Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Future Med Chem ; 14(24): 1847-1864, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36444737

RESUMO

Aims: The screening of antimycobacterial benzo[d]thiazole-2-carboxamides against ATP-phosphoribosyl transferase (ATP-PRTase) was conducted. Materials & methods: The antitubercular potential of compounds 1 and 2 against ATP-PRTase was assessed through the determination of half maximal effective concentration (EC50) and binding constant (Kd), as well as competitive inhibitory studies and studies of perturbation of secondary structure, molecular modeling and L-histidine complementation assay. Results & conclusion: Compounds 1n and 2a significantly inhibited ATP-PRTase as evidenced by their EC50 and Kd values and the perturbation of the secondary structure study. Compound 1n exhibited stronger competitive inhibition toward ATP compared with 2a. The inhibition of the growth of Mycobacterium tuberculosis by targeting the L-histidine biosynthesis pathway and molecular modeling studies further supported the inhibition of ATP-PRTase.


Assuntos
ATP Fosforribosiltransferase , Mycobacterium tuberculosis , Tiazóis/farmacologia , ATP Fosforribosiltransferase/metabolismo , Histidina/metabolismo , Histidina/farmacologia , Antituberculosos/química , Trifosfato de Adenosina
2.
Biochem J ; 475(16): 2681-2697, 2018 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-30072492

RESUMO

In the first committed step of histidine biosynthesis, adenosine 5'-triphosphate (ATP) and 5-phosphoribosyl-α1-pyrophosphate (PRPP), in the presence of ATP phosphoribosyltransferase (ATP-PRT, EC 2.4.2.17), yield phosphoribosyl-ATP. ATP-PRTs are subject to feedback inhibition by histidine that allosterically binds between the regulatory domains. Histidine biosynthetic pathways of bacteria, lower eukaryotes, and plants are considered promising targets for the design of antibiotics, antifungal agents, and herbicides because higher organisms are histidine heterotrophs. Plant ATP-PRTs are similar to one of the two types of their bacterial counterparts, the long-type ATP-PRTs. A biochemical and structural study of ATP-PRT from the model legume plant, Medicago truncatula (MedtrATP-PRT1) is reported herein. Two crystal structures, presenting homohexameric MedtrATP-PRT1 in its relaxed (R-) and histidine-bound, tense (T-) states allowed to observe key features of the enzyme and provided the first structural insights into an ATP-PRT from a eukaryotic organism. In particular, they show pronounced conformational reorganizations during R-state to T-state transition that involves substantial movements of domains. This rearrangement requires a trans- to cis- switch of a peptide backbone within the hinge region of MedtrATP-PRT1. A C-terminal α-helix, absent in bacteria, reinforces the hinge that is constituted by two peptide strands. As a result, conformations of the R- and T-states are significantly different from the corresponding states of prokaryotic enzymes with known 3-D structures. Finally, adenosine 5'-monophosphate (AMP) bound at the active site is consistent with a competitive (and synergistic with histidine) nature of AMP inhibition.


Assuntos
ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/metabolismo , Histidina/biossíntese , Medicago truncatula/enzimologia , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , ATP Fosforribosiltransferase/genética , Cristalografia por Raios X , Histidina/genética , Medicago truncatula/genética , Proteínas de Plantas/genética , Domínios Proteicos , Estrutura Secundária de Proteína
3.
Biochemistry ; 57(29): 4357-4367, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29940105

RESUMO

Short-form ATP phosphoribosyltransferase (ATPPRT) is a hetero-octameric allosteric enzyme comprising four catalytic subunits (HisGS) and four regulatory subunits (HisZ). ATPPRT catalyzes the Mg2+-dependent condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate (PRPP) to generate N1-(5-phospho-ß-d-ribosyl)-ATP (PRATP) and pyrophosphate, the first reaction of histidine biosynthesis. While HisGS is catalytically active on its own, its activity is allosterically enhanced by HisZ in the absence of histidine. In the presence of histidine, HisZ mediates allosteric inhibition of ATPPRT. Here, initial velocity patterns, isothermal titration calorimetry, and differential scanning fluorimetry establish a distinct kinetic mechanism for ATPPRT where PRPP is the first substrate to bind. AMP is an inhibitor of HisGS, but steady-state kinetics and 31P NMR spectroscopy demonstrate that ADP is an alternative substrate. Replacement of Mg2+ by Mn2+ enhances catalysis by HisGS but not by the holoenzyme, suggesting different rate-limiting steps for nonactivated and activated enzyme forms. Density functional theory calculations posit an SN2-like transition state stabilized by two equivalents of the metal ion. Natural bond orbital charge analysis points to Mn2+ increasing HisGS reaction rate via more efficient charge stabilization at the transition state. High solvent viscosity increases HisGS's catalytic rate, but decreases the hetero-octamer's, indicating that chemistry and product release are rate-limiting for HisGS and ATPPRT, respectively. This is confirmed by pre-steady-state kinetics, with a burst in product formation observed with the hetero-octamer but not with HisGS. These results are consistent with an activation mechanism whereby HisZ binding leads to a more active conformation of HisGS, accelerating chemistry beyond the product release rate.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Psychrobacter/enzimologia , ATP Fosforribosiltransferase/química , Difosfato de Adenosina/metabolismo , Monofosfato de Adenosina/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Cinética , Modelos Moleculares , Infecções por Moraxellaceae/microbiologia , Fosforribosil Pirofosfato/metabolismo , Conformação Proteica , Multimerização Proteica , Psychrobacter/química , Psychrobacter/metabolismo , Especificidade por Substrato
4.
Biochem J ; 475(1): 247-260, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29208762

RESUMO

Adenosine triphosphate (ATP) phosphoribosyltransferase (ATP-PRT) catalyses the first committed step of histidine biosynthesis in plants and microorganisms. Two forms of ATP-PRT have been reported, which differ in their molecular architecture and mechanism of allosteric regulation. The short-form ATP-PRT is a hetero-octamer, with four HisG chains that comprise only the catalytic domains and four separate chains of HisZ required for allosteric regulation by histidine. The long-form ATP-PRT is homo-hexameric, with each chain comprising two catalytic domains and a covalently linked regulatory domain that binds histidine as an allosteric inhibitor. Here, we describe a truncated long-form ATP-PRT from Campylobacter jejuni devoid of its regulatory domain (CjeATP-PRTcore). Results showed that CjeATP-PRTcore is dimeric, exhibits attenuated catalytic activity, and is insensitive to histidine, indicating that the covalently linked regulatory domain plays a role in both catalysis and regulation. Crystal structures were obtained for CjeATP-PRTcore in complex with both substrates, and for the first time, the complete product of the reaction. These structures reveal the key features of the active site and provide insights into how substrates move into position during catalysis.


Assuntos
ATP Fosforribosiltransferase/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Campylobacter jejuni/enzimologia , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Motivos de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Campylobacter jejuni/química , Domínio Catalítico , Clonagem Molecular , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Histidina/química , Histidina/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
5.
ACS Chem Biol ; 12(10): 2662-2670, 2017 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-28872824

RESUMO

Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first step in histidine biosynthesis, a pathway essential to microorganisms and a validated target for antimicrobial drug design. The ATP-PRT enzyme catalyzes the reversible substitution reaction between phosphoribosyl pyrophosphate and ATP. The enzyme exists in two structurally distinct forms, a short- and a long-form enzyme. These forms share a catalytic core dimer but bear completely different allosteric domains and thus distinct quaternary assemblies. Understanding enzymatic transition states can provide essential information on the reaction mechanisms and insight into how differences in domain structure influence the reaction chemistry, as well as providing a template for inhibitor design. In this study, the transition state structures for ATP-PRT enzymes from Campylobacter jejuni and Mycobacterium tuberculosis (long-form enzymes) and from Lactococcus lactis (short-form) were determined and compared. Intrinsic kinetic isotope effects (KIEs) were obtained at reaction sensitive positions for the reverse reaction using phosphonoacetic acid, an alternative substrate to the natural substrate pyrophosphate. The experimental KIEs demonstrated mechanistic similarities between the three enzymes and provided experimental boundaries for quantum chemical calculations to characterize the transition states. Predicted transition state structures support a dissociative reaction mechanism with a DN*AN‡ transition state. Weak interactions from the incoming nucleophile and a fully dissociated ATP adenine are predicted regardless of the difference in overall structure and quaternary assembly. These studies establish that despite significant differences in the quaternary assembly and regulatory machinery between ATP-PRT enzymes from different sources, the reaction chemistry and catalytic mechanism are conserved.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Bactérias/enzimologia , ATP Fosforribosiltransferase/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico , Cinética , Modelos Moleculares , Conformação Proteica , Isoformas de Proteínas , Transdução de Sinais
6.
Nat Commun ; 8(1): 203, 2017 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-28781362

RESUMO

ATP-phosphoribosyltransferase (ATP-PRT) is a hexameric enzyme in conformational equilibrium between an open and seemingly active state and a closed and presumably inhibited form. The structure-function relationship of allosteric regulation in this system is still not fully understood. Here, we develop a screening strategy for modulators of ATP-PRT and identify 3-(2-thienyl)-L-alanine (TIH) as an allosteric activator of this enzyme. Kinetic analysis reveals co-occupancy of the allosteric sites by TIH and L-histidine. Crystallographic and native ion-mobility mass spectrometry data show that the TIH-bound activated form of the enzyme closely resembles the inhibited L-histidine-bound closed conformation, revealing the uncoupling between ATP-PRT open and closed conformations and its functional state. These findings suggest that dynamic processes are responsible for ATP-PRT allosteric regulation and that similar mechanisms might also be found in other enzymes bearing a ferredoxin-like allosteric domain.Active and inactive state ATP-phosphoribosyltransferases (ATP-PRTs) are believed to have different conformations. Here the authors show that in both states, ATP-PRT has a similar structural arrangement, suggesting that dynamic alterations are involved in ATP-PRT regulation by allosteric modulators.


Assuntos
ATP Fosforribosiltransferase/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítio Alostérico , Histidina/química , Histidina/metabolismo , Cinética , Modelos Moleculares
7.
Biochemistry ; 56(5): 793-803, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28092443

RESUMO

Adenosine 5'-triphosphate phosphoribosyltransferase (ATPPRT) catalyzes the first step in histidine biosynthesis, the condensation of ATP and 5-phospho-α-d-ribosyl-1-pyrophosphate to generate N1-(5-phospho-ß-d-ribosyl)-ATP and inorganic pyrophosphate. The enzyme is allosterically inhibited by histidine. Two forms of ATPPRT, encoded by the hisG gene, exist in nature, depending on the species. The long form, HisGL, is a single polypeptide chain with catalytic and regulatory domains. The short form, HisGS, lacks a regulatory domain and cannot bind histidine. HisGS instead is found in complex with a regulatory protein, HisZ, constituting the ATPPRT holoenzyme. HisZ triggers HisGS catalytic activity while rendering it sensitive to allosteric inhibition by histidine. Until recently, HisGS was thought to be catalytically inactive without HisZ. Here, recombinant HisGS and HisZ from the psychrophilic bacterium Psychrobacter arcticus were independently overexpressed and purified. The crystal structure of P. arcticus ATPPRT was determined at 2.34 Å resolution, revealing an equimolar HisGS-HisZ hetero-octamer. Steady-state kinetics indicate that both the ATPPRT holoenzyme and HisGS are catalytically active. Surprisingly, HisZ confers only a modest 2-4-fold increase in kcat. Reaction profiles for both enzymes cannot be distinguished by 31P nuclear magnetic resonance, indicating that the same reaction is catalyzed. The temperature dependence of kcat shows deviation from Arrhenius behavior at 308 K with the holoenzyme. Interestingly, such deviation is detected only at 313 K with HisGS. Thermal denaturation by CD spectroscopy resulted in Tm's of 312 and 316 K for HisZ and HisGS, respectively, suggesting that HisZ renders the ATPPRT complex more thermolabile. This is the first characterization of a psychrophilic ATPPRT.


Assuntos
ATP Fosforribosiltransferase/química , Aminoacil-tRNA Sintetases/química , Proteínas de Bactérias/química , Histidina/química , Proteínas de Transporte de Monossacarídeos/química , Psychrobacter/enzimologia , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Aclimatação , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Temperatura Baixa , Cristalografia por Raios X , Difosfatos/química , Difosfatos/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Histidina/biossíntese , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Modelos Moleculares , Proteínas de Transporte de Monossacarídeos/genética , Proteínas de Transporte de Monossacarídeos/metabolismo , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Domínios Proteicos , Multimerização Proteica , Estrutura Secundária de Proteína , Psychrobacter/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
8.
Amino Acids ; 48(11): 2605-2617, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27373692

RESUMO

Histidine is an essential amino acid assumed to be synthesized by an obligatory yeast-like symbiont (Entomomyces delphacidicola str. NLU) in Nilaparvata lugens, an important rice pest. The adenosine-triphosphate phosphoribosyltransferase (ATP-PRTase) facilities the committed first step of the histidine biosynthesis pathway. In the current study, a putative ATP-PRTase was cloned and verified to be of E. delphacidicola origin (EdePRTase). The expression of the gene was spatial and temporal universal with a profile that matched the distribution of the fungal symbiont. RNA interference aided the knockdown of the EdePRTase-suppressed EdePRTase expression by 32-48 %. Hemolymph histidine level was also reduced followed by significant reduction of adult body weight. However, other performance characters including nymph development, survival, and adult sex ratio were not adversely affected by the knockdown. Furthermore, forced histidine exposure (through injection or feeding) significantly inhibited the EdePRTase mRNA levels at higher concentrations, but significantly increased EdePRTase expression levels at lower concentrations (feeding only). The significance of these findings support that the EdePRTase is from symbiont E. delphacidicola, and its involvement in histidine biosynthesis of N. lugens was discussed. The results provide a better understanding of EdePRTase and the encoded functional ATP-PRTase enzyme regulation in N. lugens and insects in general.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Proteínas Fúngicas/metabolismo , Hemípteros , Histidina/biossíntese , Sordariales/enzimologia , Simbiose/fisiologia , Animais , Hemípteros/metabolismo , Hemípteros/microbiologia
9.
Protein Sci ; 25(8): 1492-506, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27191057

RESUMO

Adenosine triphosphate phosphoribosyltransferase (ATP-PRT) catalyzes the first committed step of the histidine biosynthesis in plants and microorganisms. Here, we present the functional and structural characterization of the ATP-PRT from the pathogenic ε-proteobacteria Campylobacter jejuni (CjeATP-PRT). This enzyme is a member of the long form (HisGL ) ATP-PRT and is allosterically inhibited by histidine, which binds to a remote regulatory domain, and competitively inhibited by AMP. In the crystalline form, CjeATP-PRT was found to adopt two distinctly different hexameric conformations, with an open homohexameric structure observed in the presence of substrate ATP, and a more compact closed form present when inhibitor histidine is bound. CjeATP-PRT was observed to adopt only a hexameric quaternary structure in solution, contradicting previous hypotheses favoring an allosteric mechanism driven by an oligomer equilibrium. Instead, this study supports the conclusion that the ATP-PRT long form hexamer is the active species; the tightening of this structure in response to remote histidine binding results in an inhibited enzyme.


Assuntos
ATP Fosforribosiltransferase/química , Monofosfato de Adenosina/química , Trifosfato de Adenosina/química , Proteínas de Bactérias/química , Campylobacter jejuni/química , Histidina/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Regulação Alostérica , Sítio Alostérico , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ligação Competitiva , Campylobacter jejuni/enzimologia , Campylobacter jejuni/genética , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Cinética , Modelos Moleculares , Mutação , Dobramento de Proteína , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica
10.
Biochemistry ; 45(50): 14933-43, 2006 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-17154531

RESUMO

Two families of ATP phosphoribosyl transferases (ATP-PRT) join ATP and 5-phosphoribosyl-1 pyrophosphate (PRPP) in the first reaction of histidine biosynthesis. These consist of a homohexameric form found in all three kingdoms and a hetero-octameric form largely restricted to bacteria. Hetero-octameric ATP-PRTs consist of four HisGS catalytic subunits related to periplasmic binding proteins and four HisZ regulatory subunits that resemble histidyl-tRNA synthetases. To clarify the relationship between the two families of ATP-PRTs and among phosphoribosyltransferases in general, we determined the steady state kinetics for the hetero-octameric form and characterized the active site by mutagenesis. The KmPRPP (18.4 +/- 3.5 microM) and kcat (2.7 +/- 0.3 s-1) values for the PRPP substrate are similar to those of hexameric ATP-PRTs, but the Km for ATP (2.7 +/- 0.3 mM) is 4-fold higher, suggestive of tighter regulation by energy charge. Histidine and AMP were determined to be noncompetitive (Ki = 81.1 microM) and competitive (Ki = 1.44 mM) inhibitors, respectively, with values that approximate their intracellular concentrations. Mutagenesis experiments aimed at investigating the side chains recognizing PRPP showed that 5'-phosphate contacts (T159A and T162A) had the largest (25- and 155-fold, respectively) decreases in kcat/Km, while smaller decreases were seen with mutants making cross subunit contacts (K50A and K8A) to the pyrophosphate moiety or contacts to the 2'-OH group. Despite their markedly different quaternary structures, hexameric and hetero-octameric ATRP-PRTs exhibit similar functional parameters and employ mechanistic strategies reminiscent of the broader PRT superfamily.


Assuntos
ATP Fosforribosiltransferase/química , Proteínas de Bactérias/química , Lactococcus lactis/enzimologia , Complexos Multiproteicos/química , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Domínio Catalítico/genética , Histidina/biossíntese , Histidina/química , Lactococcus lactis/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutagênese Sítio-Dirigida , Fosforribosil Pirofosfato/química , Fosforribosil Pirofosfato/metabolismo , Ligação Proteica/genética , Estrutura Quaternária de Proteína/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Especificidade por Substrato/genética
11.
Biophys J ; 90(4): 1453-61, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16299075

RESUMO

Genome-scale metabolic models are an invaluable tool for analyzing metabolic systems as they provide a more complete picture of the processes of metabolism. We have constructed a genome-scale metabolic model of Escherichia coli based on the iJR904 model developed by the Palsson Laboratory at the University of California at San Diego. Group contribution methods were utilized to estimate the standard Gibbs free energy change of every reaction in the constructed model. Reactions in the model were classified based on the activity of the reactions during optimal growth on glucose in aerobic media. The most thermodynamically unfavorable reactions involved in the production of biomass in E. coli were identified as ATP phosphoribosyltransferase, ATP synthase, methylene-tetra-hydrofolate dehydrogenase, and tryptophanase. The effect of a knockout of these reactions on the production of biomass and the production of individual biomass precursors was analyzed. Changes in the distribution of fluxes in the cell after knockout of these unfavorable reactions were also studied. The methodologies and results discussed can be used to facilitate the refinement of the feasible ranges for cellular parameters such as species concentrations and reaction rate constants.


Assuntos
Metabolismo Energético , Escherichia coli/metabolismo , Genoma Bacteriano , Modelos Biológicos , Termodinâmica , ATP Fosforribosiltransferase/metabolismo , Simulação por Computador , Regulação Bacteriana da Expressão Gênica , Oxirredutases/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Triptofanase/metabolismo
12.
Plant Cell ; 17(7): 2089-106, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15923352

RESUMO

Plants that hyperaccumulate Ni exhibit an exceptional degree of Ni tolerance and the ability to translocate Ni in large amounts from root to shoot. In hyperaccumulator plants in the genus Alyssum, free His is an important Ni binding ligand that increases in the xylem proportionately to root Ni uptake. To determine the molecular basis of the His response and its contribution to Ni tolerance, transcripts representing seven of the eight enzymes involved in His biosynthesis were investigated in the hyperaccumulator species Alyssum lesbiacum by RNA gel blot analysis. None of the transcripts changed in abundance in either root or shoot tissue when plants were exposed to Ni, but transcript levels were constitutively higher in A. lesbiacum than in the congeneric nonaccumulator A. montanum, especially for the first enzyme in the biosynthetic pathway, ATP-phosphoribosyltransferase (ATP-PRT). Comparison with the weak hyperaccumulator A. serpyllifolium revealed a close correlation between Ni tolerance, root His concentration, and ATP-PRT transcript abundance. Overexpression of an A. lesbiacum ATP-PRT cDNA in transgenic Arabidopsis thaliana increased the pool of free His up to 15-fold in shoot tissue, without affecting the concentration of any other amino acid. His-overproducing lines also displayed elevated tolerance to Ni but did not exhibit increased Ni concentrations in either xylem sap or shoot tissue, suggesting that additional factors are necessary to recapitulate the complete hyperaccumulator phenotype. These results suggest that ATP-PRT expression plays a major role in regulating the pool of free His and contributes to the exceptional Ni tolerance of hyperaccumulator Alyssum species.


Assuntos
Brassicaceae/metabolismo , Resistência a Medicamentos/fisiologia , Histidina/biossíntese , Níquel/metabolismo , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Sítios de Ligação/genética , Brassicaceae/efeitos dos fármacos , DNA Complementar/genética , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , RNA de Plantas/genética , Especificidade da Espécie
13.
FEBS Lett ; 578(1-2): 128-34, 2004 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-15581629

RESUMO

Naturally selected nickel (Ni) tolerance in Alyssum lesbiacum has been proposed to involve constitutively high levels of endogenous free histidine. Transgenic Arabidopsis thaliana expressing a Salmonella typhimurium ATP phosphoribosyl transferase enzyme (StHisG) resistant to feedback inhibition by histidine contained approximately 2-fold higher histidine concentrations than wild type plants. Under exposure to a toxic Ni concentration, biomass production in StHisG expressing lines was between 14- and 40-fold higher than in wild-type plants. This suggested that enhancing the first step in the histidine biosynthesis pathway is sufficient to increase the endogenous free histidine pool and Ni tolerance in A. thaliana.


Assuntos
Arabidopsis/metabolismo , Histidina/biossíntese , Níquel/metabolismo , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Arabidopsis/anatomia & histologia , Arabidopsis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Folhas de Planta/química , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Poluentes do Solo
14.
J Mol Biol ; 336(1): 131-44, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14741209

RESUMO

ATP-phosphoribosyltransferase (ATP-PRT), the first enzyme of the histidine pathway, is a complex allosterically regulated enzyme, which controls the flow of intermediates through this biosynthetic pathway. The crystal structures of Escherichia coli ATP-PRT have been solved in complex with the inhibitor AMP at 2.7A and with product PR-ATP at 2.9A (the ribosyl-triphosphate could not be resolved). On the basis of binding of AMP and PR-ATP and comparison with type I PRTs, the PRPP and parts of the ATP-binding site are identified. These structures clearly identify the AMP as binding in the 5-phosphoribosyl-alpha-1-pyrophosphate (PRPP)-binding site, with the adenosine ring occupying the ATP-binding site. Comparison with the recently solved Mycobacterium tuberculosis ATP-PRT structures indicates that histidine is solely responsible for the large conformational changes observed between the hexameric forms of the enzyme. The role of oligomerisation in inhibition and the structural basis for the synergistic inhibition by histidine and AMP are discussed.


Assuntos
ATP Fosforribosiltransferase/química , Monofosfato de Adenosina/metabolismo , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Estrutura Terciária de Proteína , ATP Fosforribosiltransferase/antagonistas & inibidores , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Domínio Catalítico , Proteínas de Escherichia coli/antagonistas & inibidores , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Histidina/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Estrutura Quaternária de Proteína , Alinhamento de Sequência
15.
J Biol Chem ; 278(10): 8333-9, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12511575

RESUMO

The N-1-(5'-phosphoribosyl)-ATP transferase catalyzes the first step of the histidine biosynthetic pathway and is regulated by a feedback mechanism by the product histidine. The crystal structures of the N-1-(5'-phosphoribosyl)-ATP transferase from Mycobacterium tuberculosis in complex with inhibitor histidine and AMP has been determined to 1.8 A resolution and without ligands to 2.7 A resolution. The active enzyme exists primarily as a dimer, and the histidine-inhibited form is a hexamer. The structure represents a new fold for a phosphoribosyltransferase, consisting of three continuous domains. The inhibitor AMP binds in the active site cavity formed between the two catalytic domains. A model for the mechanism of allosteric inhibition has been derived from conformational differences between the AMP:His-bound and apo structures.


Assuntos
ATP Fosforribosiltransferase/química , Mycobacterium tuberculosis/enzimologia , ATP Fosforribosiltransferase/genética , ATP Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/metabolismo , Domínio Catalítico , Clonagem Molecular , Modelos Moleculares , Mycobacterium tuberculosis/genética , Estrutura Quaternária de Proteína
16.
J Bacteriol ; 170(1): 250-7, 1988 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-3275613

RESUMO

A histidine auxotrophic (hisA) mutant of Klebsiella pneumoniae is phenotypically Nif- when grown with 20 micrograms of histidine ml-1 but Nif+ when supplied with histidine at 100 micrograms ml-1. Reversion to Nif+ at 20 micrograms of histidine ml-1 occurs phenotypically by the addition of 2-thiazolyl-DL-alanine or genetically by mutation in hisG; 2-thiazolyl-DL-alanine inhibits and hisG encodes phosphoribosyl phosphotransferase, the first enzyme of the histidine biosynthetic pathway which consumes ATP. Physiological studies of the hisA mutant JS85 showed that after removal of NH4+ from a culture of the mutant grown with 20 micrograms of histidine ml-1, synthesis of nitrogenase polypeptides occurred at a rate similar to that in the wild type for about 3 h and acetylene reduction activity reached about 10% of the fully derepressed wild-type level. Shortly thereafter the concentration of intracellular adenylates decreased; in particular, ATP fell to about 10% of normal levels. Also, nitrogenase proteins (nifHDK products) and the nifJ gene product stopped being synthesized. These effects were not due to impairment of growth or protein synthesis by histidine starvation. Inhibition of phosphoribosyl phosphotransferase with 2-thiazolyl-DL-alanine restored nitrogenase activity and synthesis, indicating that the effect of the hisA mutation on nif expression was probably a consequence of lowered energy resources that occurred during anaerobic N starvation. The loss of ATP was not associated with nitrogenase synthesis or activity, since hisA nifA and hisA nifH double mutants underwent a loss of ATP in derepressing conditions. Transcription from the nifL, nifN, and nifH promoters was examined in hisA strains with Mu d(Ap lac) fusions in these nif genes. Transcription was not significantly influenced under conditions where adenylates were decreased in concentration. Also nif mRNA apparently accumulated in cultures unable to synthesize nitrogenase, suggesting that translational control of nif gene product synthesis occurs under unfavorable energetic conditions.


Assuntos
Nucleotídeos de Adenina/metabolismo , Histidina/metabolismo , Klebsiella pneumoniae/enzimologia , Fixação de Nitrogênio/genética , Nitrogenase/biossíntese , ATP Fosforribosiltransferase/metabolismo , Trifosfato de Adenosina/metabolismo , Clonagem Molecular , Genes Bacterianos , Histidina/genética , Klebsiella pneumoniae/genética , Mutação , Óperon , Transcrição Gênica
17.
Int J Biochem ; 20(8): 811-5, 1988.
Artigo em Inglês | MEDLINE | ID: mdl-3049184

RESUMO

1. Stopped flow kinetic studies of ATP phosphoribosyl transferase (EC 2.4.2.17) from Escherichia coli showed that high protein concentration and elevated temperature do not give a drastic reduction of the transferase activity when measured before inhibitory amounts of PRibATP (product) has accumulated. 2. A small and slow increase in activity follows a reduction of the protein concentration showing a slow dissociation of the enzyme from an inactive to an active species. 3. By lowering the concentration of the inhibitor histidine, a fairly slow increase in activity is observed indicating a dissociation of the enzyme. 4. AMP and histidine together give a strong inhibition of the activity, while AMP alone stimulates the enzyme activity.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Escherichia coli/enzimologia , Histidina/biossíntese , Pentosiltransferases/metabolismo , Monofosfato de Adenosina/farmacologia , Escherichia coli/metabolismo , Histidina/farmacologia , Cinética
18.
Rev Esp Fisiol ; 34(2): 159-66, 1978 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-358336

RESUMO

The inhibitors histidine and AMP cause the enzyme ATP phosphoribosyltransferase of E. coli to associate into a hexamer from its initial dimeric form. The behaviour of these inhibitors has been studied by three different methods. I) Equilibrium dialysis studies have shown that one mole of dimeric enzyme (67,000 g) binds one mole of histidine. II) By kinetic inhibition of the reaction studied at 21, 25 and 38 degrees C the enthalpy changes in the process of histidine and of AMP inhibition have been deduced. The inhibition has also been studied in function of enzyme concentration and temperature. The inhibition appears to be slightly negatively cooperative for histidine and positively cooperative for AMP. In neither case is it possible to obtain 100% maximal inhibition. III) By microcalorimetric analysis the values obtained for the enthalpies of histidine and of AMP interaction with the enzyme are similar.


Assuntos
ATP Fosforribosiltransferase/metabolismo , Monofosfato de Adenosina/farmacologia , Escherichia coli/enzimologia , Histidina/farmacologia , Pentosiltransferases/metabolismo , ATP Fosforribosiltransferase/análise , ATP Fosforribosiltransferase/antagonistas & inibidores , Monofosfato de Adenosina/análise , Sítios de Ligação , Histidina/análise , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA