Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.301
Filtrar
1.
PLoS One ; 19(4): e0301213, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38578814

RESUMO

Limited honey production worldwide leads to higher market prices, thus making it prone to adulteration. Therefore, regular physicochemical analysis is imperative for ensuring authenticity and safety. This study describes the physicochemical and antioxidant properties of Apis cerana honey sourced from the islands of Lombok and Bali, showing their unique regional traits. A comparative analysis was conducted on honey samples from Lombok and Bali as well as honey variety from Malaysia. Moisture content was found slightly above 20% in raw honey samples from Lombok and Bali, adhering to the national standard (SNI 8664:2018) of not exceeding 22%. Both honey types displayed pH values within the acceptable range (3.40-6.10), ensuring favorable conditions for long-term storage. However, Lombok honey exhibited higher free acidity (78.5±2.14 meq/kg) than Bali honey (76.0±1.14 meq/kg), surpassing Codex Alimentarius recommendations (≤50 meq/kg). The ash content, reflective of inorganic mineral composition, was notably lower in Lombok (0.21±0.02 g/100) and Bali honey (0.14±0.01 g/100) compared to Tualang honey (1.3±0.02 g/100). Electric conductivity, indicative of mineral content, revealed Lombok and Bali honey with lower but comparable values than Tualang honey. Hydroxymethylfurfural (HMF) concentrations in Lombok (14.4±0.11 mg/kg) and Bali (17.6±0.25 mg/kg) were slightly elevated compared to Tualang honey (6.4±0.11 mg/kg), suggesting potential processing-related changes. Sugar analysis revealed Lombok honey with the highest sucrose content (2.39±0.01g/100g) and Bali honey with the highest total sugar content (75.21±0.11 g/100g). Both honeys exhibited lower glucose than fructose content, aligning with Codex Alimentarius guidelines. The phenolic content, flavonoids, and antioxidant activity were significantly higher in Lombok and Bali honey compared to Tualang honey, suggesting potential health benefits. Further analysis by LC-MS/MS-QTOF targeted analysis identified various flavonoids/flavanols and polyphenolic/phenolic acid compounds in Lombok and Bali honey. The study marks the importance of characterizing the unique composition of honey from different regions, ensuring quality and authenticity in the honey industry.


Assuntos
Antioxidantes , Mel , Abelhas , Animais , Antioxidantes/química , Mel/análise , Indonésia , Cromatografia Líquida , Espectrometria de Massas em Tandem , Minerais/análise , Flavonoides/análise , Açúcares
2.
Sci Total Environ ; 927: 172118, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38569959

RESUMO

Declines in insect pollinators have been linked to a range of causative factors such as disease, loss of habitats, the quality and availability of food, and exposure to pesticides. Here, we analysed an extensive dataset generated from pesticide screening of foraging insects, pollen-nectar stores/beebread, pollen and ingested nectar across three species of bees collected at 128 European sites set in two types of crop. In this paper, we aimed to (i) derive a new index to summarise key aspects of complex pesticide exposure data and (ii) understand the links between pesticide exposures depicted by the different matrices, bee species and apple orchards versus oilseed rape crops. We found that summary indices were highly correlated with the number of pesticides detected in the related matrix but not with which pesticides were present. Matrices collected from apple orchards generally contained a higher number of pesticides (7.6 pesticides per site) than matrices from sites collected from oilseed rape crops (3.5 pesticides), with fungicides being highly represented in apple crops. A greater number of pesticides were found in pollen-nectar stores/beebread and pollen matrices compared with nectar and bee body matrices. Our results show that for a complete assessment of pollinator pesticide exposure, it is necessary to consider several different exposure routes and multiple species of bees across different agricultural systems.


Assuntos
Produtos Agrícolas , Monitoramento Ambiental , Praguicidas , Polinização , Animais , Abelhas/fisiologia , Praguicidas/análise , Pólen , Malus , Exposição Ambiental/estatística & dados numéricos
3.
BMC Complement Med Ther ; 24(1): 162, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632534

RESUMO

The incidence of dementia is rising, with neuronal cell death from oxidative stress and apoptosis recognized as a significant contributor to its development. However, effective strategies to combat this condition are lacking, necessitating further investigation. This study aimed to assess the potential of an anthocyanin-rich extract from Zea mays L. var. ceratina (AZC) in alleviating neuronal cell death.Neurotoxicity was induced in SH-SY5Y cells using hydrogen peroxide (H2O2) at a concentration of 200 µM. Cells were pretreated with varying doses (31.25 and 62.5 µg/mL) of AZC. Cell viability was assessed using the MTT assay, and molecular mechanisms including reactive oxygen species (ROS) levels, antioxidant enzyme activities (catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px)), malondialdehyde (MDA) levels for oxidative stress, and the activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), cAMP response element-binding protein (CREB), and apoptotic factors (B-cell lymphoma 2 (Bcl-2), caspase 3) were explored.Results showed that AZC significantly improved cell viability, reduced ROS production and MDA levels, and downregulated caspase 3 expression. It enhanced CAT, SOD, and GSH-Px activities, activated ERK1/2 and CREB, and upregulated Bcl-2 expression. These findings support the neuroprotective effects of AZC, suggesting it activates ERK1/2, leading to CREB activation and subsequent upregulation of Bcl-2 expression while suppressing caspase 3. AZC may mitigate neuronal cell death by reducing ROS levels through enhanced scavenging enzyme activities.In conclusion, this study underscores the potential of AZC as a neuroprotective agent against neuronal cell death. However, further investigations including toxicity assessments, in vivo studies, and clinical trials are necessary to validate its benefits in neuroprotection.


Assuntos
Neuroblastoma , Fármacos Neuroprotetores , Humanos , Animais , Abelhas , Peróxido de Hidrogênio/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Caspase 3/metabolismo , Antocianinas , Zea mays/metabolismo , Linhagem Celular Tumoral , Morte Celular , Antioxidantes/farmacologia , Fármacos Neuroprotetores/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/metabolismo
4.
Artigo em Inglês | MEDLINE | ID: mdl-38661726

RESUMO

A novel bifidobacterium (designated F753-1T) was isolated from the gut of honeybee (Apis mellifera). Strain F753-1T was characterized using a polyphasic taxonomic approach. Strain F753-1T was phylogenetically related to the type strains of Bifidobacterium mizhiensis, Bifidobacterium asteroides, Bifidobacterium choladohabitans, Bifidobacterium mellis, Bifidobacterium apousia and Bifidobacterium polysaccharolyticum, having 98.4-99.8 % 16S rRNA gene sequence similarities. The phylogenomic tree indicated that strain F753-1T was most closely related to the type strains of B. mellis and B. choladohabitans. Strain F753-1T had the highest average nucleotide identity (94.1-94.5 %) and digital DNA-DNA hybridization (56.3 %) values with B. mellis Bin7NT. Acid production from amygdalin, d-fructose, gentiobiose, d-mannose, maltose, sucrose and d-xylose, activity of α-galactosidase, pyruvate utilization and hydrolysis of hippurate could differentiate strain F753-1T from B. mellis CCUG 66113T and B. choladohabitans JCM 34586T. Based upon the data obtained in the present study, a novel species, Bifidobacterium apis sp. nov., is proposed, and the type strain is F753-1T (=CCTCC AB 2023227T=JCM 36562T=LMG 33388T).


Assuntos
Técnicas de Tipagem Bacteriana , Bifidobacterium , DNA Bacteriano , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S , Análise de Sequência de DNA , Abelhas/microbiologia , Animais , RNA Ribossômico 16S/genética , Bifidobacterium/isolamento & purificação , Bifidobacterium/classificação , Bifidobacterium/genética , DNA Bacteriano/genética , Ácidos Graxos , Composição de Bases , Microbioma Gastrointestinal
5.
Molecules ; 29(8)2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38675513

RESUMO

The mechanisms by which alcohol, alcoholic beverages, and their de-alcoholized derivatives affect animal physiology, metabolism, and gut microbiota have not yet been clarified. The polyphenol, monosaccharide, amino acid, and organic acid contents of four common alcoholic beverages (Chinese Baijiu, beer, Chinese Huangjiu, and wine) and their de-alcoholized counterparts were analyzed. The research further explored how these alcoholic beverages and their non-alcoholic versions affect obesity and gut microbiota, using a high-fat diet bee model created with 2% palm oil (PO). The results showed that wine, possessing the highest polyphenol content, and its de-alcoholized form, particularly when diluted five-fold (WDX5), markedly improved the health markers of PO-fed bees, including weight, triglycerides, and total cholesterol levels in blood lymphocytes. WDX5 treatment notably increased the presence of beneficial microbes such as Bartonella, Gilliamella, and Bifidobacterium, while decreasing Bombilactobacillus abundance. Moreover, WDX5 was found to closely resemble sucrose water (SUC) in terms of gut microbial function, significantly boosting short-chain fatty acids, lipopolysaccharide metabolism, and associated enzymatic pathways, thereby favorably affecting metabolic regulation and gut microbiota stability in bees.


Assuntos
Bebidas Alcoólicas , Dieta Hiperlipídica , Microbioma Gastrointestinal , Animais , Abelhas , Microbioma Gastrointestinal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Bebidas Alcoólicas/análise , Polifenóis/farmacologia , Polifenóis/análise
6.
Environ Pollut ; 350: 124046, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38677463

RESUMO

Recent research has highlighted the potential of honeybees and bee products as biological samplers for monitoring xenobiotic pollutants. However, the effectiveness of these biological samplers in tracking microplastics (MPs) has not yet been explored. This study evaluates several methods of sampling MPs, using honeybees, pollen, and a novel in-hive passive sampler named the APITrap. The collected samples were characterized using a stereomicroscopy to count and categorise MPs by morphology, colour, and type. To chemical identification, a micro-Fourier transform-infrared (FTIR) spectroscopy was employed to determine the polymer types. The study was conducted across four consecutive surveillance programmes, in five different apiaries in Denmark. Our findings indicated that APITrap demonstrated better reproducibility, with a lower variation in results of 39%, compared to 111% for honeybee samples and 97% for pollen samples. Furthermore, the use of APITrap has no negative impact on bees and can be easily applied in successive samplings. The average number of MPs detected in the four monitoring studies ranged from 39 to 67 in the APITrap, 6 to 9 in honeybee samples, and 6 to 11 in pollen samples. Fibres were the most frequently found, accounting for an average of 91% of the total MPs detected in the APITrap, and similar values for fragments (5%) and films (4%). The MPs were predominantly coloured black, blue, green and red. Spectroscopy analysis confirmed the presence of up to five different synthetic polymers. Polyethylene terephthalate (PET) was the most common in case of fibres and similarly to polypropylene (PP), polyethylene (PE), polyacrylonitrile (PAN) and polyamide (PA) in non fibrous MPs. This study, based on citizen science and supported by beekeepers, highlights the potential of MPs to accumulate in beehives. It also shows that the APITrap provides a highly reliable and comprehensive approach for sampling in large-scale monitoring studies.


Assuntos
Monitoramento Ambiental , Microplásticos , Pólen , Abelhas , Animais , Microplásticos/análise , Monitoramento Ambiental/métodos , Pólen/química , Dinamarca , Poluentes Ambientais/análise
7.
Viruses ; 16(4)2024 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-38675943

RESUMO

Members of the Geminviridae family are circular single-stranded DNA plant-infecting viruses, some of which impact global food production. Geminiviruses are vectored by sap-feeding insects such as leafhoppers, treehoppers, aphids, and whiteflies. Additionally, geminivirus sequences have also been identified in other insects such as dragonflies, mosquitoes, and stingless bees. As part of a viral metagenomics study on honeybees and solitary bees (Nomia sp.), two geminivirus genomes were identified. These represent a novel citlodavirus (from honeybees collected from Westmoreland, Jamaica) and a mastrevirus-like genome (from a solitary bee collected from Tempe, Arizona, USA). The novel honeybee-derived citlodavirus genome shares ~61 to 69% genome-wide nucleotide pairwise identity with other citlodavirus genome sequences and is most closely related to the passion fruit chlorotic mottle virus identified in Brazil. Whereas the novel solitary bee-derived mastrevirus-like genome shares ~55 to 61% genome-wide nucleotide identity with other mastreviruses and is most closely related to tobacco yellow dwarf virus identified in Australia, based on pairwise identity scores of the full genome, replication-associated protein, and capsid protein sequences. Previously, two geminiviruses in the Begomovirus genus were identified in samples of stingless bee (Trigona spp.) samples. Here, we identify viruses that represent two new species of geminiviruses from a honeybee and a solitary bee, which continues to demonstrate that plant pollinators can be utilized for the identification of plant-infecting DNA viruses in ecosystems.


Assuntos
Geminiviridae , Genoma Viral , Filogenia , Animais , Abelhas/virologia , Geminiviridae/genética , Geminiviridae/classificação , Geminiviridae/isolamento & purificação , Metagenômica , DNA Viral/genética
8.
Pestic Biochem Physiol ; 201: 105793, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685207

RESUMO

Imidacloprid, chlorpyrifos, and glyphosate rank among the most extensively employed pesticides worldwide. The effects of these pesticides and their combined on the flight capability of Apis cerana, and the potential underlying mechanisms remain uncertain. To investigate these effects, we carried out flight mill, transcriptome, and metabolome experiments. Our findings reveal that individual acute oral treatments with pesticides, specifically 20 µL of 10 ng/g imidacloprid (0.2 ng per bee), 30 ng/g chlorpyrifos (0.6 ng per bee), and 60 ng/g glyphosate (1.2 ng per bee), did not impact the flight capability of the bees. However, when bees were exposed to a combination of two or three pesticides, a notable reduction in flight duration and distance was observed. In the transcriptomic and metabolomic analyses, we identified 307 transcripts and 17 metabolites that exhibited differential expression following exposure to combined pesticides, primarily associated with metabolic pathways involved in energy regulation. Our results illuminate the intricate effects and potential hazards posed by combined pesticide exposures on bee behavior. These findings offer valuable insights into the synergistic potential of pesticide combinations and their capacity to impair bee behavior. Understanding these complex interactions is essential for comprehending the broader consequences of pesticide formulations on honey bee populations.


Assuntos
Clorpirifos , Voo Animal , Glicina , Glifosato , Metabolômica , Neonicotinoides , Nitrocompostos , Praguicidas , Transcriptoma , Animais , Abelhas/efeitos dos fármacos , Abelhas/genética , Abelhas/metabolismo , Nitrocompostos/toxicidade , Clorpirifos/toxicidade , Neonicotinoides/toxicidade , Voo Animal/efeitos dos fármacos , Transcriptoma/efeitos dos fármacos , Glicina/análogos & derivados , Glicina/toxicidade , Praguicidas/toxicidade , Inseticidas/toxicidade , Metaboloma/efeitos dos fármacos
9.
Mol Phylogenet Evol ; 195: 108068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554985

RESUMO

Holarctic Stylops is the largest genus of the enigmatic insect order Strepsiptera, twisted winged parasites. Members of Stylops are obligate endoparasites of Andrena mining bees and exhibit extreme sexual dimorphism typical of Strepsiptera. So far, molecular studies on Stylops have focused on questions on species delimitation. Here, we utilize the power of whole genome sequencing to infer the phylogeny of this morphologically challenging genus from thousands of loci. We use a species tree method, concatenated maximum likelihood analysis and Bayesian analysis with a relaxed clock model to reconstruct the phylogeny of 46 Stylops species, estimate divergence times, evaluate topological consistency across methods and infer the root position. Furthermore, the biogeographical history and coevolutionary patterns with host species are assessed. All methods recovered a well resolved topology with close to all nodes maximally supported and only a handful of minor topological variations. Based on the result, we find that included species can be divided into 12 species groups, seven of them including only Palaearctic species, three Nearctic and two were geographically mixed. We find a strongly supported root position between a clade formed by the spreta, thwaitesi and gwynanae species groups and the remaining species and that the sister group of Stylops is Eurystylops or Eurystylops + Kinzelbachus. Our results indicate that Stylops originated in the Western Palaearctic or Western Palaearctic and Nearctic in the early Neogene or late Paleogene, with four independent dispersal events to the Nearctic. Cophylogenetic analyses indicate that the diversification of Stylops has been shaped by both significant coevolution with the mining bee hosts and host-shifting. The well resolved and strongly supported phylogeny will provide a valuable phylogenetic basis for further studies into the fascinating world of Strepsipterans.


Assuntos
Insetos , Abelhas/genética , Animais , Filogenia , Teorema de Bayes
10.
Toxicon ; 241: 107685, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38503352

RESUMO

Determination of protein concentration in Hymenoptera venoms requires an accurate and reproducible assay as the results will be used to support subsequent proteomic techniques employed in their analyses. However, all protein assay techniques have inherent strengths and weaknesses, demanding their assessment before selecting the most suitable platform for sample analysis. In this study, protein profiles of ant, honeybee, and wasp venoms, and bovine serum albumin (BSA) and hyaluronidase standards were qualitatively assessed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Their amino acid and protein concentration were quantitatively determined via Amino Acid Analysis (AAA). Amino acid concentration was determined via hydrolysis, derivatization, and chromatographic quantification. Protein concentration was estimated using four different protein concentration assays. The ratios of protein concentration in venom samples to protein standards were calculated, and the accuracy of the protein concentration assays was analysed relative to the concentration determined from AAA. SDS-PAGE analysis showed that BSA contained several protein bands, while hyaluronidase contained a mixture of peptide and protein bands. Ant and honeybee venoms contained a higher proportion of peptide bands, while wasp venom contained more protein bands. As determined by AAA, the ratio of protein concentration in Hymenoptera venoms varied between 1.01 and 1.11 to BSA, and between 0.96 and 1.06 to hyaluronidase. Overall, the Bradford assay was found to be the least accurate and the BCA assay was the most accurate in estimating protein concentration in Hymenoptera venoms. There was no significant advantage in using hyaluronidase as a standard or increasing incubation temperature of BCA assay when analysing Hymenoptera venoms. Diluent solutions containing phenol and human serum albumin interfered with Lowry-based assays.


Assuntos
Venenos de Artrópodes , Venenos de Abelha , Himenópteros , Abelhas , Humanos , Animais , Proteoma , Hialuronoglucosaminidase/análise , Proteômica , Venenos de Vespas , Peçonhas , Aminoácidos , Soroalbumina Bovina , Peptídeos , Alérgenos
11.
Toxins (Basel) ; 16(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535786

RESUMO

Among the various natural compounds used in alternative and Oriental medicine, toxins isolated from different organisms have had their application for many years, and Apis mellifera venom has been studied the most extensively. Numerous studies dealing with the positive assets of bee venom (BV) indicated its beneficial properties. The usage of bee products to prevent the occurrence of diseases and for their treatment is often referred to as apitherapy and is based mainly on the experience of the traditional system of medical practice in diverse ethnic communities. Today, a large number of studies are focused on the antitumor effects of BV, which are mainly attributed to its basic polypeptide melittin (MEL). Previous studies have indicated that BV and its major constituent MEL cause a strong toxic effect on different cancer cells, such as liver, lung, bladder, kidney, prostate, breast, and leukemia cells, while a less pronounced effect was observed in normal non-target cells. Their proposed mechanisms of action, such as the effect on proliferation and growth inhibition, cell cycle alterations, and induction of cell death through several cancer cell death mechanisms, are associated with the activation of phospholipase A2 (PLA2), caspases, and matrix metalloproteinases that destroy cancer cells. Numerous cellular effects of BV and MEL need to be elucidated on the molecular level, while the key issue has to do with the trigger of the apoptotic cascade. Apoptosis could be either a consequence of the plasmatic membrane fenestration or the result of the direct interaction of the BV components with pro-apoptotic and anti-apoptotic factors. The interaction of BV peptides and enzymes with the plasma membrane is a crucial step in the whole process. However, before its possible application as a remedy, it is crucial to identify the correct route of exposure and dosage of BV and MEL for potential therapeutic use as well as potential side effects on normal cells and tissues to avoid any possible adverse event.


Assuntos
Venenos de Abelha , Masculino , Animais , Abelhas , Meliteno , Membrana Celular , Apoptose , Morte Celular
12.
Arch Insect Biochem Physiol ; 115(3): e22104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38506277

RESUMO

As a common defense mechanism in Hymenoptera, bee venom has complex components. Systematic and comprehensive analysis of bee venom components can aid in early evaluation, accurate diagnosis, and protection of organ function in humans in cases of bee stings. To determine the differences in bee venom composition and metabolic pathways between Apis cerana and Apis mellifera, proton nuclear magnetic resonance (1 H-NMR) technology was used to detect the metabolites in venom samples. A total of 74 metabolites were identified and structurally analyzed in the venom of A. cerana and A. mellifera. Differences in the composition and abundance of major components of bee venom from A. cerana and A. mellifera were mapped to four main metabolic pathways: valine, leucine and isoleucine biosynthesis; glycine, serine and threonine metabolism; alanine, aspartate and glutamate metabolism; and the tricarboxylic acid cycle. These findings indicated that the synthesis and metabolic activities of proteins or polypeptides in bee venom glands were different between A. cerana and A. mellifera. Pyruvate was highly activated in 3 selected metabolic pathways in A. mellifera, being much more dominant in A. mellifera venom than in A. cerana venom. These findings indicated that pyruvate in bee venom glands is involved in various life activities, such as biosynthesis and energy metabolism, by acting as a precursor substance or intermediate product.


Assuntos
Venenos de Abelha , Himenópteros , Mordeduras e Picadas de Insetos , Humanos , Abelhas , Animais , Ácido Pirúvico , Espectroscopia de Ressonância Magnética
13.
Proc Biol Sci ; 291(2019): 20232939, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38503336

RESUMO

Mounting evidence supporting the negative impacts of exposure to neonicotinoids on bees has prompted the registration of novel 'bee-friendly' insecticides for agricultural use. Flupyradifurone (FPF) is a butenolide insecticide that shares the same mode of action as neonicotinoids and has been assessed to be 'practically non-toxic to adult honeybees' using current risk assessment procedures. However, these assessments overlook some routes of exposure specific to wild bees, such as contact with residues in soil for ground-nesters. Co-exposure with other pesticides may also lead to detrimental synergistic effects. In a fully crossed experiment, we assessed the possible lethal and sublethal effects of chronic exposure to two pesticides used on Cucurbita crops, the insecticide Sivanto Prime (FPF) and the fungicide Quadris Top (azoxystrobin and difenoconazole), alone or combined, on solitary ground-nesting squash bees (Xenoglossa pruinosa). Squash bees exposed to Quadris Top collected less pollen per flower visit, while Sivanto-exposed bees produced larger offspring. Pesticide co-exposure induced hyperactivity in female squash bees relative to both the control and single pesticide exposure, and reduced the number of emerging offspring per nest compared to individual pesticide treatments. This study demonstrates that 'low-toxicity' pesticides can adversely affect squash bees under field-realistic exposure, alone or in combination.


Assuntos
4-Butirolactona/análogos & derivados , Inseticidas , Praguicidas , Piridinas , Pirimidinas , Estrobilurinas , Abelhas , Feminino , Animais , Praguicidas/toxicidade , Inseticidas/toxicidade , Neonicotinoides/toxicidade
14.
PLoS One ; 19(3): e0297893, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38446769

RESUMO

BACKGROUND: The queen bee phenomenon (QBP) describes the behavioural response that occurs when women achieve success in a male-dominated environment, and in this position of authority, treat their female subordinates more critically. It has been demonstrated in business, academia, the military, and police force. The goal of this study was to determine whether the QBP occurs in surgical specialties. We hypothesized that female surgeons, fellows, and senior surgical residents would be more critical in their assessment of junior female residents than their male counterparts. METHODS: A scenario-based survey was distributed via email to all Canadian surgical programs between February and March 2021. Scenarios were designed to assess either female or male learners. Centers distributed surveys to attending surgeons, surgical fellows, resident physicians, and affiliate surgeons. Respondents average Likert score for female-based and male-based questions were calculated. Subgroup analyses were performed based on gender, age, seniority, and surgical specialty. RESULTS: 716 survey responses were collected, with 387 respondents identifying as male (54%) and 321 identifying as female (45%). 385 attending surgeons (54%), 66 fellows (9%), and 263 residents (37%) responded. The mean Likert scores for female respondents assessing female learners was significantly lower than male learners (p = 0·008, CI = 95%). During subgroup analysis, some specialties demonstrated significant scoring differences. DISCUSSION: The QBP was shown to be present among surgical specialties. Female respondents assessed female learners more critically than their male counterparts. CONCLUSION: These findings highlight the importance of tackling organizational biases to create more equitable educational and work environment in surgery.


Assuntos
Meio Ambiente , Especialidades Cirúrgicas , Feminino , Abelhas , Masculino , Humanos , Animais , Canadá , Escolaridade , Comércio
15.
Front Cell Infect Microbiol ; 14: 1367010, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38469352

RESUMO

Stingless bees, a social corbiculate bee member, play a crucial role in providing pollination services. Despite their importance, the structure of their microbiome, particularly the fungal communities, remains poorly understood. This study presents an initial characterization of the fungal community associated with two Thai commercial stingless bee species, Lepidotrigona terminata (Smith) and Tetragonula pagdeni (Schwarz) from Chiang Mai, Thailand. Utilizing ITS amplicon sequencing, we identified distinct fungal microbiomes in these two species. Notably, fungi from the phyla Ascomycota, Basidiomycota, Mucoromycota, Mortierellomycota, and Rozellomycota were present. The most dominant genera, which varied significantly between species, included Candida and Starmerella. Additionally, several key enzymes associated with energy metabolism, structural strength, and host defense reactions, such as adenosine triphosphatase, alcohol dehydrogenase, ß-glucosidase, chitinase, and peptidylprolyl isomerase, were predicted. Our findings not only augment the limited knowledge of the fungal microbiome in Thai commercial stingless bees but also provide insights for their sustainable management through understanding their microbiome.


Assuntos
Microbiota , Micobioma , Abelhas , Animais , Tailândia
16.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473863

RESUMO

The APIS Breast Cancer Subtyping Kit is an mRNA-based assessment of the seven parameters including three biomarkers routinely assessed in all the newly diagnosed breast cancers (BC), oestrogen receptor (ER), progesterone receptor (PR) and HER-2 and an additional four genes that create a novel proliferation signature, MKI67, PCNA, CCNA2 and KIF23. Taken together, the data are used to produce a molecular subtype for every sample. The kit was evaluated against the current standard protocol of immunohistochemistry (IHC) and/or in situ hybridisation (ISH) in breast cancer patients. The data were presented at the weekly breast multidisciplinary team (MDT) meeting. A total of 98 consecutive cases of pre-operative breast cancer core biopsies and two core biopsies of nodal metastases yielding 100 cases were assessed. IHC and APIS results were available for 100 and 99 cases. ER was concordant in 97% cases, PR was concordant in 89% and HER-2 results were concordant with IHC/ISH in 100% of the cases. Ki-67 IHC was discordant in 3% of cases when compared with MK167 alone but discordant in 24% when compared with the four-gene proliferation signature. In conclusion, our study indicates that the APIS Breast Cancer Subtyping Kit is highly concordant when compared to the results produced for ER/PR/HER-2 by IHC and/or ISH. The assay could play a role in the routine assessment of newly diagnosed breast cancer (BC) specimens.


Assuntos
Neoplasias da Mama , Humanos , Abelhas , Animais , Feminino , Neoplasias da Mama/patologia , Receptor ErbB-2/genética , Mama/patologia , Receptores de Estrogênio/genética , Imuno-Histoquímica , Biópsia , Biomarcadores Tumorais/genética , Receptores de Progesterona/genética
17.
Food Res Int ; 178: 113938, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309866

RESUMO

Intestinal barrier integrity is essential for normal nutrient digestion and absorption and disease resistance. This study aims to investigate how fermentation affects the ameliorative effect of bee pollen on the intestinal barrier dysfunction stimulated by interferon-γ and tumor necrosis factor (IFN-γ/TNF-α) cytokines. The results indicated that fermentation enhances the alleviating effect of bee pollen on intestinal barrier dysfunction (including elevated trans epithelial electrical resistance and decreased paracellular permeability). In addition, fermented bee pollen (FBP) significantly decreased (p < 0.05) the secretion levels of interleukin (IL)-6, IL-8, and IL-1ß and expression of cyclooxygenase (COX)-2 protein in intestinal barrier cells. Furthermore, fermentation improved the ability of bee pollen to up-regulate the expression of tight junction proteins including zonula occludens (ZO)-1, occluding, and claudin-1. Notably, FBP showed stronger ability to inhibit the expression of nuclear factor kappa-B (NF-κB) mediated myosin light chain kinase (MLCK) and myosin light chain (MLC) signaling pathway associated with phosphorylated proteins. Overall, our results indicated that fermentation enhances the protective effect of bee pollen on the intestinal barrier, and FBP has promising potential to be used as a novel functional food to protect the intestinal barrier.


Assuntos
Quinase de Cadeia Leve de Miosina , NF-kappa B , Humanos , Animais , Abelhas , NF-kappa B/metabolismo , Quinase de Cadeia Leve de Miosina/metabolismo , Células CACO-2 , Fermentação , Mucosa Intestinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Transdução de Sinais , Pólen
18.
J Hazard Mater ; 466: 133628, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38301442

RESUMO

Cadmium pollution affects the global ecosystem because cadmium can be transferred up the food chain. The bumblebee, Bombus terrestris, is an important insect pollinator. Their foraging activity on flowers exposes them to harmful heavy metals, which damages their health and leads to massive population declines. However, the effects of chronic exposure to heavy metals on the flight performance of bumblebees have not yet been characterized. Here, we studied variation in the flight capacity of bumblebees induced by chronic cadmium exposure at field-realistic concentrations using behavioral, physiological, and molecular approaches. Chronic cadmium exposure caused a significant reduction in the duration, distance, and mean velocity of bumblebee flight. Transcriptome analysis showed that the impairment of carbon metabolism and mitochondrial dysfunction in the flight muscle were the primary causes. Physiological, biochemical, and metabolomic analyses validated disruptions in energy metabolism, and impairments in mitochondrial respiratory chain complexes activities. Histological analysis revealed muscle fiber damage and mitochondrial loss. Exogenous decanoic acid or citric acid partially restored sustained flight ability of bumblebees by mitigating muscle fiber damage and increasing energy generation. These findings provide insights into how long-term cadmium stress affects the flight ability of insects and will aid human muscle or exercise-related disease research.


Assuntos
Cádmio , Ecossistema , Humanos , Abelhas , Animais , Cádmio/toxicidade , Flores , Metabolismo Energético , Músculos
19.
Nutrients ; 16(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38337678

RESUMO

Metabolic disorders, encompassing diabetes mellitus, cardiovascular diseases, gastrointestinal disorders, etc., pose a substantial global health threat, with rising morbidity and mortality rates. Addressing these disorders is crucial, as conventional drugs often come with high costs and adverse effects. This review explores the potential of royal jelly (RJ), a natural bee product rich in bioactive components, as an alternative strategy for managing metabolic diseases. RJ exhibits diverse therapeutic properties, including antimicrobial, estrogen-like, anti-inflammatory, hypotensive, anticancer, and antioxidant effects. This review's focus is on investigating how RJ and its components impact conditions like diabetes mellitus, cardiovascular disease, and gastrointestinal illnesses. Evidence suggests that RJ serves as a complementary treatment for various health issues, notably demonstrating cholesterol- and glucose-lowering effects in diabetic rats. Specific RJ-derived metabolites, such as 10-hydroxy-2-decenoic acid (10-HDA), also known as the "Queen bee acid," show promise in reducing insulin resistance and hyperglycemia. Recent research highlights RJ's role in modulating immune responses, enhancing anti-inflammatory cytokines, and suppressing key inflammatory mediators. Despite these promising findings, further research is needed to comprehensively understand the mechanisms underlying RJ's therapeutic effects.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Experimental , Gastroenteropatias , Doenças Metabólicas , Ratos , Animais , Abelhas , Diabetes Mellitus Experimental/tratamento farmacológico , Ácidos Graxos/uso terapêutico , Gastroenteropatias/tratamento farmacológico , Doenças Metabólicas/tratamento farmacológico , Doenças Cardiovasculares/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico
20.
J Food Sci ; 89(3): 1711-1726, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38235995

RESUMO

Honey bee pollen (HBP) is a hive product produced by worker bees from floral pollen grains agglutination. It is characterized by its excellent nutritional and bioactive composition, making it a superior source of human nutrition. This study aimed to evaluate the monofloral bee pollen samples, including Cistus, Crataegus monogyna, Cyanus, Elaeagnus angustifolia, Papaver somniferum, Quercus, Salix, Sinapis, and Silybum from Türkiye according to palynological analysis, antioxidant activity, phenolic profiles, and color. The phenolic profiles were detected using ultra-high performance liquid chromatography coupled with tandem mass spectrometry. Bee pollens were categorized into monofloral, bifloral, and multifloral, underscoring the significance of confirming the botanical source of them depending on palynological analyses. Total phenolic content (TPC) of bee pollens ranged from 4.5 to 14.4 mg gallic acid/g HBP. The samples exhibited antioxidant activity for 2,2'-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS â€¢+ ) ranging from 94.9 to 233.5 µmol trolox/g HBP, whereas lower values were seen for 2,2-diphenyl-1-picrylhydrazyl (DPPH•) ranging from 25.86 to 70.81 µmol trolox/g HBP. A yellowish-red tint color was also displayed for whole samples, whereas only E. angustifolia bee pollen indicated a darker color (L* = 31.6). Among the phenolic compounds, luteolin, kaempferol, isorhamnetin, rutin, and genistein were the most abundant, and their profiles varied across the samples. It was also observed that TPC, antioxidant activities, and polyphenol composition were higher in samples containing pollen grains of P. somniferum, Quercus, Plantago, and E. angustifolia species. PRACTICAL APPLICATION: The increasing number of new findings on honey bee pollen is crucial to food science and technology. In this sense, this study offers a robust method for verifying the authenticity and quality of 11 monofloral bee pollens, which is crucial for the food industry. It also identifies potential sources of high-quality pollen, benefiting producers, and consumers seeking superior bee pollen products.


Assuntos
Antioxidantes , Mel , Humanos , Abelhas , Animais , Antioxidantes/análise , Turquia , Mel/análise , Pólen/química , Fenóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA