Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Molecules ; 27(14)2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35889224

RESUMO

The biocatalytic system comprised of RizA and acetate kinase (AckA) combines the specific synthesis of bioactive arginyl dipeptides with efficient ATP regeneration. Immobilization of this coupled enzyme system was performed and characterized in terms of activity, specificity and reusability of the immobilisates. Co-immobilization of RizA and AckA into a single immobilisate conferred no disadvantage in comparison to immobilization of only RizA, and a small addition of AckA (20:1) was sufficient for ATP regeneration. New variants of RizA were constructed by combining mutations to yield variants with increased biocatalytic activity and specificity. A selection of RizA variants were co-immobilized with AckA and used for the production of the salt-taste enhancers Arg-Ser and Arg-Ala and the antihypertensive Arg-Phe. The best variants yielded final dipeptide concentrations of 11.3 mM Arg-Ser (T81F_A158S) and 11.8 mM Arg-Phe (K83F_S156A), the latter of which represents a five-fold increase in comparison to the wild-type enzyme. T81F_A158S retained more than 50% activity for over 96 h and K83F_S156A for over 72 h. This study provides the first example of the successful co-immobilization of an l-amino acid ligase with an ATP-regenerating enzyme and paves the way towards a bioprocess for the production of bioactive dipeptides.


Assuntos
Acetato Quinase , Dipeptídeos , Trifosfato de Adenosina , Biocatálise , Dipeptídeos/química , Ligases/metabolismo
2.
Food Microbiol ; 94: 103651, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33279076

RESUMO

Lactobacillus (L.) helveticus is widely used in food industry due to its high proteolytic activity. However, such activity varies greatly between isolates, and the determining factors regulating the strength of proteolytic activity in L. helveticus are unclear. This study sequenced the genomes of 60 fermented food-originated L. helveticus and systemically examined the proteolytic activity-determining factors. Our analyses found that the strength of proteolytic activity in L. helveticus was independent of the isolation source, geographic location, phylogenetic closeness between isolates, and distribution of cell envelope proteinases (CEPs). Genome-wide association study (GWAS) identified two genes, the acetate kinase (ackA) and a hypothetical protein, and 15 single nucleotide polymorphisms (SNPs) that were associated with the strength of the proteolytic activity. Further investigating the functions of these gene components revealed that ackA and two cysteine peptidases coding genes (pepC and srtA) rather than the highly heterogeneous and intraspecific CEPs were linked to the level of proteolytic activity. Moreover, the sequence type (ST) defined by SNP analysis revealed a total of ten STs, and significantly weaker proteolytic activity was observed among isolates of ST2. This study provides practical information for future selection of L. helveticus of strong proteolytic activity.


Assuntos
Acetato Quinase/metabolismo , Proteínas de Bactérias/metabolismo , Laticínios/microbiologia , Grão Comestível/microbiologia , Alimentos Fermentados/microbiologia , Lactobacillus helveticus/enzimologia , Peptídeo Hidrolases/metabolismo , Acetato Quinase/química , Acetato Quinase/genética , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Bovinos , Genoma Bacteriano , Estudo de Associação Genômica Ampla , Lactobacillus helveticus/genética , Lactobacillus helveticus/isolamento & purificação , Lactobacillus helveticus/metabolismo , Peptídeo Hidrolases/química , Peptídeo Hidrolases/genética , Filogenia , Proteólise
3.
Microbiology (Reading) ; 166(4): 411-421, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32553069

RESUMO

The two-component regulatory system CiaRH of Streptococcus pneumoniae affects a large variety of physiological processes including ß-lactam resistance, competence development, maintenance of cell integrity, bacteriocin production, but also host colonization and virulence. The response regulator CiaR is active under a wide variety of conditions and the cognate CiaH kinase is not always needed to maintain CiaR activity. Using tetracycline-controlled expression of ciaR and variants, acetyl phosphate was identified in vivo as the alternative source of CiaR phosphorylation in the absence of CiaH. Concomitant inactivation of ciaH and the acetate kinase gene ackA led to very high levels of CiaR-mediated promoter activation. Strong transcriptional activation was accompanied by a high phosphorylation status of CiaR as determined by Phos-tag gel electrophoresis of S. pneumoniae cell extracts. Furthermore, AckA acted negatively upon acetyl phosphate-dependent phosphorylation of CiaR. Experiments using the Escherichia coli two-hybrid system based on adenylate cyclase reconstitution indicated binding of AckA to CiaR and therefore direct regulation. Subsequent in vitro CiaR phosphorylation experiments confirmed in vivo observations. Purified AckA was able to inhibit acetyl phosphate-dependent phosphorylation. Inhibition required the presence of ADP. AckA-mediated regulation of CiaR phosphorylation is the first example for a regulatory connection of acetate kinase to a response regulator besides controlling acetyl phosphate levels. It will be interesting to see if this novel regulation applies to other response regulators in S. pneumoniae or even in other organisms.


Assuntos
Acetato Quinase/metabolismo , Proteínas de Bactérias/metabolismo , Organofosfatos/metabolismo , Proteínas Quinases/metabolismo , Streptococcus pneumoniae/metabolismo , Acetato Quinase/genética , Difosfato de Adenosina/metabolismo , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Mutação , Fosforilação , Ligação Proteica , Proteínas Quinases/genética , Transdução de Sinais , Streptococcus pneumoniae/genética
4.
Sci Total Environ ; 665: 574-578, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30776629

RESUMO

Biotransformation of many organic micropollutants (OMPs) in sewage treatment plants is incomplete leading to their release into the environment. Recent findings suggest that thermodynamic aspects of the reaction as chemical equilibrium limit biotransformation, while kinetic parameters have a lower influence. Reversibility of enzymatic reactions might result in a chemical equilibrium between the OMP and the transformation product, thus impeding a total removal of the compound. To the best of our knowledge, no study has focused on proving the reversible action of enzymes towards OMPs so far. Therefore, we aimed at demonstrating this hypothesis through in vitro assays with bisphenol A (BPA) in the presence of kinase enzymes, namely acetate kinase and hexokinase, which are key enzymes in anaerobic processes. Results suggest that BPA is phosphorylated by acetate kinase and hexokinase in the presence of ATP (adenosine 5-triphosphate), but when the concentration of this co-substrate decreases and the enzymes loss their activity, the backward reaction occurs, revealing a reversible biotransformation mechanism. This information is particularly relevant to address new removal strategies, which up to now were mainly focused on modifying the kinetic parameters of the reaction.


Assuntos
Compostos Benzidrílicos/metabolismo , Reatores Biológicos , Compostos Orgânicos/metabolismo , Fenóis/metabolismo , Eliminação de Resíduos Líquidos , Poluentes Químicos da Água/metabolismo , Acetato Quinase/metabolismo , Biotransformação , Hexoquinase/metabolismo
5.
Enzyme Microb Technol ; 122: 82-89, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30638512

RESUMO

(Deoxy)guanosine-5'-triphosphate (5'-(d)GTP), the precursor for synthesizing DNA or RNA in vivo, is an important raw material for various modern biotechnologies based on PCR. In this study, we investigated the application of whole-cell catalysts constructed by bacterial cell surface display in biosynthetic reactions of 5'-(d)GTP from (deoxy)guanosine-5'-monophosphate (5'-(d)GMP). By N-terminal or N- and C-terminal fusion of the ice nucleation protein, we successfully displayed the GMP kinase of Lactobacillus bulgaricus and the acetate kinase of E. coli on the surface of E. coli cells. A large amount of soluble target protein was obtained upon induction with 0.2 mM IPTG at 25 °C for 30 h. The conversion of dGMP was up to 91% when catalysed by the surface-displayed enzymes at 37 °C for 4 h. Up to 95% of the GMP was converted after 3 h of reaction. The stability of the whole-cell catalyst at 37 °C was very good. The enzyme activity was maintained above 50% after 9 rounds of recovery. Our research showed that only one-twentieth of the initial substrate concentration of added ATP was sufficient to meet the reaction requirements.


Assuntos
Acetato Quinase/metabolismo , Nucleotídeos de Desoxiguanina/biossíntese , Escherichia coli/enzimologia , Guanilato Quinases/metabolismo , Acetato Quinase/genética , Trifosfato de Adenosina/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Biocatálise , Nucleotídeos de Desoxiguanina/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Guanilato Quinases/genética , Lactobacillus delbrueckii/enzimologia , Lactobacillus delbrueckii/genética , Organofosfatos/metabolismo , Proteínas Recombinantes/metabolismo
6.
Sci Rep ; 7(1): 5912, 2017 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-28724909

RESUMO

Acetate kinase (ACK; E.C. 2.7.2.1), which catalyzes the interconversion of acetate and acetyl phosphate, is nearly ubiquitous in bacteria but is present only in one genus of archaea and certain eukaryotic microbes. All ACKs utilize ATP/ADP as the phosphoryl donor/acceptor in the respective directions of the reaction (acetate + ATP [Formula: see text] acetyl phosphate + ADP), with the exception of the Entamoeba histolytica ACK (EhACK) which uses pyrophosphate (PPi)/inorganic phosphate (Pi) (acetyl phosphate + Pi [Formula: see text] acetate + PPi). Structural analysis and modeling of EhACK indicated steric hindrance by active site residues constricts entry to the adenosine pocket as compared to ATP-utilizing Methanosarcina thermophila ACK (MtACK). Reciprocal alterations were made to enlarge the adenosine pocket of EhACK and reduce that of MtACK. The EhACK variants showed a step-wise increase in ADP and ATP binding but were still unable to use these as substrates, and enzymatic activity with Pi/PPi was negatively impacted. Consistent with this, ATP utilization by MtACK variants was negatively affected but the alterations were not sufficient to convert this enzyme to Pi/PPi utilization. Our results suggest that controlling access to the adenosine pocket can contribute to substrate specificity but is not the sole determinant.


Assuntos
Acetato Quinase/metabolismo , Trifosfato de Adenosina/farmacologia , Difosfatos/farmacologia , Entamoeba histolytica/enzimologia , Acetato Quinase/química , Adenosina/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Entamoeba histolytica/efeitos dos fármacos , Concentração Inibidora 50 , Cinética , Methanosarcina/enzimologia , Modelos Moleculares , Especificidade por Substrato/efeitos dos fármacos
7.
Appl Biochem Biotechnol ; 180(7): 1446-1455, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27380420

RESUMO

Glutathione (γ-glutamyl-L-cysteinylglycine, GSH) is a pharmaceutical compound often used in food additives and the cosmetics industry. GSH can be produced biologically from L-glutamic acid, L-cysteine, and glycine through an enzymatic process traditionally involving two sequential adenosine triphosphate (ATP)-dependent reactions catalyzed by γ-glutamylcysteine synthetase (γ-GCS or GSHI, EC 6.3.2.2) and GSH synthetase (GS or GSHII, EC 6.3.2.3). Here, we report the enzymatic production of GSH by recombinant cell-free bifunctional γ-glutamylcysteine synthetase/glutathione synthetase (γ-GCS-GS or GshF) coupled with in vitro acetate kinase-based ATP generation. GSH production by an acetate kinase-integrated Escherichia coli Rosetta(DE3) mutant expressing Streptococcus thermophilus GshF reached 18.3 ± 0.1 g l-1 (59.5 ± 0.3 mM) within 3 h, with a molar yield of 0.75 ± 0.00 mol mol-1 added cysteine and a productivity of 6.1 ± 0.0 g l-1 h-1. This is the highest GSH titer reported to date. This newly developed biocatalytic process offers a promising approach for meeting the industrial requirements for GSH production.


Assuntos
Acetato Quinase/metabolismo , Trifosfato de Adenosina/biossíntese , Biotecnologia/métodos , Dipeptídeos/metabolismo , Glutamato-Cisteína Ligase/metabolismo , Glutationa Sintase/metabolismo , Glutationa/biossíntese , Escherichia coli/metabolismo , Mutação/genética , Streptococcus/enzimologia
8.
J Proteome Res ; 15(4): 1205-12, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26975873

RESUMO

The phosphotransacetylase-acetate kinase (Pta-AckA) pathway is thought to be a vital ATP generating pathway for Staphylococcus aureus. Disruption of the Pta-AckA pathway during overflow metabolism causes significant reduction in growth rate and viability, albeit not due to intracellular ATP depletion. Here, we demonstrate that toxicity associated with inactivation of the Pta-AckA pathway resulted from an altered intracellular redox environment. Growth of the pta and ackA mutants under anaerobic conditions partially restored cell viability. NMR metabolomics analyses and (13)C6-glucose metabolism tracing experiments revealed the activity of multiple pathways that promote redox (NADH/NAD(+)) turnover to be enhanced in the pta and ackA mutants during anaerobic growth. Restoration of redox homeostasis in the pta mutant by overexpressing l- lactate dehydrogenase partially restored its viability under aerobic conditions. Together, our findings suggest that during overflow metabolism, the Pta-AckA pathway plays a critical role in preventing cell viability defects by promoting intracellular redox homeostasis.


Assuntos
Acetato Quinase/genética , Proteínas de Bactérias/genética , Regulação Bacteriana da Expressão Gênica , Metabolômica , Fosfato Acetiltransferase/genética , Staphylococcus aureus/genética , Acetato Quinase/deficiência , Trifosfato de Adenosina/biossíntese , Aerobiose , Anaerobiose , Proteínas de Bactérias/metabolismo , Isótopos de Carbono , Glucose/metabolismo , Homeostase , L-Lactato Desidrogenase/metabolismo , Espectroscopia de Ressonância Magnética , Viabilidade Microbiana , Mutação , NAD/metabolismo , Oxirredução , Fosfato Acetiltransferase/deficiência , Staphylococcus aureus/metabolismo
9.
Biochim Biophys Acta ; 1860(6): 1163-72, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26922831

RESUMO

BACKGROUND: Acetate is an end-product of the PPi-dependent fermentative glycolysis in Entamoeba histolytica; it is synthesized from acetyl-CoA by ADP-forming acetyl-CoA synthetase (ACS) with net ATP synthesis or from acetyl-phosphate by a unique PPi-forming acetate kinase (AcK). The relevance of these enzymes to the parasite ATP and PPi supply, respectively, are analyzed here. METHODS: The recombinant enzymes were kinetically characterized and their physiological roles were analyzed by transcriptional gene silencing and further metabolic analyses in amoebae. RESULTS: Recombinant ACS showed higher catalytic efficiencies (Vmax/Km) for acetate formation than for acetyl-CoA formation and high acetyl-CoA levels were found in trophozoites. Gradual ACS gene silencing (49-93%) significantly decreased the acetate flux without affecting the levels of glycolytic metabolites and ATP in trophozoites. However, amoebae lacking ACS activity were unable to reestablish the acetyl-CoA/CoA ratio after an oxidative stress challenge. Recombinant AcK showed activity only in the acetate formation direction; however, its substrate acetyl-phosphate was undetected in axenic parasites. AcK gene silencing did not affect acetate production in the parasites but promoted a slight decrease (10-20%) in the hexose phosphates and PPi levels. CONCLUSIONS: These results indicated that the main role of ACS in the parasite energy metabolism is not ATP production but to recycle CoA for glycolysis to proceed under aerobic conditions. AcK does not contribute to acetate production but might be marginally involved in PPi and hexosephosphate homeostasis. SIGNIFICANCE: The previous, long-standing hypothesis that these enzymes importantly contribute to ATP and PPi supply in amoebae can now be ruled out.


Assuntos
Acetato Quinase/fisiologia , Acetato-CoA Ligase/fisiologia , Difosfatos/metabolismo , Entamoeba histolytica/metabolismo , Acetato Quinase/genética , Acetato-CoA Ligase/genética , Acetatos/metabolismo , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Etanol/metabolismo , Glicólise
10.
Mol Microbiol ; 99(3): 497-511, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26448059

RESUMO

Salmonella enterica catabolizes ethanolamine inside a compartment known as the metabolosome. The ethanolamine utilization (eut) operon of this bacterium encodes all functions needed for the assembly and function of this structure. To date, the roles of EutQ and EutP were not known. Herein we show that both proteins have acetate kinase activity and that EutQ is required during anoxic growth of S. enterica on ethanolamine and tetrathionate. EutP and EutQ-dependent ATP synthesis occurred when enzymes were incubated with ADP, Mg(II) ions and acetyl-phosphate. EutQ and EutP also synthesized acetyl-phosphate from ATP and acetate. Although EutP had acetate kinase activity, ΔeutP strains lacked discernible phenotypes under the conditions where ΔeutQ strains displayed clear phenotypes. The kinetic parameters indicate that EutP is a faster enzyme than EutQ. Our evidence supports the conclusion that EutQ and EutP represent novel classes of acetate kinases. We propose that EutQ is necessary to drive flux through the pathway under physiological conditions, preventing a buildup of acetaldehyde. We also suggest that ATP generated by these enzymes may be used as a substrate for EutT, the ATP-dependent corrinoid adenosyltransferase and for the EutA ethanolamine ammonia-lyase reactivase.


Assuntos
Acetato Quinase/metabolismo , Proteínas de Bactérias/metabolismo , Etanolamina/metabolismo , Salmonella typhimurium/enzimologia , Acetato Quinase/química , Acetato Quinase/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Cinética , Salmonella typhimurium/genética , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/metabolismo
11.
J Microbiol Biotechnol ; 25(12): 2034-42, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26370798

RESUMO

A one-pot process of enzymatic synthesis of deoxythymidine-5'-triphosphate (5'-dTTP) employing whole cells of recombinant Escherichia coli coexpressing thymidylate kinase (TMKase) and acetate kinase (ACKase) was developed. Genes tmk and ack from E. coli were cloned and inserted into pET28a(+), and then transduced into E. coli BL21 (DE3) to form recombinant strain pTA in which TMKase and ACKase were simultaneously overexpressed. It was found that the relative residual specific activities of TMKase and ACKase, in pTA pretreated with 20 mM ethylene diamine tetraacetic acid (EDTA) at 25°C for 30 min, were 94% and 96%, respectively. The yield of 5'-dTTP reached above 94% from 5 mM deoxythymidine 5'-monophosphate (5'-dTMP) and 15 mM acetyl phosphate catalyzed with intact cells of pTA pretreated with EDTA. The process was so effective that only 0.125 mM adenosine-5'- triphosphate was sufficient to deliver the phosphate group from acetyl phosphate to dTMP and dTDP.


Assuntos
Acetato Quinase/metabolismo , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Engenharia Metabólica/métodos , Núcleosídeo-Fosfato Quinase/metabolismo , Nucleotídeos de Timina/metabolismo , Acetato Quinase/genética , Escherichia coli/genética , Expressão Gênica , Núcleosídeo-Fosfato Quinase/genética , Organofosfatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Temperatura , Timidina Monofosfato/metabolismo
12.
Appl Environ Microbiol ; 81(15): 5015-25, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25979891

RESUMO

In the dental caries pathogen Streptococcus mutans, phosphotransacetylase (Pta) catalyzes the conversion of acetyl coenzyme A (acetyl-CoA) to acetyl phosphate (AcP), which can be converted to acetate by acetate kinase (Ack), with the concomitant generation of ATP. A ΔackA mutant displayed enhanced accumulation of AcP under aerobic conditions, whereas little or no AcP was observed in the Δpta or Δpta ΔackA mutant. The Δpta and Δpta ΔackA mutants also had diminished ATP pools compared to the size of the ATP pool for the parental or ΔackA strain. Surprisingly, when exposed to oxidative stress, the Δpta ΔackA strain appeared to regain the capacity to produce AcP, with a concurrent increase in the size of the ATP pool compared to that for the parental strain. The ΔackA and Δpta ΔackA mutants exhibited enhanced (p)ppGpp accumulation, whereas the strain lacking Pta produced less (p)ppGpp than the wild-type strain. The ΔackA and Δpta ΔackA mutants displayed global changes in gene expression, as assessed by microarrays. All strains lacking Pta, which had defects in AcP production under aerobic conditions, were impaired in their abilities to form biofilms when glucose was the growth carbohydrate. Collectively, these data demonstrate the complex regulation of the Pta-Ack pathway and critical roles for these enzymes in processes that appear to be essential for the persistence and pathogenesis of S. mutans.


Assuntos
Acetato Quinase/metabolismo , Acetatos/metabolismo , Redes e Vias Metabólicas/genética , Fosfato Acetiltransferase/metabolismo , Streptococcus mutans/genética , Streptococcus mutans/metabolismo , Acetato Quinase/genética , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Aerobiose , Biofilmes/crescimento & desenvolvimento , Deleção de Genes , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Glucose/metabolismo , Análise em Microsséries , Dados de Sequência Molecular , Organofosfatos , Estresse Oxidativo , Fosfato Acetiltransferase/genética , Análise de Sequência de DNA , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/fisiologia
13.
Extremophiles ; 19(1): 207-20, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25316211

RESUMO

The genome of the Antarctic bacterium Pseudomonas extremaustralis was analyzed searching for genes involved in environmental adaptability focusing on anaerobic metabolism, osmoregulation, cold adaptation, exopolysaccharide production and degradation of complex compounds. Experimental evidences demonstrated the functionality of several of these pathways, including arginine and pyruvate fermentation, alginate production and growth under cold conditions. Phylogenetic analysis along with genomic island prediction allowed the detection of genes with probable foreign origin such as those coding for acetate kinase, osmotic resistance and colanic acid biosynthesis. These findings suggest that in P. extremaustralis the horizontal transfer events and/or gene redundancy could play a key role in the survival under unfavorable conditions. Comparative genome analysis of these traits in other representative Pseudomonas species highlighted several similarities and differences with this extremophile bacterium.


Assuntos
Adaptação Biológica/genética , Genoma Bacteriano , Pseudomonas/genética , Acetato Quinase/metabolismo , Adenosina Trifosfatases/química , Alginatos/química , Regiões Antárticas , Arginina/química , Temperatura Baixa , Biologia Computacional , Ácidos Cumáricos/química , Meio Ambiente , Fermentação , Osmose , Fenótipo , Filogenia , Polissacarídeos/química , Pseudomonas/fisiologia , Piruvatos/química , Análise de Sequência de DNA , Trealose/química
14.
Appl Environ Microbiol ; 80(24): 7574-82, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25261518

RESUMO

The metabolism of hydroxycinnamic acids by strictly heterofermentative lactic acid bacteria (19 strains) was investigated as a potential alternative energy route. Lactobacillus curvatus PE5 was the most tolerant to hydroxycinnamic acids, followed by strains of Weissella spp., Lactobacillus brevis, Lactobacillus fermentum, and Leuconostoc mesenteroides, for which the MIC values were the same. The highest sensitivity was found for Lactobacillus rossiae strains. During growth in MRS broth, lactic acid bacteria reduced caffeic, p-coumaric, and ferulic acids into dihydrocaffeic, phloretic, and dihydroferulic acids, respectively, or decarboxylated hydroxycinnamic acids into the corresponding vinyl derivatives and then reduced the latter compounds to ethyl compounds. Reductase activities mainly emerged, and the activities of selected strains were further investigated in chemically defined basal medium (CDM) under anaerobic conditions. The end products of carbon metabolism were quantified, as were the levels of intracellular ATP and the NAD(+)/NADH ratio. Electron and carbon balances and theoretical ATP/glucose yields were also estimated. When CDM was supplemented with hydroxycinnamic acids, the synthesis of ethanol decreased and the concentration of acetic acid increased. The levels of these metabolites reflected on the alcohol dehydrogenase and acetate kinase activities. Overall, some biochemical traits distinguished the common metabolism of strictly heterofermentative strains: main reductase activity toward hydroxycinnamic acids, a shift from alcohol dehydrogenase to acetate kinase activities, an increase in the NAD(+)/NADH ratio, and the accumulation of supplementary intracellular ATP. Taken together, the above-described metabolic responses suggest that strictly heterofermentative lactic acid bacteria mainly use hydroxycinnamic acids as external acceptors of electrons.


Assuntos
Ácidos Cumáricos/metabolismo , Metabolismo Energético , Lactobacillus/metabolismo , Weissella/metabolismo , Acetato Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Álcool Desidrogenase/metabolismo , Proteínas de Bactérias/metabolismo , Meios de Cultura/metabolismo , Transporte de Elétrons , Fermentação , Ácido Láctico/metabolismo , Lactobacillus/enzimologia , NAD/metabolismo , Weissella/enzimologia
15.
J Biosci Bioeng ; 118(5): 502-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24856051

RESUMO

Acetate kinase (AK) generally utilizes ATP as a phosphoryl donor, but AK from Entamoeba histolytica (PPi-ehiAK) uses pyrophosphate (PPi), not ATP, and is PPi-specific. The determinants of the phosphoryl donor specificity are unknown. Here, we inferred 5 candidate amino acid residues associated with this specificity, based on structural information. Each candidate residue in Escherichia coli ATP-specific AK (ATP-ecoAK), which is unable to use PPi, was substituted with the respective PPi-ehiAK amino acid residue. Each variant ATP-ecoAK had an increased Km for ATP, indicating that the 5 residues are the determinants for the specificity to ATP in ATP-ecoAK. Moreover, Asn-337 of ATP-ecoAK was shown to be particularly significant for the specificity to ATP. The 5 residues are highly conserved in 2625 PPi-ehiAK homologs, implying that almost all organisms have ATP-dependent, rather than PPi-dependent, AK.


Assuntos
Acetato Quinase/química , Acetato Quinase/metabolismo , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Acetato Quinase/genética , Acetato Quinase/isolamento & purificação , Sequência de Aminoácidos , Difosfatos/metabolismo , Entamoeba histolytica/enzimologia , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Especificidade por Substrato
16.
Mol Microbiol ; 92(2): 399-412, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24612454

RESUMO

While many studies have explored the growth of Pseudomonas aeruginosa, comparatively few have focused on its survival. Previously, we reported that endogenous phenazines support the anaerobic survival of P. aeruginosa, yet the physiological mechanism underpinning survival was unknown. Here, we demonstrate that phenazine redox cycling enables P. aeruginosa to oxidize glucose and pyruvate into acetate, which promotes survival by coupling acetate and ATP synthesis through the activity of acetate kinase. By measuring intracellular NAD(H) and ATP concentrations, we show that survival is correlated with ATP synthesis, which is tightly coupled to redox homeostasis during pyruvate fermentation but not during arginine fermentation. We also show that ATP hydrolysis is required to generate a proton-motive force using the ATP synthase complex during fermentation. Together, our results suggest that phenazines enable maintenance of the proton-motive force by promoting redox homeostasis and ATP synthesis. This work demonstrates the more general principle that extracellular redox-active molecules, such as phenazines, can broaden the metabolic versatility of microorganisms by facilitating energy generation.


Assuntos
Trifosfato de Adenosina/biossíntese , Metabolismo Energético , Viabilidade Microbiana , Fenazinas/metabolismo , Força Próton-Motriz , Pseudomonas aeruginosa/fisiologia , Acetato Quinase/metabolismo , Ácido Acético/metabolismo , Anaerobiose , Fermentação , Glucose/metabolismo , NAD/metabolismo , Oxirredução , Pseudomonas aeruginosa/metabolismo , Ácido Pirúvico/metabolismo
17.
World J Microbiol Biotechnol ; 30(3): 1123-8, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24165747

RESUMO

A process of glucose-6-phosphate (G-6-P) production coupled with an adenosine triphosphate (ATP) regeneration system was constructed that utilized acetyl phosphate (ACP) via acetate kinase (ACKase). The genes glk and ack from Escherichia coli K12 were amplified and cloned into pET-28a(+), then transformed into E. coli BL21 (DE3) and the recombinant strains were named pGLK and pACK respectively. Glucokinase (glkase) in pGLK and ACKase in pACK were both overexpressed in soluble form. G-6-P was efficiently produced from glucose and ACP using a very small amount of ATP. The conversion yield was greater than 97 % when the reaction solution containing 10 mM glucose, 20 mM ACP-Na2, 0.5 mM ATP, 5 mM Mg²âº, 50 mM potassium phosphate buffer (pH 7.0), 4.856 U glkase and 3.632 U ACKase were put into 37 °C water bath for 1 h.


Assuntos
Trifosfato de Adenosina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Glucoquinase/metabolismo , Glucose-6-Fosfato/metabolismo , Engenharia Metabólica , Acetato Quinase/genética , Acetato Quinase/metabolismo , Expressão Gênica , Glucose/metabolismo , Organofosfatos/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
18.
Metab Eng ; 14(5): 477-86, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22871504

RESUMO

An engineered Escherichia coli strain that produces 1-propanol under aerobic condition was developed based on an L-threonine-overproducing E. coli strain. First, a feedback resistant ilvA gene encoding threonine dehydratase was introduced and the competing metabolic pathway genes were deleted. Further engineering was performed by overexpressing the cimA gene encoding citramalate synthase and the ackA gene encoding acetate kinase A/propionate kinase II, introducing a modified adhE gene encoding an aerobically functional AdhE, and by deleting the rpoS gene encoding the stationary phase sigma factor. Fed-batch culture of the final engineered strain harboring pBRthrABC-tac-cimA-tac-ackA and pTacDA-tac-adhE(mut) allowed production of 10.8 g L(-1) of 1-propanol with the yield and productivity of 0.107 g g(-1) and 0.144 g L(-1) h(-1), respectively, from 100 g L(-1) of glucose, and 10.3 g L(-1) of 1-propanol with the yield and productivity of 0.259 g g(-1) and 0.083 g L(-1) h(-1), respectively, from 40 g L(-1) glycerol.


Assuntos
1-Propanol/metabolismo , Escherichia coli , Engenharia Metabólica , Acetato Quinase/genética , Acetato Quinase/metabolismo , Aerobiose , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Oxo-Ácido-Liases/genética , Oxo-Ácido-Liases/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/genética , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Treonina Desidratase/genética , Treonina Desidratase/metabolismo
19.
Rev. bras. hematol. hemoter ; 33(6): 455-460, Dec. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-611383

RESUMO

Tyrosine kinase inhibitors have changed the management and outcomes of chronic myeloid leukemia patients. Quantitative polymerase chain reaction is used to monitor molecular responses to tyrosine kinase inhibitors. Molecular monitoring represents the most sensitive tool to judge chronic myeloid leukemia disease course and allows early detection of relapse. Evidence of achieving molecular response is important for several reasons: 1. early molecular response is associated with major molecular response rates at 18-24 months; 2. patients achieving major molecular response are less likely to lose their complete cytogenetic response; 3. a durable, stable major molecular response is associated with increased progression-free survival. However, standardization of molecular techniques is still challenging.


Assuntos
Humanos , Acetato Quinase , Citogenética , Leucemia Mielogênica Crônica BCR-ABL Positiva , Monitoramento Ambiental , Mutação , Reação em Cadeia da Polimerase , Tirosina
20.
BMC Biochem ; 12: 36, 2011 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-21749731

RESUMO

BACKGROUND: The kinome comprises functionally diverse enzymes, with the current classification indicating very little about the extent of conserved regulatory mechanisms associated with phosphoryl transfer. The apparent Km of the kinases ranges from less than 0.4 µM to in excess of 1000 µM for ATP. It is not known how this diverse range of enzymes mechanistically achieves the regulation of catalysis via an affinity range for ATP varying by three-orders of magnitude. RESULTS: We have demonstrated a previously undiscovered mechanism in kinase and synthetase enzymes where the overall rate of reaction is regulated via the C8-H of ATP. Using ATP deuterated at the C8 position (C8D-ATP) as a molecular probe it was shown that the C8-H plays a direct role in the regulation of the overall rate of reaction in a range of kinase and synthetase enzymes. Using comparative studies on the effect of the concentration of ATP and C8D-ATP on the activity of the enzymes we demonstrated that not only did C8D-ATP give a kinetic isotope effect (KIE) but the KIE's obtained are clearly not secondary KIE effects as the magnitude of the KIE in all cases was at least 2 fold and in most cases in excess of 7 fold. CONCLUSIONS: Kinase and synthetase enzymes utilise C8D-ATP in preference to non-deuterated ATP. The KIE obtained at low ATP concentrations is clearly a primary KIE demonstrating strong evidence that the bond to the isotopically substituted hydrogen is being broken. The effect of the ATP concentration profile on the KIE was used to develop a model whereby the C8H of ATP plays a role in the overall regulation of phosphoryl transfer. This role of the C8H of ATP in the regulation of substrate binding appears to have been conserved in all kinase and synthetase enzymes as one of the mechanisms associated with binding of ATP. The induction of the C8H to be labile by active site residues coordinated to the ATP purine ring may play a significant role in explaining the broad range of Km associated with kinase enzymes.


Assuntos
Trifosfato de Adenosina/metabolismo , Ligases/metabolismo , Fosfotransferases/metabolismo , Acetato Quinase/metabolismo , Domínio Catalítico , Deutério , Hexoquinase/metabolismo , Fosfofrutoquinases/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Prótons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA