Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Environ Manage ; 365: 121625, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38959772

RESUMO

This is the first study providing long-term data on the dynamics of bees and wasps and their parasitoids for the evidence-based management of reed beds. Ten years ago, we identified Lipara (Chloropidae) - induced galls on common reed (Phragmites australis, Poaceae) as a critically important resource for specialized bees and wasps (Hymenoptera: Aculeata). We found that they were surprisingly common in relatively newly formed anthropogenic habitats, which elicited questions about the dynamics of bees and wasps and their parasitoids in newly formed reed beds of anthropogenic origin. Therefore, in the winter and spring of 2022/23, we sampled reed galls from the same set of reed beds of anthropogenic and natural origin as those in 2012/13. At 10 sites, the number of sampled galls was similar in both time periods (80-122% of the value from 2012/13); 12 sites experienced a moderate decline (30-79% of the value from 2012/13), and the number of galls at six sampling sites was only 3-23% of their abundance in 2012/13. Spontaneous development was associated with increasing populations. After 10 years of spontaneous development, the populations of bees and wasps (including their parasitoids) bound to Lipara-induced reed galls increased in abundance and species richness or remained at their previous levels, which was dependent on the sampling site. The only identified threat consisted of reclamation efforts. The effects of habitat age were limited, and the assemblages in habitats of near-natural and anthropogenic origin largely overlapped. However, several species were consistently present at lower abundances in the anthropogenic habitats and vice versa. In conclusion, we provided evidence-based support for the establishment of oligotrophic reed beds of anthropogenic origin as management tools providing sustainable habitats for specialized reed gall-associated aculeate hymenopteran inquilines, including the threatened species.


Assuntos
Ecossistema , Vespas , Animais , Vespas/fisiologia , Himenópteros/fisiologia , Poaceae , Abelhas/parasitologia , Tumores de Planta/parasitologia
2.
PLoS One ; 16(4): e0250594, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33901245

RESUMO

Varroa destructor Anderson and Trueman, is an ectoparasitic mite of honey bees, Apis mellifera L., that has been considered a major cause of colony losses. Synthetic miticides have been developed and registered to manage this ectoparasite, however, resistance to registered pyrethroid and organophosphate Varroacides have already been reported in Canada. To test toxicity of miticides, current contact-based bioassay methods are designed to evaluate mites and bees separately, however, these methods are unlikely to give an accurate depiction of how miticides interact at the colony level. Therefore, the objective of this study was to develop a bioassay cage for testing the toxicity of miticides on honey bees and Varroa mites simultaneously using amitraz as a reference chemical. A 800 mL polypropylene plastic cage holding 100-150 bees was designed and officially named "Apiarium". A comparison of the effects of three subsequent dilutions of amitraz was conducted on: Varroa mites placed in glass vials, honey bees in glass Mason jars, and Varroa-infested bees in Apiariums. Our results indicated cumulative Varroa mortality was dose-dependent in the Apiarium after 4 h and 24 h assessments. Apiarium and glass vial treatments at 24 h also had high mite mortality and a positive polynomial regression between Varroa mortality and amitraz dose rates. Moreover, chemical application in the Apiarium was less toxic for bees compared to the Mason jar method. Considering these results, the Apiarium bioassay provides a simple, cheap and reliable method for simultaneous chemical screening on V. destructor and A. mellifera. Furthermore, as mites and bees are tested together, the Apiarium simulates a colony-like environment that provides a necessary bridge between laboratory bioassay testing and full field experimentation. The versatility of the Apiarium allows researchers to test a multitude of different honey bee bioassay experiments including miticide screening, delivery methods for chemical products, or development of new mite resistance-testing methodology.


Assuntos
Abelhas/parasitologia , Bioensaio/métodos , Varroidae/fisiologia , Animais , Abelhas/efeitos dos fármacos , Análise de Sobrevida , Toluidinas/farmacologia , Varroidae/efeitos dos fármacos
3.
J Chem Ecol ; 46(10): 978-986, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32876829

RESUMO

Herbivory can induce chemical changes throughout plant tissues including flowers, which could affect pollinator-pathogen interactions. Pollen is highly defended compared to nectar, but no study has examined whether herbivory affects pollen chemistry. We assessed the effects of leaf herbivory on nectar and pollen alkaloids in Nicotiana tabacum, and how herbivory-induced changes in nectar and pollen affect pollinator-pathogen interactions. We damaged leaves of Nicotiana tabacum using the specialist herbivore Manduca sexta and compared nicotine and anabasine concentrations in nectar and pollen. We then pooled nectar and pollen by collection periods (within and after one month of flowering), fed them in separate experiments to bumble bees (Bombus impatiens) infected with the gut pathogen Crithidia bombi, and assessed infections after seven days. We did not detect alkaloids in nectar, and leaf damage did not alter the effect of nectar on Crithidia counts. In pollen, herbivory induced higher concentrations of anabasine but not nicotine, and alkaloid concentrations rose and then fell as a function of days since flowering. Bees fed pollen from damaged plants had Crithidia counts 15 times higher than bees fed pollen from undamaged plants, but only when pollen was collected after one month of flowering, indicating that both damage and time since flowering affected interaction outcomes. Within undamaged treatments, bees fed late-collected pollen had Crithidia counts 10 times lower than bees fed early-collected pollen, also indicating the importance of time since flowering. Our results emphasize the role of herbivores in shaping pollen chemistry, with consequences for interactions between pollinators and their pathogens.


Assuntos
Abelhas/parasitologia , Crithidia/fisiologia , Flores/química , Herbivoria , Interações Hospedeiro-Parasita , Nicotiana/química , Anabasina/análise , Animais , Comportamento Alimentar/fisiologia , Manduca/fisiologia , Nicotina/análise , Folhas de Planta/química , Néctar de Plantas/química , Pólen/química , Polinização , Fatores de Tempo
4.
Sensors (Basel) ; 20(14)2020 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-32707688

RESUMO

Varroosis is a dangerous and difficult to diagnose disease decimating bee colonies. The studies conducted sought answers on whether the electronic nose could become an effective tool for the efficient detection of this disease by examining sealed brood samples. The prototype of a multi-sensor recorder of gaseous sensor signals with a matrix of six semiconductor gas sensors TGS 823, TGS 826, TGS 832, TGS 2600, TGS 2602, and TGS 2603 from FIGARO was tested in this area. There were 42 objects belonging to 3 classes tested: 1st class-empty chamber (13 objects), 2nd class-fragments of combs containing brood sick with varroosis (19 objects), and 3rd class-fragments of combs containing healthy sealed brood (10 objects). The examination of a single object lasted 20 min, consisting of the exposure phase (10 min) and the sensor regeneration phase (10 min). The k-th nearest neighbors algorithm (kNN)-with default settings in RSES tool-was successfully used as the basic classifier. The basis of the analysis was the sensor reading value in 270 s with baseline correction. The multi-sensor MCA-8 gas sensor signal recorder has proved to be an effective tool in distinguishing between brood suffering from varroosis and healthy brood. The five-time cross-validation 2 test (5 × CV2 test) showed a global accuracy of 0.832 and a balanced accuracy of 0.834. Positive rate of the sick brood class was 0.92. In order to check the overall effectiveness of baseline correction in the examined context, we have carried out additional series of experiments-in multiple Monte Carlo Cross Validation model-using a set of classifiers with different metrics. We have tested a few variants of the kNN method, the Naïve Bayes classifier, and the weighted voting classifier. We have verified with statistical tests the thesis that the baseline correction significantly improves the level of classification. We also confirmed that it is enough to use the TGS2603 sensor in the examined context.


Assuntos
Abelhas/parasitologia , Gases/análise , Semicondutores , Varroidae/patogenicidade , Algoritmos , Animais , Teorema de Bayes
6.
Proc Biol Sci ; 286(1903): 20190603, 2019 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-31138075

RESUMO

Infectious diseases are a primary driver of bee decline worldwide, but limited understanding of how pathogens are transmitted hampers effective management. Flowers have been implicated as hubs of bee disease transmission, but we know little about how interspecific floral variation affects transmission dynamics. Using bumblebees ( Bombus impatiens), a trypanosomatid pathogen ( Crithidia bombi) and three plant species varying in floral morphology, we assessed how host infection and plant species affect pathogen deposition on flowers, and plant species and flower parts impact pathogen survival and acquisition at flowers. We found that host infection with Crithidia increased defaecation rates on flowers, and that bees deposited faeces onto bracts of Lobelia siphilitica and Lythrum salicaria more frequently than onto Monarda didyma bracts . Among flower parts, bracts were associated with the lowest pathogen survival but highest resulting infection intensity in bee hosts. Additionally, we found that Crithidia survival across flower parts was reduced with sun exposure. These results suggest that efficiency of pathogen transmission depends on where deposition occurs and the timing and place of acquisition, which varies among plant species and environmental conditions. This information could be used for development of wildflower mixes that maximize forage while minimizing disease spread.


Assuntos
Abelhas/fisiologia , Abelhas/parasitologia , Crithidia/fisiologia , Flores , Interações Hospedeiro-Parasita , Animais , Lobelia , Lythrum , Monarda
7.
Insect Sci ; 26(2): 297-310, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28795524

RESUMO

Social insects have evolved colony behavioral, physiological, and organizational adaptations (social immunity) to reduce the risks of parasitization and/or disease transmission. The collection of resin from various plants and its use in the hive as propolis is a clear example of behavioral defense. For Apis mellifera, an increased propolis content in the hive may correspond to variations in the microbial load of the colony and to a downregulation of an individual bee's immune response. However, many aspects of such antimicrobial mechanism still need to be clarified. Assuming that bacterial and fungal infection mechanisms differ from the action of a parasite, we studied the resin collection dynamics in Varroa destructor-infested honeybee colonies. Comparative experiments involving hives with different mite infestation levels were conducted in order to assess the amount of resin collected and propolis quality within the hive, over a 2-year period (2014 and 2015). Our study demonstrates that when A. mellifera colonies are under stress because of Varroa infestation, an increase in the number of resin foragers is recorded, even if a general intensification of the foraging activity is not observed. A reduction in the total polyphenolic content in propolis produced in infested versus uninfested hives was also noticed. Considering that different propolis types show varying levels of inhibition against a variety of honey bee pathogens in vitro, it would be very important to study the effects against Varroa of two diverse types of propolis: from Varroa-free and from Varroa-infested hives.


Assuntos
Abelhas/parasitologia , Comportamento Animal , Flavonoides/análise , Polifenóis/análise , Própole/química , Animais , Interações Hospedeiro-Parasita , Varroidae
8.
Insect Sci ; 26(1): 68-75, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28748595

RESUMO

The Varroa mite, (Varroa destructor), is the worst threat to honey bee health worldwide. To explore the possibility of using RNA interference to control this pest, we determined the effects of knocking down various genes on Varroa mite survival and reproduction. Double-stranded RNA (dsRNA) of six candidate genes (Da, Pros26S, RpL8, RpL11, RpP0 and RpS13) were synthesized and each injected into Varroa mites, then mite survival and reproduction were assessed. Injection of dsRNA for Da (Daughterless) and Pros26S (Gene for proteasome 26S subunit adenosine triphosphatase) caused a significant reduction in mite survival, with 3.57% ± 1.94% and 30.03% ± 11.43% mites surviving at 72 h post-injection (hpi), respectively. Control mites injected with green fluorescent protein (GFP)-dsRNA showed survival rates of 81.95% ± 5.03% and 82.36 ± 2.81%, respectively. Injections of dsRNA for four other genes (RpL8, RpL11, RpP0 and RpS13) did not affect survival significantly, enabling us to assess their effect on Varroa mite reproduction. The number of female offspring per mite was significantly reduced for mites injected with dsRNA of each of these four genes compared to their GFP-dsRNA controls. Knockdown of the target genes was verified by real-time polymerase chain reaction for two genes important for reproduction (RpL8, RpL11) and one gene important for survival (Pros26S). In conclusion, through RNA interference, we have discovered two genes important for mite survival and four genes important for mite reproduction. These genes could be explored as possible targets for the control of Varroa destructor in the future.


Assuntos
Abelhas/parasitologia , Interferência de RNA , Varroidae/genética , Animais , Feminino , Reprodução/genética , Controle de Ácaros e Carrapatos
9.
Sci Rep ; 8(1): 13936, 2018 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-30287824

RESUMO

Waves of highly infectious viruses sweeping through global honey bee populations have contributed to recent declines in honey bee health. Bees have been observed foraging on mushroom mycelium, suggesting that they may be deriving medicinal or nutritional value from fungi. Fungi are known to produce a wide array of chemicals with antimicrobial activity, including compounds active against bacteria, other fungi, or viruses. We tested extracts from the mycelium of multiple polypore fungal species known to have antiviral properties. Extracts from amadou (Fomes) and reishi (Ganoderma) fungi reduced the levels of honey bee deformed wing virus (DWV) and Lake Sinai virus (LSV) in a dose-dependent manner. In field trials, colonies fed Ganoderma resinaceum extract exhibited a 79-fold reduction in DWV and a 45,000-fold reduction in LSV compared to control colonies. These findings indicate honey bees may gain health benefits from fungi and their antimicrobial compounds.


Assuntos
Abelhas/efeitos dos fármacos , Colapso da Colônia/prevenção & controle , Coriolaceae/química , Ganoderma/química , Vírus de Insetos/isolamento & purificação , Micélio/química , Extratos Vegetais/farmacologia , Vírus de RNA/isolamento & purificação , Varroidae/virologia , Administração Oral , Animais , Abelhas/parasitologia , Abelhas/virologia , Coriolaceae/crescimento & desenvolvimento , Relação Dose-Resposta a Droga , Feminino , Ganoderma/crescimento & desenvolvimento , Extratos Vegetais/administração & dosagem , Extratos Vegetais/uso terapêutico
10.
Parasitol Res ; 117(11): 3527-3535, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30120588

RESUMO

Self-medication plays a major role in the behavioral defense against pathogens and parasites that animals have developed during evolution. The conditions defining this adaptive behavior are: (1) contact with the substance in question must be deliberate; (2) the substance must be detrimental to one or more parasites; (3) the detrimental effect on parasites must lead to increased host fitness. Recent studies have shown that A. mellifera colonies are able to increase resin foraging rates when infested by V. destructor, whereas further investigations are needed for evidence of parasite and host fitness. In order to understand whether Varroa-infested colonies could benefit from increasing levels of resin, we carried out laboratory bioassays to investigate the effects of propolis on the fitness of infested workers. The longevity and energetic stress of adult bees kept in experimental cages and artificially infested with the mite were thus monitored over time. At the same time, in vitro experiments were performed to study the contact effects of crude propolis on Varroa mites. Our results clearly demonstrate the positive effects of raw propolis on the lifespan of Varroa-infested adult bees. A low narcoleptic effect (19-22%) of raw propolis on phoretic mites after 5 h was also observed. In terms of energetic stress, we found no differences between Varroa-free and Varroa-infested bees in terms of the daily sucrose solution demand. Our findings seem to confirm the hypothesis that resin collection and propolis use in the hive represent an example of self-medication behavior in social insects.


Assuntos
Abelhas/metabolismo , Abelhas/parasitologia , Infestações por Ácaros/tratamento farmacológico , Própole/metabolismo , Própole/farmacologia , Varroidae/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Animais , Feminino , Longevidade/efeitos dos fármacos
11.
Curr Opin Insect Sci ; 26: 57-62, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29764661

RESUMO

There exist a variety of factors that negatively impact the health and survival of managed honey bee colonies, including the spread of parasites and pathogens, loss of habitat, reduced availability or quality of food resources, climate change, poor queen quality, changing cultural and commercial beekeeping practices, as well as exposure to agricultural and apicultural pesticides both in the field and in the hive. These factors are often closely intertwined, and it is unlikely that a single stressor is driving colony losses. There is a growing consensus, however, that increasing prevalence of parasites and pathogens are among the most significant threats to managed bee colonies. Unfortunately, improper management of hives by beekeepers may exacerbate parasite populations and disease transmission. Furthermore, research continues to accumulate that describes the complex and largely harmful interactions that exist between pesticide exposure and bee immunity. This brief review summarizes our progress in understanding the impact of pesticide exposure on bees at the individual, colony, and community level.


Assuntos
Abelhas/efeitos dos fármacos , Abelhas/microbiologia , Abelhas/parasitologia , Abelhas/virologia , Praguicidas/toxicidade , Animais , Criação de Abelhas/métodos , Colapso da Colônia , Suscetibilidade a Doenças/induzido quimicamente
12.
Parasitol Res ; 117(4): 1175-1183, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29435718

RESUMO

Circulating hemocytes are responsible for defensive and healing mechanisms in the honey bee, Apis mellifera. Parasitism by the mite Varroa destructor and injection of V. destructor homogenate in buffer, but not buffer injection, showed similar reductions in total hemocyte concentrations in both Africanized and European adult honey bees. This indicated that compounds in V. destructor homogenate can have similar effects as V. destructor parasitism and that the response is not solely due to wounding. Samples from honey bees with different hemocyte concentrations were compared for the expression patterns of hemolectin (AmHml), prophenol oxidase (AmPpo), and class C scavenger receptor (AmSRC-C). Of the genes tested, only the expression of AmPpo correlated well with hemocyte counts for all the treatments, indicating that melanization is associated with those responses. Thus, the expression of AmPpo might be a suitable biomarker for hemocyte counts as part of cellular defenses against injection of buffer or mite compounds and V. destructor parasitism and perhaps other conditions involving healing and immunity.


Assuntos
Abelhas/parasitologia , Catecol Oxidase/biossíntese , Precursores Enzimáticos/biossíntese , Hemócitos/fisiologia , Lectinas/biossíntese , Receptores Depuradores Classe C/biossíntese , Varroidae/fisiologia , Animais , Abelhas/genética , Expressão Gênica , Regulação da Expressão Gênica/genética
13.
PLoS One ; 12(8): e0183729, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28832668

RESUMO

BACKGROUND: Floral phytochemicals are ubiquitous in nature, and can function both as antimicrobials and as insecticides. Although many phytochemicals act as toxins and deterrents to consumers, the same chemicals may counteract disease and be preferred by infected individuals. The roles of nectar and pollen phytochemicals in pollinator ecology and conservation are complex, with evidence for both toxicity and medicinal effects against parasites. However, it remains unclear how consistent the effects of phytochemicals are across different parasite lineages and environmental conditions, and whether pollinators actively self-medicate with these compounds when infected. APPROACH: Here, we test effects of the nectar alkaloid anabasine, found in Nicotiana, on infection intensity, dietary preference, and survival and performance of bumble bees (Bombus impatiens). We examined variation in the effects of anabasine on infection with different lineages of the intestinal parasite Crithidia under pollen-fed and pollen-starved conditions. RESULTS: We found that anabasine did not reduce infection intensity in individual bees infected with any of four Crithidia lineages that were tested in parallel, nor did anabasine reduce infection intensity in microcolonies of queenless workers. In addition, neither anabasine nor its isomer, nicotine, was preferred by infected bees in choice experiments, and infected bees consumed less anabasine than did uninfected bees under no-choice conditions. Furthermore, anabasine exacerbated the negative effects of infection on bee survival and microcolony performance. Anabasine reduced infection in only one experiment, in which bees were deprived of pollen and post-pupal contact with nestmates. In this experiment, anabasine had antiparasitic effects in bees from only two of four colonies, and infected bees exhibited reduced-rather than increased-phytochemical consumption relative to uninfected bees. CONCLUSIONS: Variation in the effect of anabasine on infection suggests potential modulation of tritrophic interactions by both host genotype and environmental variables. Overall, our results demonstrate that Bombus impatiens prefer diets without nicotine and anabasine, and suggest that the medicinal effects and toxicity of anabasine may be context dependent. Future research should identify the specific environmental and genotypic factors that determine whether nectar phytochemicals have medicinal or deleterious effects on pollinators.


Assuntos
Anabasina/toxicidade , Abelhas/efeitos dos fármacos , Infecções/tratamento farmacológico , Animais , Abelhas/parasitologia , Interações Hospedeiro-Parasita/efeitos dos fármacos
14.
Exp Appl Acarol ; 72(3): 263-275, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28748336

RESUMO

The ectoparasitic mite Varroa destructor is responsible for the death of millions of honey bee (Apis mellifera) colonies worldwide. Testing potential miticide compounds with different delivery methods that effectively control V. destructor and have low toxicity for honey bees is crucial to manage this parasite in hives. We determined the varroacide efficacy of three natural compounds delivered to hives with three application methods over a 4-week period. Oxalic acid in a sucrose solution was applied impregnated in cardboard (T1). A mixture of oregano and clove oils in an ethanol-gelatin solution was applied impregnated in absorbent pads (T2). Oregano oil alone was delivered using electric vaporizers (T3) to test the hypothesis that continuous release of miticides increases the varroacidal efficacy of essential oils. The varroa mite control rates for treatments T1-T3 were 76.5 ± 7.11, 57.8 ± 12.79 and 97.4 ± 0.68%, respectively, and there were no differences for bee mortality between control and treatments 1 and 3. Additionally, most mites were killed in the first 2 weeks in T3 colonies compared to the last 2 weeks in colonies of the other treatments. These results demonstrate the importance of continuously releasing natural miticides to achieve safe and high rates of mite control in hives. They also show that oregano oil may be an effective miticide against V. destructor infestations in colonies.


Assuntos
Abelhas/parasitologia , Infestações por Ácaros/prevenção & controle , Origanum/química , Óleos de Plantas/farmacologia , Varroidae/crescimento & desenvolvimento , Animais , Clima
15.
Nat Prod Commun ; 12(1): 135-138, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30549847

RESUMO

The aim of the present study was to determine the chemical composition and evaluate the acaricidal activity of Thymus algeriensis essential oil (TAEO) against Varroa destructor. This ectoparasitic mite is a pest of the honey bee Apis mellifera. The essential oil from the, aerial parts of T. algeriensis, obtained by hydrodistillation, was obtained in a yield of 2.8± 0.2%, w/w. The TAEO was analyzed by GC and GC/MS. Thirty-four compounds were identified, representing 99.3% of the oil. The main constituents were carvacrol (48.4%), γ-terpinene (14.9%), p-cymene (14.7%), and thymol (5.6%). Four lots 'were constituted at the level of an apiary in order to study the dynamics of the Varroa destructor and its host, Apis mellifera. After diagnosis by the.biological method "install of diapers", the lots were treated at different doses of TAEO (0.1, 0.3 and 0.5%). TAEO was sprayed on top of the hives. The results show that TAEO at 0.5% resulted in a decrease in the rate of infestation of Varroa destructor, causing a mortality rate of 32.6% without negative effect on the nesting of the queen. The essential oil of T. algeriensis could be used as a bioacaricidal agent.


Assuntos
Acaricidas/toxicidade , Óleos Voláteis/farmacologia , Thymus (Planta)/química , Varroidae/efeitos dos fármacos , Animais , Abelhas/parasitologia , Monoterpenos Cicloexânicos , Cimenos , Cromatografia Gasosa-Espectrometria de Massas , Monoterpenos , Óleos Voláteis/química
16.
Environ Int ; 89-90: 7-11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26826357

RESUMO

The negative impacts of pesticides, in particular insecticides, on bees and other pollinators have never been disputed. Insecticides can directly kill these vital insects, whereas herbicides reduce the diversity of their food resources, thus indirectly affecting their survival and reproduction. At sub-lethal level (

Assuntos
Abelhas , Poluentes Ambientais/toxicidade , Praguicidas/toxicidade , Animais , Abelhas/efeitos dos fármacos , Abelhas/parasitologia , Abelhas/virologia , Inseticidas/toxicidade , Polinização/efeitos dos fármacos , Reprodução/efeitos dos fármacos
17.
PLoS One ; 10(12): e0144668, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26657643

RESUMO

Floral nectar contains secondary compounds with antimicrobial properties that can affect not only plant-pollinator interactions, but also interactions between pollinators and their parasites. Although recent work has shown that consumption of plant secondary compounds can reduce pollinator parasite loads, little is known about the effects of dosage or compound combinations. We used the generalist pollinator Bombus impatiens and its obligate gut parasite Crithidia bombi to study the effects of nectar chemistry on host-parasite interactions. In two experiments we tested (1) whether the secondary compounds thymol and nicotine act synergistically to reduce parasitism, and (2) whether dietary thymol concentration affects parasite resistance. In both experiments, uninfected Bombus impatiens were inoculated with Crithidia and then fed particular diet treatments for 7 days, after which infection levels were assessed. In the synergism experiment, thymol and nicotine alone and in combination did not significantly affect parasite load or host mortality. However, the thymol-nicotine combination treatment reduced log-transformed parasite counts by 30% relative to the control group (P = 0.08). For the experiment in which we manipulated thymol concentration, we found no significant effect of any thymol concentration on Crithidia load, but moderate (2 ppm) thymol concentrations incurred a near-significant increase in mortality (P = 0.054). Our results tentatively suggest the value of a mixed diet for host immunity, yet contrast with research on the antimicrobial activity of dietary thymol and nicotine in vertebrate and other invertebrate systems. We suggest that future research evaluate genetic variation in Crithidia virulence, multi-strain competition, and Crithidia interactions with the gut microbe community that may mediate antimicrobial activities of secondary compounds.


Assuntos
Abelhas/parasitologia , Crithidia/fisiologia , Interações Hospedeiro-Parasita/efeitos dos fármacos , Nicotina/farmacologia , Timol/farmacologia , Animais , Anti-Infecciosos/administração & dosagem , Anti-Infecciosos/farmacologia , Dieta , Relação Dose-Resposta a Droga , Sinergismo Farmacológico , Estimulantes Ganglionares/administração & dosagem , Estimulantes Ganglionares/farmacologia , Nicotina/administração & dosagem , Timol/administração & dosagem
18.
PLoS One ; 10(11): e0142496, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26545106

RESUMO

The impact of consuming biologically active compounds is often dose-dependent, where small quantities can be medicinal while larger doses are toxic. The consumption of plant secondary compounds can be toxic to herbivores in large doses, but can also improve survival in parasitized herbivores. In addition, recent studies have found that consuming nectar secondary compounds may decrease parasite loads in pollinators. However, the effect of compound dose on bee survival and parasite loads has not been assessed. To determine how secondary compound consumption affects survival and pathogen load in Bombus impatiens, we manipulated the presence of a common gut parasite, Crithidia bombi, and dietary concentration of anabasine, a nectar alkaloid produced by Nicotiana spp. using four concentrations naturally observed in floral nectar. We hypothesized that increased consumption of secondary compounds at concentrations found in nature would decrease survival of uninfected bees, but improve survival and ameliorate parasite loads in infected bees. We found medicinal effects of anabasine in infected bees; the high-anabasine diet decreased parasite loads and increased the probability of clearing the infection entirely. However, survival time was not affected by any level of anabasine concentration, or by interactive effects of anabasine concentration and infection. Crithidia infection reduced survival time by more than two days, but this effect was not significant. Our results support a medicinal role for anabasine at the highest concentration; moreover, we found no evidence for a survival-related cost of anabasine consumption across the concentration range found in nectar. Our results suggest that consuming anabasine at the higher levels of the natural range could reduce or clear pathogen loads without incurring costs for healthy bees.


Assuntos
Anabasina/administração & dosagem , Abelhas/efeitos dos fármacos , Abelhas/parasitologia , Néctar de Plantas/administração & dosagem , Animais , Crithidia/efeitos dos fármacos , Crithidia/patogenicidade , Relação Dose-Resposta a Droga , Herbivoria/efeitos dos fármacos , Interações Hospedeiro-Parasita/efeitos dos fármacos , Carga Parasitária , Néctar de Plantas/química , Plantas Medicinais/química , Nicotiana/química
19.
Proc Biol Sci ; 282(1813): 20151371, 2015 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-26246556

RESUMO

The dispersal of parasites is critical for epidemiology, and the interspecific vectoring of parasites when species share resources may play an underappreciated role in parasite dispersal. One of the best examples of such a situation is the shared use of flowers by pollinators, but the importance of flowers and interspecific vectoring in the dispersal of pollinator parasites is poorly understood and frequently overlooked. Here, we use an experimental approach to show that during even short foraging periods of 3 h, three bumblebee parasites and two honeybee parasites were dispersed effectively onto flowers by their hosts, and then vectored readily between flowers by non-host pollinator species. The results suggest that flowers are likely to be hotspots for the transmission of pollinator parasites and that considering potential vector, as well as host, species will be of general importance for understanding the distribution and transmission of parasites in the environment and between pollinators.


Assuntos
Apicomplexa/fisiologia , Abelhas/parasitologia , Flores/fisiologia , Interações Hospedeiro-Parasita , Nosema/fisiologia , Trypanosomatina/fisiologia , Animais , Campanulaceae/fisiologia , Polinização , Especificidade da Espécie , Viola/fisiologia
20.
Arq. bras. med. vet. zootec ; 67(2): 631-635, Mar-Apr/2015. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1100008

RESUMO

Nos últimos anos, grandes perdas de colônias de abelhas melíferas vêm sendo registradas em várias regiões do mundo. Contudo, os motivos desse acontecimento permanecem obscuros. O ácaro ectoparasita Varroa destructor Anderson e Trueman (Acari: Varroidae) pode ser um dos responsáveis por esse fato, principalmente como vetor de vírus. Neste estudo, avaliaram-se as taxas de infestação (TIs) do ácaro V. destructor em abelhas africanizadas Apis mellifera L. (Hymenoptera: Apidae) e correlacionaram-se os dados com as médias de temperatura de 16 municípios das regiões do Vale do Paraíba e da Serra da Mantiqueira (São Paulo, Brasil), onde a apicultura comercial atua de maneira significativa. Em cada município, um apiário comercial foi selecionado para coleta de amostras de três colônias populosas (padrão Langstroth), totalizando 48 colônias amostradas. Aproximadamente 300 abelhas adultas localizadas na área de cria foram coletadas em cada colônia. As TIs variaram de 0.0 a 5.5%, níveis considerados baixos para causar danos significativos às colônias. As TIs mais baixas foram encontradas em municípios com clima mais ameno durante a estação avaliada (verão). Adicionalmente, cofatores como variações na disponibilidade de alimento entre os municípios e a variabilidade genética das abelhas podem interagir na interação entre parasita e hospedeiro. A variação nas TIs entre os municípios indica que, mesmo presente, a tolerância das abelhas africanizadas ao varroa pode variar drasticamente em uma pequena região, devido à dinâmica multifatorial de infestação do ácaro.(AU)


Assuntos
Humanos , Abelhas/parasitologia , Varroidae , Criação de Abelhas , Infestações por Ácaros/veterinária , Brasil , Fatores Abióticos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA