Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 372
Filtrar
1.
Mem Inst Oswaldo Cruz ; 119: e230186, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045993

RESUMO

BACKGROUND: Giant viruses have brought new insights into different aspects of virus-cell interactions. The resulting cytopathic effects from these interactions are one of the main aspects of infection assessment in a laboratory routine, mainly reflecting on the morphological features of an infected cell. OBJECTIVES: In this work, we follow the entire kinetics of the cytopathic effect in cells infected by viruses of the Mimiviridae family, spatiotemporally quantifying typical features such as cell roundness, loss of motility, decrease in cell area and cell lysis. METHODS: Infections by Acanthamoeba polyphaga mimivirus (APMV), Tupanvirus (TPV) and M4 were carried out at multiplicity of infection (MOI) 1 and MOI 10 in Acanthamoeba castellanii. Monitoring of infections was carried out using time lapse microscopy for up to 72 hours. The images were analyzed using ImageJ software. FINDINGS: The data obtained indicate that APMV is the slowest virus in inducing the cytopathic effects of rounding, decrease in cell area, mobility and cell lysis. However, it is the only virus whose MOI increase accelerates the lysis process of infected cells. In turn, TPV and M4 rapidly induce morphological and behavioral changes. MAIN CONCLUSIONS: Our results indicate that mimiviruses induce different temporal responses within the host cell and that it is possible to use these kinetic data to facilitate the understanding of infection by these viruses.


Assuntos
Acanthamoeba castellanii , Efeito Citopatogênico Viral , Mimiviridae , Mimiviridae/fisiologia , Cinética , Acanthamoeba castellanii/virologia
2.
Sci Rep ; 14(1): 13610, 2024 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-38871751

RESUMO

Natural products play a significant role in providing the current demand as antiparasitic agents, which offer an attractive approach for the discovery of novel drugs. The present study aimed to evaluate in vitro the potential impact of seaweed Padina pavonica (P. pavonica) extract in combating Acanthamoeba castellanii (A. castellanii). The phytochemical constituents of the extract were characterized by Gas chromatography-mass spectrometry. Six concentrations of the algal extract were used to evaluate its antiprotozoal activity at various incubation periods. Our results showed that the extract has significant inhibition against trophozoites and cysts viability, with complete inhibition at the high concentrations. The IC50 of P. pavonica extract was 4.56 and 4.89 µg/mL for trophozoites and cysts, respectively, at 24 h. Morphological alterations of A. castellanii trophozoites/cysts treated with the extract were assessed using inverted and scanning electron microscopes and showed severe damage features upon treatment with the extract at different concentrations. Molecular Docking of extracted compounds against Acanthamoeba cytochrome P450 monooxygenase (AcCYP51) was performed using Autodock vina1.5.6. A pharmacokinetic study using SwissADME was also conducted to investigate the potentiality of the identified bioactive compounds from Padina extract to be orally active drug candidates. In conclusion, this study highlights the in vitro amoebicidal activity of P. pavonica extract against A. castellanii adults and cysts and suggests potential AcCYP51 inhibition.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Simulação de Acoplamento Molecular , Extratos Vegetais , Acanthamoeba castellanii/efeitos dos fármacos , Ceratite por Acanthamoeba/tratamento farmacológico , Ceratite por Acanthamoeba/parasitologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antiprotozoários/farmacologia , Antiprotozoários/química , Trofozoítos/efeitos dos fármacos , Animais , Humanos
3.
Parasit Vectors ; 17(1): 242, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812022

RESUMO

BACKGROUND: Proteases produced by Acanthamoeba spp. play an important role in their virulence and may be the key to understanding Acanthamoeba pathogenesis; thus, increasing attention has been directed towards these proteins. The present study aimed to investigate the lytic factors produced by Acanthamoeba castellanii during the first hours of in vitro co-culture with human corneal epithelial cells (HCECs). METHODS: We used one old and one recent Acanthamoeba isolate, both from patients with severe keratitis, and subsets of these strains with enhanced pathogenic potential induced by sequential passaging over HCEC monolayers. The proteolytic profiles of all strains and substrains were examined using 1D in-gel zymography. RESULTS: We observed the activity of additional proteases (ranging from 33 to 50 kDa) during the early interaction phase between amoebae and HCECs, which were only expressed for a short time. Based on their susceptibilities to protease inhibitors, these proteases were characterized as serine proteases. Protease activities showed a sharp decline after 4 h of co-incubation. Interestingly, the expression of Acanthamoeba mannose-binding protein did not differ between amoebae in monoculture and those in co-culture. Moreover, we observed the activation of matrix metalloproteinases in HCECs after contact with Acanthamoeba. CONCLUSIONS: This study revealed the involvement of two novel serine proteases in Acanthamoeba pathogenesis and suggests a pivotal role of serine proteases during Acanthamoeba-host cell interaction, contributing to cell adhesion and lysis.


Assuntos
Acanthamoeba castellanii , Técnicas de Cocultura , Células Epiteliais , Epitélio Corneano , Peptídeo Hidrolases , Humanos , Acanthamoeba castellanii/enzimologia , Acanthamoeba castellanii/genética , Células Epiteliais/parasitologia , Epitélio Corneano/parasitologia , Epitélio Corneano/enzimologia , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/genética , Ceratite por Acanthamoeba/parasitologia , Serina Proteases/metabolismo , Serina Proteases/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Virulência
4.
J Med Chem ; 67(9): 7443-7457, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38683753

RESUMO

Acanthamoeba are free-living pathogenic protozoa that cause blinding keratitis, disseminated infection, and granulomatous amebic encephalitis, which is generally fatal. The development of efficient and safe drugs is a critical unmet need. Acanthamoeba sterol 14α-demethylase (CYP51) is an essential enzyme of the sterol biosynthetic pathway. Repurposing antifungal azoles for amoebic infections has been reported, but their inhibitory effects on Acanthamoeba CYP51 enzymatic activity have not been studied. Here, we report catalytic properties, inhibition, and structural characterization of CYP51 from Acanthamoeba castellanii. The enzyme displays a 100-fold substrate preference for obtusifoliol over lanosterol, supporting the plant-like cycloartenol-based pathway in the pathogen. The strongest inhibition was observed with voriconazole (1 h IC50 0.45 µM), VT1598 (0.25 µM), and VT1161 (0.20 µM). The crystal structures of A. castellanii CYP51 with bound VT1161 (2.24 Å) and without an inhibitor (1.95 Å), presented here, can be used in the development of azole-based scaffolds to achieve optimal amoebicidal effectiveness.


Assuntos
Inibidores de 14-alfa Desmetilase , Esterol 14-Desmetilase , Esterol 14-Desmetilase/metabolismo , Esterol 14-Desmetilase/química , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/síntese química , Relação Estrutura-Atividade , Acanthamoeba/enzimologia , Acanthamoeba/efeitos dos fármacos , Acanthamoeba castellanii/enzimologia , Acanthamoeba castellanii/efeitos dos fármacos , Cristalografia por Raios X , Antiprotozoários/farmacologia , Antiprotozoários/química , Antiprotozoários/síntese química , Modelos Moleculares , Estrutura Molecular
5.
Eur J Protistol ; 94: 126086, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38688045

RESUMO

Acanthamoeba castellanii, a free-living amoeba, can be pathogenic to humans causing a corneal infection named Acanthamoeba keratitis (AK). The mannose-binding protein (MBP) is well established as the major factor related to Acanthamoeba pathogenesis. However, additional factors that participate in the adhesion process and protect trophozoites from cytolytic effects caused by host immune responses remain unknown. Ectonucleotidases, including 3'-nucleotidase/nuclease (3'-NT/NU), a bifunctional enzyme that was recently reported in A. castellanii, are frequently related to the establishment of parasitic infections. We verified that trophozoites can hydrolyze 3'-AMP, and this activity is similar to that observed in other protists. The addition of 3'-AMP increases the adhesion of trophozoites to LLC-MK2 epithelial cells, and this stimulation is completely reversed by DTT, an inhibitor of ecto-3'-nucleotidase activity. Lesions in corneal cells caused by AK infection may elevate the extracellular level of 3'-AMP. We believe that ecto-3'-nucleotidase activity can modulate the host immune response, thus facilitating the establishment of parasitic infection. This activity results from the generation of extracellular adenosine, which can bind to purinergic receptors present in host immune cells. Positive feedback may occur in this cascade of events once the ecto-3'-nucleotidase activity of trophozoites is increased by the adhesion of trophozoites to LLC-MK2 cells.


Assuntos
Acanthamoeba castellanii , Adenosina , Adesão Celular , Trofozoítos , Acanthamoeba castellanii/enzimologia , Adenosina/metabolismo , Linhagem Celular , Animais , Nucleotidases/metabolismo , Células Epiteliais/parasitologia
6.
Arch Microbiol ; 206(4): 134, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433145

RESUMO

Acanthamoeba castellanii are opportunistic pathogens known to cause infection of the central nervous system termed: granulomatous amoebic encephalitis, that mostly effects immunocompromised individuals, and a sight threatening keratitis, known as Acanthamoeba keratitis, which mostly affects contact lens wearers. The current treatment available is problematic, and is toxic. Herein, an amphiphilic star polymer with AB2 miktoarms [A = hydrophobic poly(ℇ-Caprolacton) and B = hydrophilic poly (ethylene glycol)] was synthesized by ring opening polymerization and CuI catalyzed azide-alkyne cycloaddition. Characterization by 1H and 13C NMR spectroscopy, size-exclusion chromatography and fluorescence spectroscopy was accomplished. The hydrophobic drug itraconazole (ITZ) was incorporated in self-assembled micellar structure of AB2 miktoarms through co-solvent evaporation. The properties of ITZ loaded (ITZ-PCL-PEG2) and blank micelles (PCL-PEG2) were investigated through zeta sizer, scanning electron microscopy and Fourier-transform infrared spectroscopy. Itraconazole alone (ITZ), polymer (DPB-PCL), empty polymeric micelles (PCL-PEG2) alone, and itraconazole loaded in polymeric micelles (ITZ-PCL-PEG2) were tested for anti-amoebic potential against Acanthamoeba, and the cytotoxicity on human cells were determined. The polymer was able to self-assemble in aqueous conditions and exhibited low value for critical micelle concentration (CMC) 0.05-0.06 µg/mL. The maximum entrapment efficiency of ITZ was 68%. Of note, ITZ, DPB, PCL-PEG2 and ITZ-PCL-PEG2 inhibited amoebae trophozoites by 37.34%, 36.30%, 35.77%, and 68.24%, respectively, as compared to controls. Moreover, ITZ-PCL-PEG2 revealed limited cytotoxicity against human keratinocyte cells. These results are indicative that ITZ-PCL-PEG2 micelle show significantly better anti-amoebic effects as compared to ITZ alone and thus should be investigated further in vivo to determine its clinical potential.


Assuntos
Acanthamoeba castellanii , Micelas , Humanos , Itraconazol/farmacologia , Alcinos , Polímeros
7.
Antimicrob Agents Chemother ; 68(4): e0165123, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38412000

RESUMO

Organic and synthetic chemistry plays a crucial role in drug discovery fields. Moreover, chemical modifications of available molecules to enhance their efficacy, selectivity and safety have been considered as an attractive approach for the development of new bioactive agents. Indoles, a versatile group of natural heterocyclic compounds, have been widely used in pharmaceutical industry due to their broad spectrum of activities including antimicrobial, antitumoral and anti-inflammatory among others. Herein, we report the amoebicidal activity of different indole analogs on Acanthamoeba castellanii Neff. Among the 40 tested derivatives, eight molecules were able to inhibit this protistan parasite. The structure-activity relationship (SAR) analysis of their anti-Acanthamoeba activity would suggest that a carboxylation of C-3 position and the incorporation of halogen as chlorine/fluorine would enhance their biological profile, presumably by increasing their lipophilicity and therefore their ability to cross the cell membrane. Fluorescence image base system was used to investigate the effect of indole 6o c-6 on the cytoskeleton network and various programmed cell death features. We were able to highlight that the methyl 6-chloro-1H-indole-3-carboxylate could induce program cell death by the mitochondrial dysfunction.


Assuntos
Acanthamoeba castellanii , Amebicidas , Amebicidas/farmacologia , Morte Celular , Apoptose , Indóis/farmacologia
8.
Microbiol Spectr ; 12(3): e0298823, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38319117

RESUMO

Acanthamoeba species are clinically relevant free-living amoebae (FLA) ubiquitously found in soil and water bodies. Metabolically active trophozoites graze on diverse microbes via phagocytosis. However, functional studies on Rab GTPases (Rabs), which are critical for controlling vesicle trafficking and maturation, are scarce for this FLA. This knowledge gap can be partly explained by the limited genetic tools available for Acanthamoeba cell biology. Here, we developed plasmids to generate fusions of A. castellanii strain Neff proteins to the N- or C-termini of mEGFP and mCherry2. Phylogenomic and structural analyses of the 11 Neff Rab7 paralogs found in the RefSeq assembly revealed that eight of them had non-canonical sequences. After correcting the gene annotation for the Rab7A ortholog, we generated a line stably expressing an mEGFP-Rab7A fusion, demonstrating its correct localization to acidified macropinocytic and phagocytic vacuoles using fluorescence microscopy live cell imaging (LCI). Direct labeling of live Stenotrophomonas maltophilia ESTM1D_MKCAZ16_6a (Sm18) cells with pHrodo Red, a pH-sensitive dye, demonstrated that they reside within acidified, Rab7A-positive vacuoles. We constructed new mini-Tn7 delivery plasmids and tagged Sm18 with constitutively expressed mScarlet-I. Co-culture experiments of Neff trophozoites with Sm18::mTn7TC1_Pc_mScarlet-I, coupled with LCI and microplate reader assays, demonstrated that Sm18 underwent multiple replication rounds before reaching the extracellular medium via non-lytic exocytosis. We conclude that S. maltophilia belongs to the class of bacteria that can use amoeba as an intracellular replication niche within a Stenotrophomonas-containing vacuole that interacts extensively with the endocytic pathway.IMPORTANCEDiverse Acanthamoeba lineages (genotypes) are of increasing clinical concern, mainly causing amoebic keratitis and granulomatous amebic encephalitis among other infections. S. maltophilia ranks among the top 10 most prevalent multidrug-resistant opportunistic nosocomial pathogens and is a recurrent member of the microbiome hosted by Acanthamoeba and other free-living amoebae. However, little is known about the molecular strategies deployed by Stenotrophomonas for an intracellular lifestyle in amoebae and other professional phagocytes such as macrophages, which allow the bacterium to evade the immune system and the action of antibiotics. Our plasmids and easy-to-use microtiter plate co-culture assays should facilitate investigations into the cellular microbiology of Acanthamoeba interactions with Stenotrophomonas and other opportunistic pathogens, which may ultimately lead to the discovery of new molecular targets and antimicrobial therapies to combat difficult-to-treat infections caused by these ubiquitous microbes.


Assuntos
Acanthamoeba castellanii , Stenotrophomonas maltophilia , Acanthamoeba castellanii/microbiologia , Stenotrophomonas maltophilia/genética , Vacúolos , Filogenia , Bactérias
9.
Phytomedicine ; 125: 155389, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38306720

RESUMO

BACKGROUND: Acanthamoeba is an opportunistic pathogen that can cause human infections such as granulomatous amebic encephalitis and acanthamoeba keratitis. However, no specific drug to treat the diseases has been developed. Therefore, the discovery or development of novel drugs for treating Acanthamoeba infections is urgently needed. The anti-protozoan activity of (‒)-epicatechin (EC) has been reported, suggesting it is an attractive anti-protozoal drug candidate. In this study, the amoebicidal activity of EC against A. castellanii was assessed and its mechanism of action was unveiled. METHODS: The amoebicidal activity of EC against A. castellanii trophozoites and the cytotoxicity of EC in HCE-2 and C6 cells were determined with cell viability assay. The underlying amoebicidal mechanism of EC against A. castellanii was analyzed by the apoptosis/necrosis assay, TUNEL assay, mitochondrial dysfunction assay, caspase-3 assay, and quantitative reverse transcription polymerase chain reaction. The cysticidal activity of EC was also investigated. RESULTS: EC revealed amoebicidal activity against A. castellanii trophozoites with an IC50 of 37.01 ± 3.96 µM, but was not cytotoxic to HCE-2 or C6 cells. EC induced apoptotic events such as increases in DNA fragmentation and intracellular reactive oxygen species production in A. castellanii. EC also caused mitochondrial dysfunction in the amoebae, as evidenced by the loss of mitochondrial membrane potential and reductions in ATP production. Caspase-3 activity, autophagosome formation, and the expression levels of autophagy-related genes were also increased in EC-treated amoebae. EC led to the partial death of cysts and the inhibition of excystation. CONCLUSION: EC revealed promising amoebicidal activity against A. castellanii trophozoites via programmed cell death events. EC could be a candidate drug or supplemental compound for treating Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Amebíase , Amebicidas , Catequina , Dieldrin/análogos & derivados , Doenças Mitocondriais , Animais , Humanos , Amebicidas/farmacologia , Amebicidas/uso terapêutico , Caspase 3 , Catequina/farmacologia , Amebíase/tratamento farmacológico , Trofozoítos , Apoptose , Doenças Mitocondriais/tratamento farmacológico
10.
Parasitol Res ; 123(2): 116, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38289423

RESUMO

Acanthamoeba castellanii, a ubiquitous protozoan, is responsible for significant diseases such as Acanthamoeba keratitis and granulomatous amoebic encephalitis. A crucial survival strategy of A. castellanii involves the formation of highly resistant cysts during adverse conditions. This study delves into the cellular processes underpinning encystment, focusing on gene expression changes related to reactive oxygen species (ROS) balance, with a particular emphasis on mitochondrial processes. Our findings reveal a dynamic response within the mitochondria during encystment, with the downregulation of key enzymes involved in oxidative phosphorylation (COX, AOX, and NADHalt) during the initial 48 h, followed by their overexpression at 72 h. This orchestrated response likely creates a pro-oxidative environment, facilitating encystment. Analysis of other ROS processing enzymes across the cell reveals differential expression patterns. Notably, antioxidant enzymes, such as catalases, glutaredoxins, glutathione S-transferases, peroxiredoxins, and thioredoxins, mirror the mitochondrial trend of downregulation followed by upregulation. Additionally, glycolysis and gluconeogenesis are downregulated during the early stages in order to potentially balance the metabolic requirement of the cyst. Our study underscores the importance of ROS regulation in Acanthamoeba encystment. Understanding these mechanisms offers insights into infection control and identifies potential therapeutic targets. This work contributes to unraveling the complex biology of A. castellanii and may aid in combatting Acanthamoeba-related infections. Further research into ROS and oxidase enzymes is warranted, given the organism's remarkable respiratory versatility.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebíase , Cistos , Humanos , Acanthamoeba castellanii/genética , Espécies Reativas de Oxigênio , Catalase
11.
Parasitol Res ; 123(2): 117, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38294565

RESUMO

The free living Acanthamoeba spp. are ubiquitous amoebae associated with potentially blinding disease known as Acanthamoeba keratitis (AK) and a fatal central nervous system infection granulomatous amoebic encephalitis (GAE). With the inherent ability of cellular differentiation, it can phenotypically transform to a dormant cyst form from an active trophozoite form. Acanthamoeba cysts are highly resistant to therapeutic agents as well as contact lens cleaning solutions. One way to tackle drug resistance against Acanthamoeba is by inhibiting the formation of cysts from trophozoites. The biochemical analysis showed that the major component of Acanthamoeba cyst wall is composed of carbohydrate moieties such as galactose and glucose. The disaccharide of galactose and glucose is lactose. In this study, we analyzed the potential of lactase enzyme to target carbohydrate moieties of cyst walls. Amoebicidal assessment showed that lactase was ineffective against trophozoite of A. castellanii but enhanced amoebicidal effects of chlorhexidine. The lactase enzyme did not show any toxicity against normal human keratinocyte cells (HaCaT) at the tested range. Hence, lactase can be used for further assessment for development of potential therapeutic agents in the management of Acanthamoeba infection as well as formulation of effective contact lens disinfectants.


Assuntos
Acanthamoeba castellanii , Amebíase , Amebicidas , Cistos , Humanos , Lactase , Galactose , Soluções para Lentes de Contato , Genótipo , Glucose , Diferenciação Celular
12.
Elife ; 122023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095310

RESUMO

Identifying virulence-critical genes from pathogens is often limited by functional redundancy. To rapidly interrogate the contributions of combinations of genes to a biological outcome, we have developed a multiplex, randomized CRISPR interference sequencing (MuRCiS) approach. At its center is a new method for the randomized self-assembly of CRISPR arrays from synthetic oligonucleotide pairs. When paired with PacBio long-read sequencing, MuRCiS allowed for near-comprehensive interrogation of all pairwise combinations of a group of 44 Legionella pneumophila virulence genes encoding highly conserved transmembrane proteins for their role in pathogenesis. Both amoeba and human macrophages were challenged with L. pneumophila bearing the pooled CRISPR array libraries, leading to the identification of several new virulence-critical combinations of genes. lpg2888 and lpg3000 were particularly fascinating for their apparent redundant functions during L. pneumophila human macrophage infection, while lpg3000 alone was essential for L. pneumophila virulence in the amoeban host Acanthamoeba castellanii. Thus, MuRCiS provides a method for rapid genetic examination of even large groups of redundant genes, setting the stage for application of this technology to a variety of biological contexts and organisms.


Assuntos
Acanthamoeba castellanii , Legionella pneumophila , Doença dos Legionários , Humanos , Macrófagos , Legionella pneumophila/metabolismo , Acanthamoeba castellanii/genética , Virulência/genética , Proteínas de Bactérias/metabolismo
13.
Eur J Protistol ; 91: 126032, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37948889

RESUMO

Acanthamoeba castellanii is a free-living amoeba that acts as an opportunistic pathogen for humans and is the pathogenic agent of Acanthamoeba keratitis (AK). A. castellanii may present as proliferative and infective trophozoites or as resistant cysts during their life cycle. The immune response against AK is still poorly explored; however, it is well established that macrophages and neutrophils play essential roles in controlling corneal infection during the disease outcome. The release of NETs is one of the innate immune strategies to prevent parasite infection, especially when neutrophils interact with microorganisms that are too large to be phagocytosed, which is the case for amoeba species. The present work demonstrated that A. castellanii trophozoites can trigger NET formation upon in vitro interaction with neutrophils. Using DNase as a control, we observed increased parasite survival after coinciding with neutrophils, which may be correlated with NET degradation. Indeed, A. castellanii trophozoites degrade the NET DNA scaffold. Molecular analysis confirmed the occurrence of a 3'-nucleotidase/nuclease (3'-NT/NU) in the A. castellanii genome. We also demonstrated that trophozoites exhibit significantly higher 3'-NT/NU activity than cysts, which cannot trigger NET release. Considering that previous studies indicated the pathological role of 3'-NT-/NU in parasite infection, we suggest that this enzyme may act as the mechanism of escape of A. castellanii trophozoites from NETs.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Armadilhas Extracelulares , Animais , Humanos , Trofozoítos/fisiologia , Ceratite por Acanthamoeba/parasitologia
14.
Acta Trop ; 248: 107033, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783284

RESUMO

Acanthamoeba castellanii is an opportunistic free-living amoeba (FLA) pathogen which can cause fatal central nervous system (CNS) infection, granulomatous amoebic encephalitis (GAE) and potentially blinding ocular infection, Acanthamoeba keratitis (AK). Acanthamoeba species remain a challenging protist to treat due to the unavailability of safe and effective therapeutic drugs and their ability to protect themselves in the cyst stage. Natural products and their secondary metabolites play a pivotal role in drug discovery against various pathogenic microorganisms. In the present study, the ethyl acetate extract of Myristica cinnamomea King fruit was evaluated against A. castellanii (ATCC 50492), showing an IC50 of 45.102 ± 4.62 µg/mL. Previously, the bio-guided fractionation of the extract resulted in the identification of three active compounds, namely Malabaricones (A-C). The isolated and thoroughly characterized acylphenols were evaluated for their anti-amoebic activity against A. castellanii for the first time. Among tested compounds, Malabaricone B (IC50 of 101.31 ± 17.41 µM) and Malabaricone C (IC50 of 49.95 ± 6.33 µM) showed potent anti-amoebic activity against A. castellanii trophozoites and reduced their viability up-to 75 and 80 %, respectively. Moreover, both extract and Malabaricones also significantly (p < 0.05) inhibit the encystation and excystation of A. castellanii, while showed minimal toxicity against human keratinocyte cells (HaCaT cells) at lower tested concentrations. Following that, the explanation of the possible mechanism of action of purified compounds were assessed by detection of the state of chromatin. Hoechst/PI 33342 double staining showed that necrotic cell death occurred in A. castellanii trophozoites after 8 h treatment of Malabaricones (A-C). These findings demonstrate that Malabaricones B and C could serve as promising therapeutic options against A. castellanii infections.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Amebíase , Amebicidas , Myristica , Animais , Humanos , Amebicidas/farmacologia , Frutas , Amebíase/tratamento farmacológico , Trofozoítos
15.
Eur J Protistol ; 91: 126026, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37871554

RESUMO

Acanthamoeba castellanii is a free-living amoeba and an opportunistic pathogen for humans that can cause encephalitis and, more commonly, Acanthamoeba keratitis. During its life cycle, A. castellanii may present as proliferative and infective trophozoites or resistant cysts. The adhesion of trophozoites to host cells is a key first step in the pathogenesis of infection. A major virulence protein of Acanthamoeba is a mannose-binding protein (MBP) that mediates the adhesion of amoebae to cell surfaces. Ectophosphatases are ecto-enzymes that can dephosphorylate extracellular substrates and have already been described in several microorganisms. Regarding their physiological roles, there is consistent evidence that ectophosphatase activities play an important role in parasite-host interactions. In the present work, we identified and biochemically characterized the ectophosphatase activity of A. castellanii. The ectophosphatase activity is acidic, stimulated by magnesium, cobalt and nickel, and presents the following apparent kinetic parameters: Km = 2.12 ± 0.54 mM p-NPP and Vmax = 26.12 ± 2.53 nmol p-NP × h-1 × 10-6 cells. We observed that sodium orthovanadate, ammonium molybdate, sodium fluoride, and inorganic phosphate are able to inhibit ectophosphatase activity. Comparing the two stages of the A. castellanii lifecycle, ectophosphatase activity is significantly higher in trophozoites than in cysts. The ectophosphatase activity is stimulated by mannose residues and is significantly increased when trophozoites interact with LLC-MK2 cells. The inhibition of ectophosphatase by pretreatment with sodium orthovanadate also inhibits the adhesion of trophozoites to epithelial cells. These results allow us to conclude that the ectophosphatase activity of A. castellanii is somehow important for the adhesion of trophozoites to their host cells. According to our data, we believe that the activation of MBP by mannose residues triggers the stimulation of ectophosphatase activity to facilitate the adhesion process.


Assuntos
Ceratite por Acanthamoeba , Acanthamoeba castellanii , Humanos , Animais , Manose/metabolismo , Vanadatos , Adesão Celular/fisiologia , Sódio , Trofozoítos
16.
Transl Vis Sci Technol ; 12(9): 23, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37768280

RESUMO

Purpose: To investigate the combined anti-Acanthamoeba effects of nitric oxide (NO) donors and hypochlorite to maximize amoebicidal outcomes while minimizing damage to human corneal epithelial cells (HCECs). Methods: Acanthamoeba castellanii and primary cultured HCECs and keratocytes were treated with sodium hypochlorite (NaOCl), NO donors (sodium nitroprusside [SNP] and sodium nitrite [NaNO2]), or a combination of hypochlorite and NO donors. The viability of A. castellanii, HCECs, and keratocytes was assessed. Minimal inhibitory concentration (MIC) and fractional inhibitory concentration of NaOCl and NO donors were determined. The activation of mammalian targets of rapamycin (mTOR) and ERK and the expression of nitrite reductase and Nrf2 were assessed in HCECs using Western blot analysis. The cysticidal effects of combined NaOCl and NO donors were also evaluated. Results: A dose-dependent toxicity was observed in A. castellanii, HCECs, and keratocytes when treated with NaOCl and SNP. The range of tested NaNO2 concentrations showed no significant toxicity to HCECs; however, dose-dependent toxicity to A. castellanii was observed. The MIC of NaOCl against HCECs and A. castellanii was 8.0 mg/mL. The MIC of NaNO2 and SNP was 500 mM and 10 mM in both HCECs and A. castellanii, respectively. Weak attenuation of the mTOR and ERK phosphorylation was observed and Nrf2 expression decreased slightly after exposure of HCECs to 2.0 mg/mL NaOCl. For the combination treatment, NaOCl (0.125 mg/mL) was selected based on the safety of HCECs and the toxicity of A. castellanii. A more potent anti-Acanthamoeba effect and HCEC toxicity were observed when NaOCl was combined with SNP rather than NaNO2. Conclusions: Combined NaOCl and NO donors had a stronger anti-Acanthamoeba effect compared to either drug alone. Translational Relevance: This study demonstrates that the combined use of various drugs for the treatment of Acanthamoeba infection can enhance the anti-Acanthamoeba effect while minimizing the toxicity of the individual drug.


Assuntos
Acanthamoeba castellanii , Humanos , Animais , Doadores de Óxido Nítrico/farmacologia , Ácido Hipocloroso , Fator 2 Relacionado a NF-E2 , Serina-Treonina Quinases TOR , Mamíferos
17.
Mol Biochem Parasitol ; 256: 111582, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37562558

RESUMO

Acanthamoeba are known to cause a vision threatening eye infection typically due to contact lens wear, and an infection of the central nervous system. The ability of these amoebae to switch phenotypes, from an active trophozoite to a resistant cyst form is not well understood; the cyst stage is often resistant to chemotherapy, which is of concern given the rise of contact lens use and the ineffective disinfectants available, versus the cyst stage. Herein, for the first time, a range of raloxifene sulfonate/sulfamate derivatives which target nucleotide pyrophosphatase/phosphodiesterase enzymes, were assessed using amoebicidal and excystation tests versus the trophozoite and cyst stage of Acanthamoeba. Moreover, the potential for cytopathogenicity inhibition in amoebae was assessed. Each of the derivatives showed considerable anti-amoebic activity as well as the ability to suppress phenotypic switching (except for compound 1a). Selected raloxifene derivatives reduced Acanthamoeba-mediated host cell damage using lactate dehydrogenase assay. These findings suggest that pyrophosphatase/phosphodiesterase enzymes may be valuable targets against Acanthamoeba infections.


Assuntos
Acanthamoeba castellanii , Animais , Cloridrato de Raloxifeno/farmacologia , Ácidos Sulfônicos/farmacologia , Trofozoítos , Alcanossulfonatos/farmacologia , Diester Fosfórico Hidrolases/farmacologia
18.
Acta Parasitol ; 68(3): 582-592, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37338633

RESUMO

PURPOSE: This study aimed to examine the ultrastructure, cytotoxicity, phagocytosis, and antioxidant responses of Acanthamoeba castellanii trophozoites exposed to sublethal plasma-activated water. METHODS: Trophozoites were exposed to a sublethal treatment of PAW and compared to untreated viable trophozoites via adhesion assays on macrophage monolayers, osmo- and thermotolerance tests. Bacterial uptake was assessed in treated cells to evaluate their phagocytic characteristics. Oxidative stress biomarkers and antioxidant activities were compared in treated and untreated trophozoites. Finally, the expression of the mannose-binding protein (MBP), cysteine protease 3 (CP3), and serine endopeptidase (SEP) genes was determined in cells. RESULTS: In PAW-treated trophozoites, cytopathic effects were more extensive and resulted in the detachment of macrophage monolayers. Treated trophozoites could not grow at high temperatures (43 °C). Moreover, they showed osmotolerance to 0.5 M D-mannitol but not to 1 M. Results demonstrated a higher bacterial uptake rate by PAW-treated trophozoites than untreated cells. Activities of superoxide dismutase and catalase and catalase were significantly greater in the treated trophozoites, and the glutathione and glutathione/glutathione disulfide were significantly lower in the PAW-treated cells. Exposure to PAW also significantly increased the malondialdehyde level and total antioxidant capacity. Treatment with PAW led to significantly higher expression of virulent genes like MBP, CP3, and SEP. CONCLUSION: PAW is a double-edged sword against A. castellanii. PAW is an effective antiamoebic agent in proper usage, whereas its sublethal exposure may reduce its effectiveness and increase amoebas' pathogenicity. An agent's adequate concentration and exposure time are essential to achieve optimum results.


Assuntos
Acanthamoeba castellanii , Virulência , Catalase , Antioxidantes/farmacologia , Antioxidantes/metabolismo
19.
Photochem Photobiol Sci ; 22(9): 2179-2188, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37296325

RESUMO

Despite access to drinking water being a basic human right, the availability of safe drinking water remains a privilege that many do not have and as a result, many lives are lost each year due to waterborne diseases associated with the consumption of biologically unsafe water. To face this situation, different low-cost household drinking water treatment technologies (HDWT) have been developed, and among them is solar disinfection (SODIS). Despite the effectiveness of SODIS and the epidemiological gains being consistently documented in the literature, there is a lack of evidence of the effectiveness of the batch-SODIS process against protozoan cysts as well as their internalized bacteria under real sun conditions. This work evaluated the effectiveness of the batch-SODIS process on the viability of Acanthamoeba castellanii cysts, and internalized Pseudomonas aeruginosa. Dechlorinated tap water contaminated with 5.6 × 103 cysts/L, contained in PET (polyethylene terephthalate) bottles, was exposed for 8 h a day to strong sunlight (531-1083 W/m2 of maximum insolation) for 3 consecutive days. The maximum water temperature inside the reactors ranged from 37 to 50 °C. Cyst viability was assessed by inducing excystment on non-nutrient agar, or in water with heat-inactivated Escherichia coli. After sun exposure for 0, 8, 16 and 24 h, the cysts remained viable and without any perceptible impairment in their ability to excyst. 3 and 5.5 log CFU/mL of P. aeruginosa were detected in water containing untreated and treated cysts, respectively, after 3 days of incubation at 30 °C. The batch-SODIS process is unable to inactivate A. castellanii cysts as well as its internalized bacteria. Although the use of batch SODIS by communities should continue to be encouraged, SODIS-disinfected water should be consumed within 3 days.


Assuntos
Acanthamoeba castellanii , Água Potável , Purificação da Água , Humanos , Luz Solar , Pseudomonas aeruginosa , Desinfecção , Bactérias , Microbiologia da Água
20.
Protist ; 174(3): 125966, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37229821

RESUMO

The purpose of this study was to assess the efficacy of certain plant extracts and to compare them with current biocides on the viability of Acanthamoeba castellanii cysts and trophozoites in vitro. Amoebicidal and cysticidal assays were performed against both trophozoites and cysts of Acanthamoeba castellanii (ATCC 50370). Ten plant extracts were evaluated alongside the current agents included polyhexamethylene biguanide (PHMB), octenidine and chlorhexidine digluconate. A. castellanii (ATCC 50370) was treated to serial two-fold dilutions of the test compounds and extracts in microtitre plate wells to investigate the effect on trophozoites and cysts of A. castellanii (ATCC 50370). Furthermore, the toxicity of each of the test compounds and extracts were assessed towards a mammalian cell line. Minimum trophozoite inhibitory concentration (MTIC), minimum trophozoite amoebicidal concentration (MTAC), and minimum cysticidal concentration (MCC) were used to establish A. castellanii (ATCC 50370) in vitro sensitivity. The findings of this research revealed that the biguanides PHMB, chlorhexidine, and octenidine all had excellent effectiveness against trophozoites and cysts of A. castellanii (ATCC 50370). The plant extracts testing results showed that, great activity against trophozoites and cysts ofA. castellanii (ATCC 50370) at lower concentrations. This is the first study to demonstrate that the Proskia plant extract had the lowest MCC value, which was 3.9 µg/mL. The time kill experiment confirmed this finding, as this extract reduced cysts of A. castellanii (ATCC 50370) by more than 3-log at 6 hour and by 4-log after 24 hour. The anti-amoebic efficacy of new plant extracts on the viability of A. castellanii (ATCC 50370) cysts and trophozoites was comparable to existing biocide treatments and was not toxic when tested on a mammalian cell line. This could be a promising novel Acanthamoeba treatment by using the tested plant extracts as a monotherapy against trophozoites and cysts.


Assuntos
Acanthamoeba castellanii , Amebicidas , Desinfetantes , Animais , Desinfetantes/farmacologia , Extratos Vegetais/farmacologia , Piridinas/farmacologia , Amebicidas/farmacologia , Trofozoítos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA