Família Multigênica , Ornithogalum/enzimologia , Ornithogalum/genética , Transcriptoma/genética , Açúcares de Uridina Difosfato/metabolismo , Uridina Difosfato Xilose/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Compostos de Amônio/farmacologia , Biocatálise/efeitos dos fármacos , Soluções Tampão , Cálcio/farmacologia , Carboxiliases/química , Carboxiliases/metabolismo , Cromatografia Líquida de Alta Pressão , DNA Complementar/genética , DNA Complementar/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Especificidade de Órgãos/efeitos dos fármacos , Especificidade de Órgãos/genética , Ornithogalum/efeitos dos fármacos , Espectroscopia de Prótons por Ressonância Magnética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA , Temperatura , Transcriptoma/efeitos dos fármacos , Açúcares de Uridina Difosfato/química , Uridina Difosfato Xilose/química
11.
Protein Sci ; 25(8): 1555-62, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27171345

RESUMO

ArnA from Escherichia coli is a key enzyme involved in the formation of 4-amino-4-deoxy-l-arabinose. The addition of this sugar to the lipid A moiety of the lipopolysaccharide of pathogenic Gram-negative bacteria allows these organisms to evade the cationic antimicrobial peptides of the host immune system. Indeed, it is thought that such modifications may be responsible for the repeated infections of cystic fibrosis patients with Pseudomonas aeruginosa. ArnA is a bifunctional enzyme with the N- and C-terminal domains catalyzing formylation and oxidative decarboxylation reactions, respectively. The catalytically competent cofactor for the formylation reaction is N(10) -formyltetrahydrofolate. Here we describe the structure of the isolated N-terminal domain of ArnA in complex with its UDP-sugar substrate and N(5) -formyltetrahydrofolate. The model presented herein may prove valuable in the development of new antimicrobial therapeutics.


Assuntos
Amino Açúcares/química , Carboxiliases/química , Coenzimas/química , Escherichia coli/química , Formiltetra-Hidrofolatos/química , Açúcares de Uridina Difosfato/química , Amino Açúcares/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Clonagem Molecular , Coenzimas/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Formiltetra-Hidrofolatos/metabolismo , Expressão Gênica , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Açúcares de Uridina Difosfato/metabolismo
12.
Cell Mol Life Sci ; 73(16): 3183-204, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26883802

RESUMO

Hyaluronan content is a powerful prognostic factor in many cancer types, but the molecular basis of its synthesis in cancer still remains unclear. Hyaluronan synthesis requires the transport of hyaluronan synthases (HAS1-3) from Golgi to plasma membrane (PM), where the enzymes are activated. For the very first time, the present study demonstrated a rapid recycling of HAS3 between PM and endosomes, controlled by the cytosolic levels of the HAS substrates UDP-GlcUA and UDP-GlcNAc. Depletion of UDP-GlcNAc or UDP-GlcUA shifted the balance towards HAS3 endocytosis, and inhibition of hyaluronan synthesis. In contrast, UDP-GlcNAc surplus suppressed endocytosis and lysosomal decay of HAS3, favoring its retention in PM, stimulating hyaluronan synthesis, and HAS3 shedding in extracellular vesicles. The concentration of UDP-GlcNAc also controlled the level of O-GlcNAc modification of HAS3. Increasing O-GlcNAcylation reproduced the effects of UDP-GlcNAc surplus on HAS3 trafficking, while its suppression showed the opposite effects, indicating that O-GlcNAc signaling is associated to UDP-GlcNAc supply. Importantly, a similar correlation existed between the expression of GFAT1 (the rate limiting enzyme in UDP-GlcNAc synthesis) and hyaluronan content in early and deep human melanomas, suggesting the association of UDP-sugar metabolism in initiation of melanomagenesis. In general, changes in glucose metabolism, realized through UDP-sugar contents and O-GlcNAc signaling, are important in HAS3 trafficking, hyaluronan synthesis, and correlates with melanoma progression.


Assuntos
Glucuronosiltransferase/metabolismo , Ácido Hialurônico/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Pele/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Acetilglucosamina/metabolismo , Acilação , Animais , Células COS , Linhagem Celular , Linhagem Celular Tumoral , Chlorocebus aethiops , Progressão da Doença , Endocitose , Humanos , Hialuronan Sintases , Melanoma/patologia , Transporte Proteico , Pele/patologia , Neoplasias Cutâneas/patologia , Uridina Difosfato N-Acetilglicosamina/metabolismo
13.
J Biol Chem ; 288(30): 21850-60, 2013 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-23766508

RESUMO

SLC35A3 is considered the main UDP-N-acetylglucosamine transporter (NGT) in mammals. Detailed analysis of NGT is restricted because mammalian mutant cells defective in this activity have not been isolated. Therefore, using the siRNA approach, we developed and characterized several NGT-deficient mammalian cell lines. CHO, CHO-Lec8, and HeLa cells deficient in NGT activity displayed a decrease in the amount of highly branched tri- and tetraantennary N-glycans, whereas monoantennary and diantennary ones remained unchanged or even were accumulated. Silencing the expression of NGT in Madin-Darby canine kidney II cells resulted in a dramatic decrease in the keratan sulfate content, whereas no changes in biosynthesis of heparan sulfate were observed. We also demonstrated for the first time close proximity between NGT and mannosyl (α-1,6-)-glycoprotein ß-1,6-N-acetylglucosaminyltransferase (Mgat5) in the Golgi membrane. We conclude that NGT may be important for the biosynthesis of highly branched, multiantennary complex N-glycans and keratan sulfate. We hypothesize that NGT may specifically supply ß-1,3-N-acetylglucosaminyl-transferase 7 (ß3GnT7), Mgat5, and possibly mannosyl (α-1,3-)-glycoprotein ß-1,4-N-acetylglucosaminyltransferase (Mgat4) with UDP-GlcNAc.


Assuntos
Sulfato de Queratano/biossíntese , Proteínas de Membrana Transportadoras/metabolismo , Polissacarídeos/biossíntese , Interferência de RNA , Animais , Sequência de Bases , Transporte Biológico , Células CHO , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , Cricetulus , Cães , Transferência Ressonante de Energia de Fluorescência , Galactosiltransferases/genética , Galactosiltransferases/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Proteínas de Membrana Transportadoras/genética , Microscopia Confocal , Dados de Sequência Molecular , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , N-Acetilglucosaminiltransferases/metabolismo , Análise de Sequência de DNA , Açúcares de Uridina Difosfato/metabolismo
14.
J Histochem Cytochem ; 60(12): 898-907, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23042481

RESUMO

Nearly all vertebrate cells have been shown to express heparan sulfate proteoglycans (HSPGs) at the cell surface. The HSPGs bind to many secreted signaling proteins, including numerous growth factors, cytokines, and morphogens, to affect their tissue distribution and signaling. The heparan sulfate (HS) chains may have variable length and may differ with regard to both degree and pattern of sulfation. As the sulfation pattern of HS chains in most cases will determine if an interaction with a potential ligand will take place, as well as the affinity of the interaction, a key to understanding the function of HSPGs is to clarify how HS biosynthesis is regulated in different biological contexts. This review provides an introduction to the current understanding of HS biosynthesis and its regulation, and identifies research areas where more knowledge is needed to better understand how the HS biosynthetic machinery works.


Assuntos
Heparitina Sulfato/biossíntese , Animais , Glicosaminoglicanos/metabolismo , Heparitina Sulfato/química , Heparitina Sulfato/genética , Humanos , Fosfoadenosina Fosfossulfato/metabolismo , Proteoglicanas/metabolismo , Transcrição Gênica , Açúcares de Uridina Difosfato/metabolismo
15.
J Biol Chem ; 287(30): 24929-40, 2012 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-22665487

RESUMO

TpeL is a member of the family of clostridial glucosylating toxins produced by Clostridium perfringens type A, B, and C strains. In contrast to other members of this toxin family, it lacks a C-terminal polypeptide repeat domain, which is suggested to be involved in target cell binding. It was shown that the glucosyltransferase domain of TpeL modifies Ras in vitro by mono-O-glucosylation or mono-O-GlcNAcylation (Nagahama, M., Ohkubo, A., Oda, M., Kobayashi, K., Amimoto, K., Miyamoto, K., and Sakurai, J. (2011) Infect. Immun. 79, 905-910). Here we show that TpeL preferably utilizes UDP-N-acetylglucosamine (UDP-GlcNAc) as a sugar donor. Change of alanine 383 of TpeL to isoleucine turns the sugar donor preference from UDP-GlcNAc to UDP-glucose. In contrast to previous studies, we show that Rac is a poor substrate in vitro and in vivo and requires 1-2 magnitudes higher toxin concentrations for modification by TpeL. The toxin is autoproteolytically processed in the presence of inositol hexakisphosphate (InsP(6)) by an intrinsic cysteine protease domain, located next to the glucosyltransferase domain. A C-terminally extended TpeL full-length variant (TpeL1-1779) induces apoptosis in HeLa cells (most likely by mono-O-GlcNAcylation of Ras), and inhibits Ras signaling including Ras-Raf interaction and ERK activation. In addition, TpeL blocks Ras signaling in rat pheochromocytoma PC12 cells. TpeL is a glucosylating toxin, which modifies Ras and induces apoptosis in target cells without having a typical C-terminal polypeptide repeat domain.


Assuntos
Acetilglucosamina/metabolismo , Toxinas Bacterianas/metabolismo , Clostridium perfringens/enzimologia , Glicosiltransferases/metabolismo , Proteína Oncogênica p21(ras)/metabolismo , Proteólise , Acetilglucosamina/genética , Animais , Apoptose/genética , Toxinas Bacterianas/genética , Clostridium perfringens/genética , Ativação Enzimática/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Glicosilação , Glicosiltransferases/genética , Células HeLa , Humanos , Proteína Oncogênica p21(ras)/genética , Células PC12 , Ratos , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo , Quinases raf/genética , Quinases raf/metabolismo
16.
J Biol Chem ; 287(5): 3009-18, 2012 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-22157758

RESUMO

Mimivirus is one the largest DNA virus identified so far, infecting several Acanthamoeba species. Analysis of its genome revealed the presence of a nine-gene cluster containing genes potentially involved in glycan formation. All of these genes are co-expressed at late stages of infection, suggesting their role in the formation of the long fibers covering the viral surface. Among them, we identified the L136 gene as a pyridoxal phosphate-dependent sugar aminotransferase. This enzyme was shown to catalyze the formation of UDP-4-amino-4,6-dideoxy-D-glucose (UDP-viosamine) from UDP-4-keto-6-deoxy-D-glucose, a key compound involved also in the biosynthesis of L-rhamnose. This finding further supports the hypothesis that Mimivirus encodes a glycosylation system that is completely independent of the amoebal host. Viosamine, together with rhamnose, (N-acetyl)glucosamine, and glucose, was found as a major component of the viral glycans. Most of the sugars were associated with the fibers, confirming a capsular-like nature of the viral surface. Phylogenetic analysis clearly indicated that L136 was not a recent acquisition from bacteria through horizontal gene transfer, but it was acquired very early during evolution. Implications for the origin of the glycosylation machinery in giant DNA virus are also discussed.


Assuntos
Evolução Molecular , Glucosamina/análogos & derivados , Mimiviridae/enzimologia , Mimiviridae/genética , Transaminases/genética , Transaminases/metabolismo , Acanthamoeba/virologia , DNA Viral/genética , DNA Viral/metabolismo , Genes Virais/fisiologia , Glucosamina/genética , Glucosamina/metabolismo , Glicosilação , Açúcares de Uridina Difosfato/genética , Açúcares de Uridina Difosfato/metabolismo
17.
Acta Physiol (Oxf) ; 199(2): 149-60, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20345417

RESUMO

The P2Y(14) receptor is a relatively broadly expressed G protein-coupled receptor that is prominently associated with immune and inflammatory cells as well as with many epithelia. This receptor historically was thought to be activated selectively by UDP-glucose and other UDP-sugars. However, UDP is also a very potent agonist of this receptor, and may prove to be one of its most important cognate activators.


Assuntos
Isoformas de Proteínas/metabolismo , Receptores Purinérgicos P2/metabolismo , Transdução de Sinais/fisiologia , Animais , Células Epiteliais/metabolismo , Trato Gastrointestinal/metabolismo , Células HL-60 , Humanos , Sistema Imunitário/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Isoformas de Proteínas/genética , Receptores Purinérgicos P2/genética , Difosfato de Uridina/metabolismo , Açúcares de Uridina Difosfato/metabolismo
18.
Arch Microbiol ; 192(2): 103-14, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20035319

RESUMO

Leptospira interrogans synthesizes a range of mannose-containing glycoconjugates relevant for its virulence. A prerequisite in the synthesis is the availability of the GDP-mannose, produced from mannose-1-phosphate and GTP in a reaction catalyzed by GDP-mannose pyrophosphorylase. The gene coding for a putative enzyme in L. interrogans was expressed in Escherichia coli BL21(DE3). The identity of this enzyme was confirmed by electrospray-mass spectroscopy, Edman sequencing and immunological assays. Gel filtration chromatography showed that the dimeric form of the enzyme is catalytically active and stable. The recombinant protein was characterized as a mannose-1-phosphate guanylyltransferase. S (0.5) for the substrates were determined both in GDP-mannose pyrophosphorolysis: 0.20 mM (GDP-mannose), 0.089 mM (PPi), and 0.47 mM; and in GDP-mannose synthesis: 0.24 mM (GTP), 0.063 mM (mannose-1-phosphate), and 0.45 mM (Mg(2+)). The enzyme was able to produce GDP-mannose, IDP-mannose, UDP-mannose and ADP-glucose. We obtained a structural model of the enzyme using as a template the crystal structure of mannose-1-phosphate guanylyltransferase from Thermus thermophilus HB8. Binding of substrates and cofactor in the model agree with the pyrophosphorylases reaction mechanism. Our studies provide insights into the structure of a novel molecular target, which could be useful for detection of leptospirosis and for the development of anti-leptospiral drugs.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Leptospira interrogans/enzimologia , Nucleotidiltransferases/química , Nucleotidiltransferases/metabolismo , Adenosina Difosfato Glucose/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Western Blotting , Cromatografia em Gel , Guanosina Difosfato Manose/metabolismo , Manosefosfatos/metabolismo , Dados de Sequência Molecular , Nucleotidiltransferases/genética , Estrutura Secundária de Proteína , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização por Electrospray , Especificidade por Substrato , Açúcares de Uridina Difosfato/metabolismo
19.
J Bacteriol ; 190(18): 6153-61, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18641143

RESUMO

Nucleoside 5'-diphosphate-X hydrolases are interesting enzymes to study due to their varied activities and structure-function relationships and the roles they play in the disposal, assimilation, and modulation of the effects of their substrates. Few of these enzymes with a preference for CDP-alcohols are known. In Yersinia intermedia suspensions prepared from cultures on Columbia agar with 5% sheep blood, we found a CDP-alcohol hydrolase liberated to Triton X-100-containing medium. Growth at 25 degrees C was deemed optimum in terms of the enzyme-activity yield. The purified enzyme also displayed 5'-nucleotidase, UDP-sugar hydrolase, and dinucleoside-polyphosphate hydrolase activities. It was identified as the protein product (UshA(Yi)) of the Y. intermedia ushA gene (ushA(Yi)) by its peptide mass fingerprint and by PCR cloning and expression to yield active enzyme. All those activities, except CDP-alcohol hydrolase, have been shown to be the properties of UshA of Escherichia coli (UshA(Ec)). Therefore, UshA(Ec) was expressed from an appropriate plasmid and tested for CDP-alcohol hydrolase activity. UshA(Ec) and UshA(Yi) behaved similarly. Besides being the first study of a UshA enzyme in the genus Yersinia, this work adds CDP-alcohol hydrolase to the spectrum of UshA activities and offers a novel perspective on these proteins, which are viewed here for the first time as highly efficient enzymes with k(cat)/K(m) ratios near the theoretical maximum level of catalytic activities. The results are discussed in the light of the known structures of UshA(Ec) conformers and the respective homology models constructed for UshA(Yi), and also in relation to possible biological functions. Interestingly, every Yersinia species with a sequenced genome contains an intact ushA gene, except Y. pestis, which in all its sequenced biovars contains a ushA gene inactivated by frameshift mutations.


Assuntos
Proteínas de Bactérias/metabolismo , Escherichia coli/enzimologia , Nucleotidases/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Açúcares de Uridina Difosfato/metabolismo , Yersinia/enzimologia , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Clonagem Molecular , Escherichia coli/química , Escherichia coli/genética , Expressão Gênica , Cinética , Dados de Sequência Molecular , Nucleotidases/química , Nucleotidases/genética , Nucleotidases/isolamento & purificação , Diester Fosfórico Hidrolases/química , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/isolamento & purificação , Sinais Direcionadores de Proteínas , Estrutura Terciária de Proteína , Ratos , Especificidade por Substrato , Açúcares de Uridina Difosfato/química , Yersinia/química , Yersinia/genética
20.
J Physiol ; 584(Pt 1): 245-59, 2007 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-17656429

RESUMO

The efficiency of the mucociliary clearance (MCC) process that removes noxious materials from airway surfaces depends on the balance between mucin secretion, airway surface liquid (ASL) volume, and ciliary beating. Effective mucin dispersion into ASL requires salt and water secretion onto the mucosal surface, but how mucin secretion rate is coordinated with ion and, ultimately, water transport rates is poorly understood. Several components of MCC, including electrolyte and water transport, are regulated by nucleotides in the ASL interacting with purinergic receptors. Using polarized monolayers of airway epithelial Calu-3 cells, we investigated whether mucin secretion was accompanied by nucleotide release. Electron microscopic analyses of Calu-3 cells identified subapical granules that resembled goblet cell mucin granules. Real-time confocal microscopic analyses revealed that subapical granules, labelled with FM 1-43 or quinacrine, were competent for Ca(2+)-regulated exocytosis. Granules containing MUC5AC were apically secreted via Ca(2+)-regulated exocytosis as demonstrated by combined immunolocalization and slot blot analyses. In addition, Calu-3 cells exhibited Ca(2+)-regulated apical release of ATP and UDP-glucose, a substrate of glycosylation reactions within the secretory pathway. Neither mucin secretion nor ATP release from Calu-3 cells were affected by activation or inhibition of the cystic fibrosis transmembrane conductance regulator. In SPOC1 cells, an airway goblet cell model, purinergic P2Y(2) receptor-stimulated increase of cytosolic Ca(2+) concentration resulted in secretion of both mucins and nucleotides. Our data suggest that nucleotide release is a mechanism by which mucin-secreting goblet cells produce paracrine signals for mucin hydration within the ASL.


Assuntos
Exocitose/fisiologia , Mucinas/metabolismo , Nucleotídeos/metabolismo , Mucosa Respiratória/metabolismo , Água/fisiologia , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Linhagem Celular Tumoral , Humanos , Vesículas Secretórias/fisiologia , Açúcares de Uridina Difosfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA