Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Cell Death Differ ; 31(4): 479-496, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38332049

RESUMO

The appropriate transcriptional activity of PPARγ is indispensable for controlling inflammation, tumor and obesity. Therefore, the identification of key switch that couples PPARγ activation with degradation to sustain its activity homeostasis is extremely important. Unexpectedly, we here show that acetyl-CoA synthetase short-chain family member 2 (ACSS2) critically controls PPARγ activity homeostasis via SIRT1 to enhance adipose plasticity via promoting white adipose tissues beiging and brown adipose tissues thermogenesis. Mechanistically, ACSS2 binds directly acetylated PPARγ in the presence of ligand and recruits SIRT1 and PRDM16 to activate UCP1 expression. In turn, SIRT1 triggers ACSS2 translocation from deacetylated PPARγ to P300 and thereafter induces PPARγ polyubiquitination and degradation. Interestingly, D-mannose rapidly activates ACSS2-PPARγ-UCP1 axis to resist high fat diet induced obesity in mice. We thus reveal a novel ACSS2 function in coupling PPARγ activation with degradation via SIRT1 and suggest D-mannose as a novel adipose plasticity regulator via ACSS2 to prevent obesity.


Assuntos
Homeostase , PPAR gama , Sirtuína 1 , Animais , PPAR gama/metabolismo , Camundongos , Sirtuína 1/metabolismo , Sirtuína 1/genética , Acetato-CoA Ligase/metabolismo , Acetato-CoA Ligase/genética , Camundongos Endogâmicos C57BL , Humanos , Obesidade/metabolismo , Obesidade/patologia , Fatores de Transcrição/metabolismo , Dieta Hiperlipídica , Masculino , Tecido Adiposo Marrom/metabolismo , Termogênese , Manose/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Tecido Adiposo Branco/metabolismo , Proteína Desacopladora 1/metabolismo , Proteína Desacopladora 1/genética , Tecido Adiposo/metabolismo
2.
Gastroenterology ; 163(5): 1281-1293.e1, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35777482

RESUMO

BACKGROUND & AIMS: Rapid deconditioning, also called cachexia, and metabolic reprogramming are two hallmarks of pancreatic cancer. Acetyl-coenzyme A synthetase short-chain family member 2 (ACSS2) is an acetyl-enzyme A synthetase that contributes to lipid synthesis and epigenetic reprogramming. However, the role of ACSS2 on the nonselective macropinocytosis and cancer cachexia in pancreatic cancer remains elusive. In this study, we demonstrate that ACSS2 potentiates macropinocytosis and muscle wasting through metabolic reprogramming in pancreatic cancer. METHODS: Clinical significance of ACSS2 was analyzed using samples from patients with pancreatic cancer. ACSS2-knockout cells were established using the clustered regularly interspaced short palindromic repeats-associated protein 9 system. Single-cell RNA sequencing data from genetically engineered mouse models was analyzed. The macropinocytotic index was evaluated by dextran uptake assay. Chromatin immunoprecipitation assay was performed to validate transcriptional activation. ACSS2-mediated tumor progression and muscle wasting were examined in orthotopic xenograft models. RESULTS: Metabolic stress induced ACSS2 expression, which is associated with worse prognosis in pancreatic cancer. ACSS2 knockout significantly suppressed cell proliferation in 2-dimensional and 3-dimensional models. Macropinocytosis-associated genes are upregulated in tumor tissues and are correlated with worse prognosis. ACSS2 knockout inhibited macropinocytosis. We identified Zrt- and Irt-like protein 4 (ZIP4) as a downstream target of ACSS2, and knockdown of ZIP4 reversed ACSS2-induced macropinocytosis. ACSS2 upregulated ZIP4 through ETV4-mediated transcriptional activation. ZIP4 induces macropinocytosis through cyclic adenosine monophosphate response element-binding protein-activated syndecan 1 (SDC1) and dynamin 2 (DNM2). Meanwhile, ZIP4 drives muscle wasting and cachexia via glycogen synthase kinase-ß (GSK3ß)-mediated secretion of tumor necrosis factor superfamily member 10 (TRAIL or TNFSF10). ACSS2 knockout attenuated muscle wasting and extended survival in orthotopic mouse models. CONCLUSIONS: ACSS2-mediated metabolic reprogramming activates the ZIP4 pathway, and promotes macropinocytosis via SDC1/DNM2 and drives muscle wasting through the GSK3ß/TRAIL axis, which potentially provides additional nutrients for macropinocytosis in pancreatic cancer.


Assuntos
Acetato-CoA Ligase , Caquexia , Neoplasias Pancreáticas , Animais , Humanos , Camundongos , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Monofosfato de Adenosina , Caquexia/genética , Linhagem Celular Tumoral , Dextranos , Dinamina II , Glicogênio Sintase Quinase 3 beta , Lipídeos , Músculos/metabolismo , Músculos/patologia , Neoplasias Pancreáticas/complicações , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Sindecana-1 , Fatores de Necrose Tumoral , Neoplasias Pancreáticas
3.
Br J Cancer ; 124(12): 1900-1901, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33767420

RESUMO

Recent advances in our understanding of tumour heterogeneity alongside studies investigating altered metabolism within transformed tissue have identified metabolic pathways critical to cancer cell survival. Leveraging this information presents a promising new avenue for the generation of cancer-specific therapeutics and improved patient outcomes.


Assuntos
Acetato-CoA Ligase/antagonistas & inibidores , Acetatos/metabolismo , Inibidores Enzimáticos/uso terapêutico , Neoplasias/tratamento farmacológico , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Inibidores Enzimáticos/farmacologia , Humanos , Redes e Vias Metabólicas/efeitos dos fármacos , Camundongos , Terapia de Alvo Molecular/métodos , Terapia de Alvo Molecular/tendências , Neoplasias/metabolismo , Neoplasias/mortalidade , Neoplasias/patologia , Resultado do Tratamento
4.
J Cell Physiol ; 236(10): 6948-6962, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33682931

RESUMO

ACSS1/2 converts acetate into acetyl-coenzyme A, which contributes to histone acetylation in the mitochondria and cytoplasm. Zygotic genome activation (ZGA) is critical for embryo development involving drastic histone modification. An efficient crRNAs-Cas13a targeting strategy was employed to investigate the ACSS1/2 function during ZGA. The results showed that nuclear accumulation of ACSS1 and ACSS2 occurs during ZGA. Knockdown of ACSS1/2 did not affect blastocyst formation when using a normal medium. On culturing embryos in a medium with acetate and no pyruvate (-P + Ace), knockdown of ACSS1 did not affect histone acetylation levels but significantly reduced ATP levels, whereas knockdown of ACSS2 significantly reduced histone acetylation levels in porcine embryos. Inhibition of fatty acid beta-oxidation by etomoxir significantly reduced ATP levels, which could be restored by acetate. The histone acetylation levels in the ACSS1 and ACSS2 knockdown groups both decreased considerably after etomoxir treatment. Moreover, acetate showed dose-dependent effects on SIRT1 and SIRT3 levels when under metabolic stress. The C-terminus of ACSS1 regulated the nuclear translocation. In conclusion, ACSS1/2 helps to maintain ATP and histone acetylation levels in porcine early embryos under metabolic stress during ZGA.


Assuntos
Acetato-CoA Ligase/metabolismo , Acetatos/metabolismo , Acetilcoenzima A/metabolismo , Metabolismo Energético , Regulação da Expressão Gênica no Desenvolvimento , Histonas/metabolismo , Processamento de Proteína Pós-Traducional , Zigoto/enzimologia , Acetato-CoA Ligase/genética , Acetilação , Trifosfato de Adenosina/metabolismo , Animais , Técnicas de Cultura Embrionária , Partenogênese , Sirtuína 1/metabolismo , Sirtuína 3/metabolismo , Sus scrofa
5.
Cancer Res ; 81(5): 1252-1264, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33414169

RESUMO

Acetyl-CoA is a vitally important and versatile metabolite used for many cellular processes including fatty acid synthesis, ATP production, and protein acetylation. Recent studies have shown that cancer cells upregulate acetyl-CoA synthetase 2 (ACSS2), an enzyme that converts acetate to acetyl-CoA, in response to stresses such as low nutrient availability and hypoxia. Stressed cancer cells use ACSS2 as a means to exploit acetate as an alternative nutrient source. Genetic depletion of ACSS2 in tumors inhibits the growth of a wide variety of cancers. However, there are no studies on the use of an ACSS2 inhibitor to block tumor growth. In this study, we synthesized a small-molecule inhibitor that acts as a transition-state mimetic to block ACSS2 activity in vitro and in vivo. Pharmacologic inhibition of ACSS2 as a single agent impaired breast tumor growth. Collectively, our findings suggest that targeting ACSS2 may be an effective therapeutic approach for the treatment of patients with breast cancer. SIGNIFICANCE: These findings suggest that targeting acetate metabolism through ACSS2 inhibitors has the potential to safely and effectively treat a wide range of patients with cancer.


Assuntos
Acetato-CoA Ligase/antagonistas & inibidores , Antineoplásicos/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Animais , Antineoplásicos/química , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Estabilidade de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Ácidos Graxos/metabolismo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos Endogâmicos , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular/métodos , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Cell Metab ; 33(1): 78-93.e7, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33406405

RESUMO

Obesity is often linked to malignancies including multiple myeloma, and the underlying mechanisms remain elusive. Here we showed that acetyl-CoA synthetase 2 (ACSS2) may be an important linker in obesity-related myeloma. ACSS2 is overexpressed in myeloma cells derived from obese patients and contributes to myeloma progression. We identified adipocyte-secreted angiotensin II as a direct cause of adiposity in increased ACSS2 expression. ACSS2 interacts with oncoprotein interferon regulatory factor 4 (IRF4), and enhances IRF4 stability and IRF4-mediated gene transcription through activation of acetylation. The importance of ACSS2 overexpression in myeloma is confirmed by the finding that an inhibitor of ACSS2 reduces myeloma growth both in vitro and in a diet-induced obese mouse model. Our findings demonstrate a key impact for obesity-induced ACSS2 on the progression of myeloma. Given the central role of ACSS2 in many tumors, this mechanism could be important to other obesity-related malignancies.


Assuntos
Acetato-CoA Ligase/genética , Mieloma Múltiplo/genética , Obesidade/genética , Acetato-CoA Ligase/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Obesidade/metabolismo
7.
Biochem J ; 477(16): 3075-3089, 2020 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-32776152

RESUMO

Alcohol drinking is a leading risk factor for the development of esophageal squamous cell carcinoma (ESCC). However, the molecular mechanisms of alcohol-associated ESCC remain poorly understood. One of the most commonly mutated genes in ESCC is nuclear factor erythroid 2 like 2 (NFE2L2 or NRF2), which is a critical transcription factor regulating oxidative stress response and drug detoxification. When NRF2 is hyperactive in cancer cells, however, it leads to metabolic reprogramming, cell proliferation, chemoradioresistance, and poor prognosis. In this study, hyperactive NRF2 was found to up-regulate acetyl-CoA synthetase short-chain family members 2 (ACSS2), an enzyme that converts acetate to acetyl-CoA, in ESCC cells and mouse esophagus. We also showed that knockdown of NRF2 or ACSS2 led to decreased ACSS2 expression, which in turn reduced the levels of acetyl-CoA and ATP with or without ethanol exposure. In addition, ethanol exposure enhanced lipid synthesis in ESCC cells. Moreover, we observed a change in the metabolic profile of ESCC cells exposed to ethanol as a result of their NRF2 or ACSS2 status. We further showed that ACSS2 contributed to the invasive capability of NRF2high ESCC cells exposed to ethanol. In conclusion, the NRF2/ACSS2 axis mediates the metabolic effect of alcohol drinking on ESCC.


Assuntos
Acetato-CoA Ligase/metabolismo , Consumo de Bebidas Alcoólicas/efeitos adversos , Reprogramação Celular , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Lipogênese , Fator 2 Relacionado a NF-E2/metabolismo , Acetato-CoA Ligase/genética , Animais , Proliferação de Células , Neoplasias Esofágicas/etiologia , Neoplasias Esofágicas/metabolismo , Carcinoma de Células Escamosas do Esôfago/etiologia , Carcinoma de Células Escamosas do Esôfago/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Camundongos Knockout , Fator 2 Relacionado a NF-E2/genética
8.
Biosci Rep ; 40(6)2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32458971

RESUMO

Metastasis is the main cause of cancer-associated deaths, yet this complex process is still not well understood. Many studies have shown that acetate is involved in cancer metastasis, but the molecular mechanisms remain to be elucidated. In the present study, we first measured the effect of acetate on zinc finger transcriptional repressor SNAI1 and acetyl-CoA synthetase 2 (ACSS2) under glucose limitation in renal cell carcinoma cell lines, 786-O and ACHN. Then, RNA interference and overexpression of ACSS2 were used to detect the role of acetate on SNAI1 expression and cell migration. Finally, chromatin immunoprecipitation assay (ChIP) was used to investigate the regulatory mechanism of acetate on SNAI1 expression. The results showed that acetate increased the expressions of SNAI1 and ACSS2 under glucose limitation. ACSS2 knockdown significantly decreased acetate-induced SNAI1 expression and cell migration, whereas overexpression of ACSS2 increased SNAI1 level and histone H3K27 acetylation (H3K27ac). ChIP results revealed that acetate increased H3K27ac levels in regulatory region of SNAI1, but did not increase ACSS2-binding ability. Our study identified a novel inducer, acetate, which can promote SNAI1 expression by ACSS2-mediated histone acetylation in partly. This finding has important implication in treatment of metastatic cancers.


Assuntos
Acetato-CoA Ligase/metabolismo , Acetatos/toxicidade , Antineoplásicos/toxicidade , Carcinoma de Células Renais/enzimologia , Glucose/deficiência , Histonas/metabolismo , Neoplasias Renais/enzimologia , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Fatores de Transcrição da Família Snail/metabolismo , Acetato-CoA Ligase/genética , Acetatos/metabolismo , Acetilação , Antineoplásicos/metabolismo , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/secundário , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Renais/genética , Neoplasias Renais/patologia , Invasividade Neoplásica , Transdução de Sinais , Fatores de Transcrição da Família Snail/genética
9.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 35(10): 926-931, 2019 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-31814569

RESUMO

Objective To investigate the effect of acetyl coenzyme A synthase 2 (ACSS2) on the migration and invasion induced by nutrient stress (NS) in cervical cancer cells. Methods Immunohistochemistry was used to detect the expression and distribution of ACSS2 protein in 20 pairs of cervical tumors and their adjacent normal tissues. Cervical cancer HeLa cells and the normal cervical epithelial HCvEpC cells were cultured, and serum content in culture medium was reduced from 100 to 10 mL/L as NS treatment. Western blot analysis was performed to detect the expression of ACSS2, GSK-3ß, p-GSK-3ß, ß-catenin, ß-actin, E-cadherin, vimentin. Small interfering RNA (siRNA) was used to down-regulate the expression of ACSS2. Cell migration was assessed by wound healing test, and cell invasion was tested by TranswellTM assay. Results The expression level of ACSS2 in 20 cervical tumors was significantly higher as compared with the adjacent normal tissues. The levels of ACSS2 in HeLa cells could be significantly up-regulated by NS, while no marked change was seen in HCvEpC cells. The treatment of NS promoted the epithelial mesenchymal transformation (EMT) of HeLa cells, which could be effectively reversed by siRNA-ACSS2. The scratch results showed that NS increased the healing rate of HeLa cells, which could be blocked by ACSS2 silencing. Coincidently, the number of invasive cells was elevated after NS treatment, which could be partly reversed by siRNA-ACSS2. The expression of ACSS2, p-GSK-3ß and nuclear ß-catenin was up-regulated in HeLa cells treated with NS for 48 hours, while siRNA-ACSS2 down-regulated their expression. Conclusion Silencing ACSS2 expression inhibits migration and invasion of cervical cancer cells induced by NS, which is related to down-regulated Wnt/ß-catenin signaling pathway activity.


Assuntos
Acetato-CoA Ligase/genética , Inativação Gênica , Neoplasias do Colo do Útero/patologia , Via de Sinalização Wnt , Movimento Celular , Proliferação de Células , Meios de Cultura , Transição Epitelial-Mesenquimal , Feminino , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Invasividade Neoplásica , Neoplasias do Colo do Útero/genética
10.
PLoS One ; 14(11): e0225105, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31725783

RESUMO

The response to environmental stresses by eukaryotic organisms includes activation of protective biological mechanisms, orchestrated in part by transcriptional regulators. The tri-member Hypoxia Inducible Factor (HIF) family of DNA-binding transcription factors include HIF-2, which is activated under conditions of oxygen or glucose deprivation. Although oxygen-dependent protein degradation is a key mechanism by which HIF-1 and HIF-2 activity is regulated, HIF-2 is also influenced substantially by the coupled action of acetylation and deacetylation. The acetylation/deacetylation process that HIF-2 undergoes employs a specific acetyltransferase and deacetylase. Likewise, the supply of the acetyl donor, acetyl CoA, used for HIF-2 acetylation originates from a specific acetyl CoA generator, acetate-dependent acetyl CoA synthetase 2 (Acss2). Although Acss2 is predominantly cytosolic, a subset of the Acss2 cellular pool is enriched in the nucleus following oxygen or glucose deprivation. Prevention of nuclear localization by a directed mutation in a putative nuclear localization signal in Acss2 abrogates HIF-2 acetylation and blunts HIF-2 dependent signaling as well as flank tumor growth for knockdown/rescue cancer cells expressing ectopic Acss2. In this study, we report generation of a novel mouse strain using CRISPR/Cas9 mutagenesis that express this mutant Acss2 allele in the mouse germline. The homozygous mutant mice have impaired induction of the canonical HIF-2 target gene erythropoietin and blunted recovery from acute anemia. Surprisingly, Acss2 protein levels are dramatically reduced in these mutant mice. Functional studies investigating the basis for this phenotype reveal multiple protein instability domains in the Acss2 carboxy terminus. The findings described herein may be of relevance in the regulation of native Acss2 protein as well as for humans carrying missense mutations in these domains.


Assuntos
Acetato-CoA Ligase/química , Acetato-CoA Ligase/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sequência Conservada , Mutação , Domínios e Motivos de Interação entre Proteínas , Transdução de Sinais , Sequência de Aminoácidos , Animais , Genes Reporter , Genótipo , Humanos , Camundongos , Estabilidade Proteica
11.
DNA Cell Biol ; 38(12): 1540-1556, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31730405

RESUMO

Abdominal aortic aneurysm (AAA) is a lethal vascular degenerative disease for the elderly, but current therapeutic options are limited. This study was to explore the molecular mechanisms of AAA to screen underlying treatment targets for AAA. The gene and microRNA (miRNA) expression profiles of human AAA were downloaded from Gene Expression Omnibus database under accession number GSE57691, GSE62179, and GSE63541. Differentially expressed genes (DEGs) and microRNAs (miRNAs; DEMs) were identified using the Linear Models for Microarray data method. Protein-protein interaction (PPI) network, module analysis, and miRNA-mRNA regulatory network analyses were performed to screen hub genes and miRNAs that regulated the hub genes. The Database for Annotation, Visualization and Integrated Discovery was used to predict the functions of genes. GEPIA and Tumor-miRNA-Pathway online software were used to validate the expressions of crucial DEMs and DEGs in other cancers, respectively. As a result, in the GSE57691 dataset, a total of 584 DEGs were found to be specific for AAA, 521 of which were used for constructing the PPI network. ACSS2 (acyl-CoA synthetase short-chain family member 2), GNG2 (G protein subunit gamma 2), and CXCL1 (C-X-C motif chemokine ligand 1) and CCR7 (C-C motif chemokine receptor 7) were believed to be hub genes by calculating their topological features in the PPI network. Upregulated GNG2 could interact with CXCL1 and CCR7 to involve in chemokine signaling pathway, while downregulated ACSS2 was associated with lipid biosynthetic process. In the miRNA-mRNA regulatory network, ACSS2 was found to be regulated by hsa-miR-15b; hsa-miR-30a could modulate the expression of GNG2. In line with our analysis in AAA, GNG2, ACSS2, hsa-miR-30a, and hsa-miR-15b were also confirmed to be significantly upregulated or downregulated in several cancer types. In conclusion, hsa-miR-30a-GNG2 and hsa-miR-15b-ACSS2 interaction pairs may represent novel mechanisms for explaining the pathogenesis of AAA. Targeted regulation of them may be potential strategies for treatment of AAA.


Assuntos
Acetato-CoA Ligase/metabolismo , Aneurisma da Aorta Abdominal/etiologia , Proteínas de Ligação ao GTP/metabolismo , Regulação Neoplásica da Expressão Gênica , Inflamação/complicações , MicroRNAs/genética , Acetato-CoA Ligase/genética , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Biomarcadores Tumorais/genética , Biologia Computacional , Proteínas de Ligação ao GTP/genética , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Inflamação/genética , Mapas de Interação de Proteínas
12.
Int J Mol Sci ; 20(11)2019 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-31185659

RESUMO

Ganoderic acids (GAs) are a type of highly oxygenated lanostane-type triterpenoids that are responsible for the pharmacological activities of Ganoderma lucidum. They have been investigated for their biological activities, including antibacterial, antiviral, antitumor, anti-HIV-1, antioxidation, and cholesterol reduction functions. Inducer supplementation is viewed as a promising technology for the production of GAs. This study found that supplementation with sodium acetate (4 mM) significantly increased the GAs content of fruiting bodies by 28.63% compared to the control. In order to explore the mechanism of ganoderic acid accumulation, the transcriptional responses of key GAs biosynthetic genes, including the acetyl coenzyme A synthase gene, and the expression levels of genes involved in calcineurin signaling and acetyl-CoA content have been analyzed. The results showed that the expression of three key GAs biosynthetic genes (hmgs, fps, and sqs) were significantly up-regulated. Analysis indicated that the acetate ion increased the expression of genes related to acetic acid assimilation and increased GAs biosynthesis, thereby resulting in the accumulation of GAs. Further investigation of the expression levels of genes involved in calcineurin signaling revealed that Na+ supplementation and the consequent exchange of Na+/Ca2+ induced GAs biosynthesis. Overall, this study indicates a feasible new approach of utilizing sodium acetate elicitation for the enhanced production of valuable GAs content in G. lucidum, and also provided the primary mechanism of GAs accumulation.


Assuntos
Carpóforos/metabolismo , Regulação Fúngica da Expressão Gênica , Reishi/metabolismo , Triterpenos/metabolismo , Acetato-CoA Ligase/genética , Acetato-CoA Ligase/metabolismo , Calcineurina/genética , Calcineurina/metabolismo , Cálcio/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reishi/genética , Sódio/metabolismo , Regulação para Cima
13.
Biochem Biophys Res Commun ; 514(3): 632-638, 2019 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-31076106

RESUMO

Acetyl-CoA synthetase 2 (ACSS2) generates acetyl-CoA from acetate is important for histone acetylation and gene expression. ACSS2 fulfills distinct functions depending on its cellular location in tumor cells. The role and cellular localization of ACSS2 in hepatocellular carcinoma (HCC) remains to be studied. Herein, we identified that the alternative transcription start site selection of ACSS2 was significantly different between HCC and corresponding adjacent tissues. Alternative transcription start site selection produced two different ACSS2 transcripts, ACSS2-S1 and ACSS2-S2. The two isoforms of ACSS2 had different subcellular localization and different functions. Overexpression of ACSS2-S2 promoted cell proliferation and invasion, but ACSS2-S1 did not. The ACSS2-S1 was mainly present in cytoplasm, and ACSS2-S2 was distributed in both nucleus and cytoplasm. Finally, we demonstrated that alternative transcription start site selection of ACSS2 correlates ribosome biogenesis in HCC. Our findings reveal an oncogenic role of ACSS2-S2 in HCC progression via increase of ribosome biogenesis, and suggest ACSS2-S2 might be a potential therapeutic target against the HCC.


Assuntos
Acetato-CoA Ligase/genética , Carcinoma Hepatocelular/metabolismo , Núcleo Celular/metabolismo , Neoplasias Hepáticas/metabolismo , Ribossomos/metabolismo , Sítio de Iniciação de Transcrição , Acetato-CoA Ligase/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Invasividade Neoplásica , Prognóstico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ribossomos/genética
14.
Proc Natl Acad Sci U S A ; 115(40): E9499-E9506, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30228117

RESUMO

Acetyl-CoA synthetase 2 (ACSS2) is a conserved nucleocytosolic enzyme that converts acetate to acetyl-CoA. Adult mice lacking ACSS2 appear phenotypically normal but exhibit reduced tumor burdens in mouse models of liver cancer. The normal physiological functions of this alternate pathway of acetyl-CoA synthesis remain unclear, however. Here, we reveal that mice lacking ACSS2 exhibit a significant reduction in body weight and hepatic steatosis in a diet-induced obesity model. ACSS2 deficiency reduces dietary lipid absorption by the intestine and also perturbs repartitioning and utilization of triglycerides from adipose tissue to the liver due to lowered expression of lipid transporters and fatty acid oxidation genes. In this manner, ACSS2 promotes the systemic storage or metabolism of fat according to the fed or fasted state through the selective regulation of genes involved in lipid metabolism. Thus, targeting ACSS2 may offer a therapeutic benefit for the treatment of fatty liver disease.


Assuntos
Acetato-CoA Ligase/metabolismo , Tecido Adiposo/metabolismo , Fígado Gorduroso/metabolismo , Regulação da Expressão Gênica , Metabolismo dos Lipídeos , Fígado/metabolismo , Acetato-CoA Ligase/genética , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Tecido Adiposo/patologia , Animais , Fígado Gorduroso/genética , Fígado Gorduroso/patologia , Fígado/patologia , Camundongos , Camundongos Knockout
15.
Metabolism ; 88: 12-21, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30172756

RESUMO

OBJECTIVE: The expansion capacity of white adipose tissue influences the distribution of fat depots in the body, the visceral accumulation of which is linked to metabolic syndrome, regardless of the degree of obesity of the subjects. Alterations in the adipose tissue-derived mesenchymal stem cells (ASCs) may contribute to the adipose tissue remodeling associated with metabolic syndrome and impact the regional distribution of adipose tissue by generating inherently dysfunctional adipocytes. Here we examine the expression levels of acetyl-CoA-producing enzymes and their relationship with the lipogenic, antioxidant and oxidative potential of adipocytes generated from visceral ASCs (adipo-visASCs) and subcutaneous ASCs (adipo-subASCs) from subjects with different metabolic profiles. MATERIALS/METHODS: Paired samples of visceral and subcutaneous adipose tissue were processed to isolate the respective ASCs from normal-weight (Nw) subjects and obese patients with metabolic syndrome (METS) and without METS (NonMETS). qPCR was used to quantify the expression levels of the genes studied in both adipo-ASCs from the patient groups and those generated after silencing by small interfering RNA of acetyl-CoA-producing enzymes. The accumulation of lipids was quantified by absorbance. RESULTS: No significant differences in cell yield or CD34+CD31-CD45- ASC percentage were observed between the different patient groups. Unlike adipo-visASCs, adipo-subASCs from METS patients showed a decrease in expression levels of acetyl-CoA-producing enzymes as well as proteins linked to lipogenesis, antioxidant defense and fatty acid oxidation. Transcriptional silencing of acetyl-CoA-producing enzymes in adipo-subASCs reduced lipid accumulation and affected transcription levels of lipogenic and antioxidant defense proteins. CONCLUSIONS: Adipo-subASCs may be more susceptible than adipo-visASCs to deterioration of the lipogenic, oxidative and antioxidant potential associated with metabolic syndrome. Intrinsic alterations in transcription levels of acetyl-CoA-producing enzymes may contribute to the metabolic reprogramming of adipo-subASCs from METS patients.


Assuntos
Acetilcoenzima A/biossíntese , Células-Tronco Mesenquimais/patologia , Síndrome Metabólica/enzimologia , Síndrome Metabólica/patologia , ATP Citrato (pro-S)-Liase/genética , Acetato-CoA Ligase/genética , Adulto , Antioxidantes/metabolismo , Carboxiliases/genética , Feminino , Inativação Gênica , Humanos , Lipogênese , Masculino , Células-Tronco Mesenquimais/metabolismo , Síndrome Metabólica/genética , Pessoa de Meia-Idade , Oxirredução , Transcrição Gênica
16.
Cell Physiol Biochem ; 45(3): 984-992, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29444517

RESUMO

BACKGROUND/AIMS: Reprogramming energy metabolism is an emerging hallmark of many cancers, and this alteration is especially evident in renal cell carcinomas (RCCs). However, few studies have been conducted on lipid metabolism. This study investigated the function and mechanism of lipid metabolism-related acetyl-CoA synthetase 2 (ACSS2) in RCC development, cell migration and invasion. METHODS: Quantitative real-time PCR (qRT-PCR) was used to determine the expression of ACSS2 in cancer tissue and adjacent tissue. The inhibition of ACSS2 expression was achieved by RNA interference, which was confirmed by qRT-PCR and Western blotting. Cell proliferation and apoptosis were detected by a CCK8 assay and a flow cytometry analysis, respectively. Cell migration and invasion were determined by the scratch and transwell assays. Following the knockdown of ACSS2 expression, the expression of the autophagy-related factor LAMP1 was measured by qRT-PCR and Western blotting. RESULTS: Compared to adjacent tissues, ACSS2 expression was upregulated in RCC cancer tissues and positively correlated with metastasis. Inhibition of ACSS2 had no effect on RCC cell proliferation or apoptosis. However, decreased ACSS2 expression was found to inhibit RCC cell migration and invasion. ACSS2 was determined to promote the expression of LAMP1, which can also promote cell migration. This pathway may be considered a potential mechanism through which ACSS2 participates in RCC development. CONCLUSION: These data suggest that ACSS2 is an important factor for promoting RCC development and is essential for cell migration and invasion, which it promotes by increasing the expression of LAMP1. Taken together, these findings reveal a potential target for the diagnosis and treatment of RCC.


Assuntos
Acetato-CoA Ligase/metabolismo , Carcinoma de Células Renais/patologia , Neoplasias Renais/patologia , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Acetato-CoA Ligase/antagonistas & inibidores , Acetato-CoA Ligase/genética , Carcinoma de Células Renais/metabolismo , Linhagem Celular Tumoral , Movimento Celular , Humanos , Neoplasias Renais/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/antagonistas & inibidores , Proteína 1 de Membrana Associada ao Lisossomo/genética , Metástase Neoplásica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Regulação para Cima
17.
J Cell Physiol ; 233(2): 1005-1016, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28407230

RESUMO

Sterol regulatory element binding protein 1 (SREBP-1) is well-known as the master regulator of lipogenesis in rodents. Acyl-CoA synthetase short-chain family member 2 (ACSS2) plays a key role in lipogenesis by synthesizing acetyl-CoA from acetate for lipogenesis. ATP citrate lyase (ACLY) catalyzes the conversion of citrate and coenzyme A to acetyl-CoA, hence, it is also important for lipogenesis. Although ACSS2 function in cancer cells has been elucidated, its essentiality in ruminant mammary lipogenesis is unknown. Furthermore, ACSS2 gene promoter and its regulatory mechanisms have not known. Expression of ACSS2 was high in lipid synthesizing tissues, and its expression increased during lactation compared with non-lactating period. Simultaneous knockdown of both ACSS2 and ACLY by siRNA in primary goat mammary epithelial cells decreased (p < 0.05) the mRNA abundance of genes associated with de novo fatty acid synthesis (FASN, ACACA, SCD1) and triacylglycerol (TAG) synthesis (DGAT1, DGAT2, GPAM, and AGPAT6). Genes responsible for lipid droplet formation and secretion (PLIN2 and PLIN3) and fatty acid oxidation (ATGL, HSL, ACOX, and CPT1A) all decreased (p < 0.05) after ACSS2 and ACLY knockdown. Total cellular TAG content and lipid droplet formation also decreased. Use of a luciferase reporter assay revealed a direct regulation of ACSS2 by SREBP-1. Furthermore, SREBP-1 interacted with an SRE (SREBP response element) spanning at -475 to -483 bp on the ACSS2 promoter. Taken together, our results revealed a novel pathway that SREBP-1 may regulate fatty acid and TAG synthesis by regulating the expression of ACSS2.


Assuntos
Acetato-CoA Ligase/metabolismo , Células Epiteliais/enzimologia , Ácidos Graxos/biossíntese , Lactação , Glândulas Mamárias Animais/enzimologia , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Acetato-CoA Ligase/genética , Animais , Células Cultivadas , Feminino , Regulação Enzimológica da Expressão Gênica , Cabras , Gotículas Lipídicas/metabolismo , Lipogênese/genética , Glândulas Mamárias Animais/citologia , Mutagênese Sítio-Dirigida , Mutação , Regiões Promotoras Genéticas , Interferência de RNA , Elemento de Resposta Sérica , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Transfecção , Triglicerídeos/biossíntese
18.
Mol Microbiol ; 107(4): 577-594, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29266439

RESUMO

Protein acetylation is a rapid mechanism for control of protein function. Acetyl-CoA synthetase (AMP-forming, Acs) is the paradigm for the control of metabolic enzymes by lysine acetylation. In many bacteria, type I or II protein acetyltransferases acetylate Acs, however, in actinomycetes type III protein acetyltransferases control the activity of Acs. We measured changes in the activity of the Streptomyces lividans Acs (SlAcs) enzyme upon acetylation by PatB using in vitro and in vivo analyses. In addition to the acetylation of residue K610, residue S608 within the acetylation motif of SlAcs was also acetylated (PKTRSGK610 ). S608 acetylation rendered SlAcs inactive and non-acetylatable by PatB. It is unclear whether acetylation of S608 is enzymatic, but it was clear that this modification occurred in vivo in Streptomyces. In S. lividans, an NAD+ -dependent sirtuin deacetylase from Streptomyces, SrtA (a homologue of the human SIRT4 protein) was needed to maintain SlAcs function in vivo. We have characterized a sirtuin-dependent reversible lysine acetylation system in Streptomyces lividans that targets and controls the Acs enzyme of this bacterium. These studies raise questions about acetyltransferase specificity, and describe the first Acs enzyme in any organism whose activity is modulated by O-Ser and Nɛ -Lys acetylation.


Assuntos
Acetato-CoA Ligase/metabolismo , Acetilcoenzima A/metabolismo , Lisina/metabolismo , Serina/metabolismo , Streptomyces lividans/enzimologia , Acetato-CoA Ligase/genética , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , DNA Bacteriano/genética , Deleção de Genes , Histona Desacetilases do Grupo III/genética , Histona Desacetilases do Grupo III/metabolismo , NAD/metabolismo , Streptomyces lividans/genética
19.
Mol Cell ; 66(5): 684-697.e9, 2017 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-28552616

RESUMO

Overcoming metabolic stress is a critical step in tumor growth. Acetyl coenzyme A (acetyl-CoA) generated from glucose and acetate uptake is important for histone acetylation and gene expression. However, how acetyl-CoA is produced under nutritional stress is unclear. We demonstrate here that glucose deprivation results in AMP-activated protein kinase (AMPK)-mediated acetyl-CoA synthetase 2 (ACSS2) phosphorylation at S659, which exposed the nuclear localization signal of ACSS2 for importin α5 binding and nuclear translocation. In the nucleus, ACSS2 binds to transcription factor EB and translocates to lysosomal and autophagy gene promoter regions, where ACSS2 incorporates acetate generated from histone acetylation turnover to locally produce acetyl-CoA for histone H3 acetylation in these regions and promote lysosomal biogenesis, autophagy, cell survival, and brain tumorigenesis. In addition, ACSS2 S659 phosphorylation positively correlates with AMPK activity in glioma specimens and grades of glioma malignancy. These results underscore the significance of nuclear ACSS2-mediated histone acetylation in maintaining cell homeostasis and tumor development.


Assuntos
Acetato-CoA Ligase/metabolismo , Autofagia , Neoplasias Encefálicas/enzimologia , Núcleo Celular/enzimologia , Glioblastoma/enzimologia , Histonas/metabolismo , Lisossomos/metabolismo , Biogênese de Organelas , Transcrição Gênica , Proteínas Quinases Ativadas por AMP/metabolismo , Acetato-CoA Ligase/genética , Acetilcoenzima A/metabolismo , Acetilação , Transporte Ativo do Núcleo Celular , Animais , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Sítios de Ligação , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Núcleo Celular/patologia , Sobrevivência Celular , Metabolismo Energético , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosforilação , Regiões Promotoras Genéticas , Ligação Proteica , Processamento de Proteína Pós-Traducional , Interferência de RNA , Estresse Fisiológico , Transfecção , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
20.
Proc Natl Acad Sci U S A ; 114(8): E1528-E1535, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28167750

RESUMO

Recent studies have shown that human cytomegalovirus (HCMV) can induce a robust increase in lipid synthesis which is critical for the success of infection. In mammalian cells the central precursor for lipid biosynthesis, cytosolic acetyl CoA (Ac-CoA), is produced by ATP-citrate lyase (ACLY) from mitochondria-derived citrate or by acetyl-CoA synthetase short-chain family member 2 (ACSS2) from acetate. It has been reported that ACLY is the primary enzyme involved in making cytosolic Ac-CoA in cells with abundant nutrients. However, using CRISPR/Cas9 technology, we have shown that ACLY is not essential for HCMV growth and virally induced lipogenesis. Instead, we found that in HCMV-infected cells glucose carbon can be used for lipid synthesis by both ACLY and ACSS2 reactions. Further, the ACSS2 reaction can compensate for the loss of ACLY. However, in ACSS2-KO human fibroblasts both HCMV-induced lipogenesis from glucose and viral growth were sharply reduced. This reduction suggests that glucose-derived acetate is being used to synthesize cytosolic Ac-CoA by ACSS2. Previous studies have not established a mechanism for the production of acetate directly from glucose metabolism. Here we show that HCMV-infected cells produce more glucose-derived pyruvate, which can be converted to acetate through a nonenzymatic mechanism.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetato-CoA Ligase/metabolismo , Ácido Acético/metabolismo , Acetilcoenzima A/metabolismo , Infecções por Citomegalovirus/metabolismo , Citomegalovirus/fisiologia , Lipogênese , ATP Citrato (pro-S)-Liase/genética , Acetato-CoA Ligase/genética , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Infecções por Citomegalovirus/virologia , Citosol/metabolismo , Fibroblastos , Regulação Enzimológica da Expressão Gênica , Técnicas de Inativação de Genes , Glucose/metabolismo , Glicólise , Interações Hospedeiro-Patógeno , Humanos , Mitocôndrias/metabolismo , Cultura Primária de Células , Ácido Pirúvico/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA