Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
1.
Cancer Res ; 83(10): 1711-1724, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129951

RESUMO

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer with unfavorable outcomes. Developing therapeutic targets for TNBC remains a challenge. Here, we identified that acetyl-CoA acyltransferase 1 (ACAA1) is highly expressed in the luminal androgen receptor (LAR) subtype of TNBC compared with adjacent normal tissues in our TNBC proteomics dataset. Inhibition of ACAA1 restrained TNBC proliferation and potentiated the response to the cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitor abemaciclib. Mechanistically, ACAA1 interacted with CDK4, and the inhibition of ACAA1 blocked RB transcriptional corepressor 1 (RB1) phosphorylation, resulting in G1-S cell-cycle arrest. Importantly, trimetazidine, a traditional drug for ischemic heart disease, caused a decrease in ACAA1 protein levels and enhanced the efficacy of abemaciclib in preclinical TNBC models. In conclusion, this study identifies that ACAA1 is a therapeutic target in TNBC and suggests the combination of trimetazidine and abemaciclib could be beneficial for ACAA1-high TNBCs. SIGNIFICANCE: ACAA1 is highly expressed in TNBC, serving as a potential therapeutic target in ACAA1-high tumors and a predictive biomarker of resistance to CDK4/6 inhibitors for RB1-proficient patients.


Assuntos
Trimetazidina , Neoplasias de Mama Triplo Negativas , Humanos , Neoplasias de Mama Triplo Negativas/patologia , Trimetazidina/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Quinase 4 Dependente de Ciclina , Acetil-CoA C-Aciltransferase
2.
BMC Cancer ; 22(1): 1017, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36162992

RESUMO

BACKGROUND: Long noncoding RNAs (lncRNAs) are abnormally expressed in a broad type of cancers and play significant roles that regulate tumor development and metastasis. However, the pathological roles of lncRNAs in esophageal squamous cell carcinoma (ESCC) remain largely unknown. Here we aimed to investigate the role and regulatory mechanism of the novel lncRNA RPL34-AS1 in the development and progression of ESCC. METHODS: The expression level of RPL34-AS1 in ESCC tissues and cell lines was determined by RT-qPCR. Functional experiments in vitro and in vivo were employed to explore the effects of RPL34-AS1 on tumor growth in ESCC cells. Mechanistically, fluorescence in situ hybridization (FISH), bioinformatics analyses, luciferase reporter assay, RNA immunoprecipitation (RIP) assay and western blot assays were used to detect the regulatory relationship between RPL34-AS1, miR-575 and ACAA2. RESULTS: RPL34-AS1 was significantly down-regulated in ESCC tissues and cells, which was negatively correlated with overall survival in ESCC patients. Functionally, upregulation of RPL34-AS1 dramatically suppressed ESCC cell proliferation, colony formation, invasion and migration in vitro, whereas knockdown of RPL34-AS1 elicited the opposite function. Consistently, overexpression of RPL34-AS1 inhibited tumor growth in vivo. Mechanistically, RPL34-AS1 acted as a competing endogenous RNA (ceRNA) of miR-575 to relieve the repressive effect of miR-575 on its target ACAA2, then suppressed the tumorigenesis of ESCC. CONCLUSIONS: Our results reveal a role for RPL34-AS1 in ESCC tumorigenesis and may provide a strategy for using RPL34-AS1 as a potential biomarker and an effect target for patients with ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , MicroRNAs , RNA Longo não Codificante , Humanos , Acetil-CoA C-Aciltransferase , Biomarcadores , Carcinogênese/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Progressão da Doença , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Hibridização in Situ Fluorescente , MicroRNAs/genética , MicroRNAs/metabolismo , Processos Neoplásicos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Int J Biol Sci ; 18(9): 3800-3817, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35813467

RESUMO

Background : Acetaminophen (APAP)-induced liver injury (AILI) is a common cause of drug-induced liver injury (DILI). The mechanism underlying protection in AILI or DILI remains to be elucidated, and the role of early growth response 1 (Egr1) in AILI and potential mechanisms remain to be known. Methods : The role of Egr1 was studied both in vivo and in vitro. Liver-specific Egr1-knockout (Egr1LKO) mice and those overexpressing Egr1 via tail vein injection of Egr1-expressing adenovirus (Ad-Egr1) were utilized with AILI. Chromatin immunoprecipitation-sequencing, RNA-sequencing, seahorse XF analysis, and targeted fatty acid analysis were performed. EGR1 levels were also studied in liver tissues and serum samples from AILI/DILI patients. Results: In this study, we have demonstrated that Egr1 was upregulated in AILI models in vivo and in vitro. liver-specific Egr1 knockout aggravated AILI; however, Ad-Egr1 treatment ameliorated this. Mechanistically, Egr1 deficiency inhibited, whereas overexpression promoted, mitochondrial respiratory function and fatty acid ß-oxidation (FAO) activity in AILI. Egr1 transcriptionally upregulated FAO-related genes in hepatocytes. Notably, the knockdown of acetyl-coenzyme A acyltransferase 2 (Acaa2), a key gene involved in FAO, diminished this protective effect of Egr1. Clinically, EGR1 was markedly increased in liver tissues from AILI patients. Interestingly, EGR1 levels of liver tissues and serum samples were also obviously higher in idiosyncratic DILI patients. Conclusions: Egr1 confers adaptive protection in AILI, mediated via the transcriptional upregulation of Acaa2, which improves mitochondrial FAO, and might be a potential biomarker and novel therapeutic target for AILI.


Assuntos
Acetaminofen , Doença Hepática Induzida por Substâncias e Drogas , Acetaminofen/toxicidade , Acetil-CoA C-Aciltransferase , Aciltransferases/farmacologia , Animais , Doença Hepática Induzida por Substâncias e Drogas/genética , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/farmacologia , Ácidos Graxos , Fígado , Camundongos , Camundongos Endogâmicos C57BL
4.
Radiat Res ; 196(2): 213-224, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34087943

RESUMO

Ketogenic diets (KD) are high in fat and low in carbohydrates, forcing cells to utilize mitochondrial fatty acid oxidation for energy production. Since cancer cells demonstrate increased mitochondrial oxidative stress relative to normal cells, we hypothesized that a KD may selectively enhance metabolic oxidative stress in head and neck cancer cells, sensitizing them to radiation and platinum-based chemotherapy without causing increased toxicity in surrounding normal tissues. This hypothesis was tested in preclinical murine xenografts and in a phase 1 clinical trial (NCT01975766). In this study, mice bearing human head and neck cancer xenografts (FaDu) were fed either standard mouse chow or KetoCal® KD (90% fat, 8% carbohydrate, 2% protein) and exposed to ionizing radiation. Tumors were harvested from mice to test for glutathione, a biomarker of oxidative stress. In parallel, patients with locally advanced head and neck cancer were enrolled in a phase 1 clinical trial where they consumed KD and received radiation with concurrent platinum-based chemotherapy. Subjects consumed KetoCal KD via percutaneous endoscopic gastrostomy (PEG) tube and were also allowed to orally consume water, sugar-free drinks, and foods approved by a dietitian. Oxidative stress markers including protein carbonyls and total glutathione were assessed in patient blood samples both pre-KD and while consuming the KD. Mice bearing FaDu xenografts that received radiation and KD demonstrated a slight improvement in tumor growth rate and survival compared to mice that received radiation alone; however a variation in responses was seen dependent on the fatty acid composition of the diet. In the phase 1 clinical trial, a total of twelve patients were enrolled in the study. Four patients completed five weeks of the KD as per protocol (with variance in compliance). Eight patients did not tolerate the diet with concurrent radiation and platinum-chemotherapy (5 were patient decision and 3 were removed from study due to toxicity). The median number of days consuming a KD in patients who did not complete the study was 5.5 (range: 2-8 days). Reasons for discontinuation included "stress of diet compliance" (1 patient), grade 2 nausea (3 patients), and grade 3 fatigue (1 patient). Three patients were removed from the trial due to dose-limiting toxicities including: grade 4 hyperuricemia (2 patients) and grade 3 acute pancreatitis (1 patient). Median weight loss was 2.95% for the KD-tolerant group and 7.92% for patients who did not tolerate the diet. In conclusion, the ketogenic diet shows promise as a treatment combined with radiation in preclinical mouse head and neck cancer xenografts. A phase 1 clinical trial evaluating the safety and tolerability of KD demonstrated difficulty with diet compliance when combined with standard-of-care radiation therapy and cisplatin chemotherapy.


Assuntos
Dieta Cetogênica/métodos , Carcinoma de Células Escamosas de Cabeça e Pescoço/dietoterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , 3-Hidroxiacil-CoA Desidrogenases/efeitos dos fármacos , 3-Hidroxiacil-CoA Desidrogenases/efeitos da radiação , Acetil-CoA C-Aciltransferase/efeitos dos fármacos , Acetil-CoA C-Aciltransferase/efeitos da radiação , Adulto , Idoso , Animais , Isomerases de Ligação Dupla Carbono-Carbono/efeitos dos fármacos , Isomerases de Ligação Dupla Carbono-Carbono/efeitos da radiação , Quimiorradioterapia/efeitos adversos , Dieta Cetogênica/efeitos adversos , Enoil-CoA Hidratase/efeitos dos fármacos , Enoil-CoA Hidratase/efeitos da radiação , Feminino , Xenoenxertos , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/efeitos da radiação , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Racemases e Epimerases/efeitos dos fármacos , Racemases e Epimerases/efeitos da radiação , Radiação Ionizante , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Estresse Fisiológico/efeitos dos fármacos , Estresse Fisiológico/efeitos da radiação
5.
Cell Rep ; 33(8): 108421, 2020 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-33238129

RESUMO

Emerging evidence indicates that non-mutational drug tolerance mechanisms underlie the survival of residual cancer "persister" cells. Here, we find that BRAF(V600E) mutant melanoma persister cells tolerant to BRAF/MEK inhibitors switch their metabolism from glycolysis to oxidative respiration supported by peroxisomal fatty acid ß-oxidation (FAO) that is transcriptionally regulated by peroxisome proliferator-activated receptor alpha (PPARα). Knockdown of the key peroxisomal FAO enzyme, acyl-CoA oxidase 1 (ACOX1), as well as treatment with the peroxisomal FAO inhibitor thioridazine, specifically suppresses the oxidative respiration of persister cells and significantly decreases their emergence. Consistently, a combination treatment of BRAF/MEK inhibitors with thioridazine in human-melanoma-bearing mice results in a durable anti-tumor response. In BRAF(V600E) melanoma samples from patients treated with BRAF/MEK inhibitors, higher baseline expression of FAO-related genes and PPARα correlates with patients' outcomes. These results pave the way for a metabolic strategy to overcome drug resistance.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Acil-CoA Oxidase/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Enoil-CoA Hidratase/metabolismo , Melanoma/genética , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Racemases e Epimerases/metabolismo , Animais , Humanos , Melanoma/patologia , Camundongos , Inibidores de Proteínas Quinases/farmacologia
6.
Mol Genet Metab ; 131(1-2): 90-97, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32928639

RESUMO

BACKGROUND: The plasma acylcarnitine profile is frequently used as a biochemical assessment for follow-up in diagnosed patients with fatty acid oxidation disorders (FAODs). Disease specific acylcarnitine species are elevated during metabolic decompensation but there is clinical and biochemical heterogeneity among patients and limited data on the utility of an acylcarnitine profile for routine clinical monitoring. METHODS: We evaluated plasma acylcarnitine profiles from 30 diagnosed patients with long-chain FAODs (carnitine palmitoyltransferase-2 (CPT2), very long-chain acyl-CoA dehydrogenase (VLCAD), and long-chain 3-hydroxy acyl-CoA dehydrogenase or mitochondrial trifunctional protein (LCHAD/TFP) deficiencies) collected after an overnight fast, after feeding a controlled low-fat diet, and before and after moderate exercise. Our purpose was to describe the variability in this biomarker and how various physiologic states effect the acylcarnitine concentrations in circulation. RESULTS: Disease specific acylcarnitine species were higher after an overnight fast and decreased by approximately 60% two hours after a controlled breakfast meal. Moderate-intensity exercise increased the acylcarnitine species but it varied by diagnosis. When analyzed for a genotype/phenotype correlation, the presence of the common LCHADD mutation (c.1528G > C) was associated with higher levels of 3-hydroxyacylcarnitines than in patients with other mutations. CONCLUSIONS: We found that feeding consistently suppressed and that moderate intensity exercise increased disease specific acylcarnitine species, but the response to exercise was highly variable across subjects and diagnoses. The clinical utility of routine plasma acylcarnitine analysis for outpatient treatment monitoring remains questionable; however, if acylcarnitine profiles are measured in the clinical setting, standardized procedures are required for sample collection to be of value.


Assuntos
Cardiomiopatias/sangue , Carnitina O-Palmitoiltransferase/deficiência , Carnitina/análogos & derivados , Síndrome Congênita de Insuficiência da Medula Óssea/sangue , Erros Inatos do Metabolismo Lipídico/sangue , Erros Inatos do Metabolismo/sangue , Doenças Mitocondriais/sangue , Miopatias Mitocondriais/sangue , Proteína Mitocondrial Trifuncional/deficiência , Doenças Musculares/sangue , Doenças do Sistema Nervoso/sangue , Rabdomiólise/sangue , 3-Hidroxiacil-CoA Desidrogenases/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Aciltransferase/genética , Acetil-CoA C-Aciltransferase/metabolismo , Acil-CoA Desidrogenase de Cadeia Longa/sangue , Isomerases de Ligação Dupla Carbono-Carbono/genética , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Cardiomiopatias/dietoterapia , Cardiomiopatias/patologia , Cardiomiopatias/terapia , Carnitina/sangue , Carnitina/genética , Carnitina/metabolismo , Carnitina O-Palmitoiltransferase/sangue , Síndrome Congênita de Insuficiência da Medula Óssea/dietoterapia , Síndrome Congênita de Insuficiência da Medula Óssea/patologia , Síndrome Congênita de Insuficiência da Medula Óssea/terapia , Enoil-CoA Hidratase/genética , Enoil-CoA Hidratase/metabolismo , Terapia por Exercício , Jejum , Feminino , Humanos , Erros Inatos do Metabolismo Lipídico/dietoterapia , Erros Inatos do Metabolismo Lipídico/patologia , Erros Inatos do Metabolismo Lipídico/terapia , 3-Hidroxiacil-CoA Desidrogenase de Cadeia Longa/sangue , Masculino , Erros Inatos do Metabolismo/dietoterapia , Erros Inatos do Metabolismo/patologia , Erros Inatos do Metabolismo/terapia , Doenças Mitocondriais/dietoterapia , Doenças Mitocondriais/patologia , Doenças Mitocondriais/terapia , Miopatias Mitocondriais/dietoterapia , Miopatias Mitocondriais/patologia , Miopatias Mitocondriais/terapia , Proteína Mitocondrial Trifuncional/sangue , Doenças Musculares/dietoterapia , Doenças Musculares/patologia , Doenças Musculares/terapia , Doenças do Sistema Nervoso/dietoterapia , Doenças do Sistema Nervoso/patologia , Doenças do Sistema Nervoso/terapia , Racemases e Epimerases/genética , Racemases e Epimerases/metabolismo , Rabdomiólise/dietoterapia , Rabdomiólise/patologia , Rabdomiólise/terapia
7.
Biomed Res Int ; 2020: 1086792, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32280672

RESUMO

BACKGROUND: Glioma is the most common and lethal tumor in the central nervous system (CNS). More than 70% of WHO grade II/III gliomas were found to harbor isocitrate dehydrogenase (IDH) mutations which generated targetable metabolic vulnerabilities. Focusing on the metabolic vulnerabilities, some targeted therapies, such as NAMPT, have shown significant effects in preclinical and clinical trials. METHODS: We explored the TCGA as well as CGGA database and analyzed the RNA-seq data of lower grade gliomas (LGG) with the method of weighted correlation network analysis (WGCNA). Differential expressed genes were screened, and coexpression relationships were grouped together by performing average linkage hierarchical clustering on the topological overlap. Clinical data were used to conduct Kaplan-Meier analysis. RESULTS: In this study, we identified ACAA2 as a prognostic factor in IDH mutation lower grade glioma with the method of weighted correlation network analysis (WGCNA). The difference of ACAA2 gene expressions between the IDH wild-type (IDH-WT) group and the IDH mutant (IDH-MUT) group suggested that there may be different potential targeted therapies based on the fatty acid metabolic vulnerabilities, which promoted the personalized treatment for LGG patients.


Assuntos
Acetil-CoA C-Aciltransferase/genética , Perfilação da Expressão Gênica , Glioma/diagnóstico , Glioma/genética , Isocitrato Desidrogenase/genética , Acetil-CoA C-Aciltransferase/metabolismo , Adolescente , Biomarcadores Tumorais/genética , Ácidos Graxos/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Isocitrato Desidrogenase/metabolismo , Estimativa de Kaplan-Meier , Prognóstico , Regiões Promotoras Genéticas , Análise de Sequência de RNA
8.
Clin Genet ; 97(6): 890-901, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32266967

RESUMO

Primrose syndrome (PS; MIM# 259050) is characterized by intellectual disability (ID), macrocephaly, unusual facial features (frontal bossing, deeply set eyes, down-slanting palpebral fissures), calcified external ears, sparse body hair and distal muscle wasting. The syndrome is caused by de novo heterozygous missense variants in ZBTB20. Most of the 29 published patients are adults as characteristics appear more recognizable with age. We present 13 hitherto unpublished individuals and summarize the clinical and molecular findings in all 42 patients. Several signs and symptoms of PS develop during childhood, but the cardinal features, such as calcification of the external ears, cystic bone lesions, muscle wasting, and contractures typically develop between 10 and 16 years of age. Biochemically, anemia and increased alpha-fetoprotein levels are often present. Two adult males with PS developed a testicular tumor. Although PS should be regarded as a progressive entity, there are no indications that cognition becomes more impaired with age. No obvious genotype-phenotype correlation is present. A subgroup of patients with ZBTB20 variants may be associated with mild, nonspecific ID. Metabolic investigations suggest a disturbed mitochondrial fatty acid oxidation. We suggest a regular surveillance in all adult males with PS until it is clear whether or not there is a truly elevated risk of testicular cancer.


Assuntos
Anormalidades Múltiplas/genética , Calcinose/genética , Otopatias/genética , Predisposição Genética para Doença , Deficiência Intelectual/genética , Megalencefalia/genética , Atrofia Muscular/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição/genética , 3-Hidroxiacil-CoA Desidrogenases/genética , Anormalidades Múltiplas/patologia , Acetil-CoA C-Aciltransferase/genética , Adolescente , Adulto , Calcinose/patologia , Isomerases de Ligação Dupla Carbono-Carbono/genética , Criança , Pré-Escolar , Otopatias/patologia , Enoil-CoA Hidratase/genética , Face/anormalidades , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Lactente , Deficiência Intelectual/patologia , Masculino , Megalencefalia/patologia , Pessoa de Meia-Idade , Mitocôndrias/genética , Mitocôndrias/patologia , Atrofia Muscular/patologia , Mutação , Mutação de Sentido Incorreto/genética , Fenótipo , Racemases e Epimerases/genética , Neoplasias Testiculares , Adulto Jovem
9.
Cell Death Dis ; 11(4): 233, 2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32300102

RESUMO

Chemotherapy is the first-tier treatment regime for gastric cancer (GC) patients at advance stages. Mesenchymal stem cell (MSC) cam affect drug-resistance of GC cells in tumor microenvironment, but the detailed mechanism remains poorly understood. Present study aimed to investigate the regulation of MSC-induced long non-coding RNA (lncRNA) in GC. Dysregulated lncRNAs in GC were analyzed based on GEO data. Stemness and drug-resistance of GC cells were detected by sphere formation, colony formation, CCK-8, and flow cytometry analyses. MicroRNA (miRNA)-related pathways were analyzed by online KEGG analysis tool DAVID6.8. Molecular interactions were determined by luciferase reporter assay, pulldown, RNA immunoprecipitation (RIP), chromatin immunoprecipitation (ChIP), and co-immunoprecipitation (CoIP). Results revealed that MSC co-culture improved stemness and drug-resistance of GC cells. LncRNA histocompatibility leukocyte antigen complex P5 (HCP5) was induced in GC cells by MSC co-culture, contributing to stemness and drug-resistance. Mechanistically, HCP5 sequestered miR-3619-5p and upregulated PPARG coactivator 1 alpha (PPARGC1A), increasing transcription complex Peroxisome proliferator activated receptor (PPAR) coactivator-1α (PGC1α)/CEBPB and transcriptionally inducing carnitine palmitoyltransferase 1 (CPT1), which prompted the fatty acid oxidation (FAO) in GC cells. In conclusion, MSC-induced lncRNA HCP5 drove FAO through miR-3619-5p/AMPK/PGC1α/CEBPB axis to promote stemness and chemo-resistance of GC, indicating that targeting HCP5 was a novel approach to enhancing the efficacy of chemotherapy in GC.


Assuntos
3-Hidroxiacil-CoA Desidrogenases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Enoil-CoA Hidratase/metabolismo , Ácidos Graxos/metabolismo , Células-Tronco Neoplásicas/metabolismo , RNA Longo não Codificante/metabolismo , Racemases e Epimerases/metabolismo , Neoplasias Gástricas/metabolismo , Animais , Resistencia a Medicamentos Antineoplásicos , Humanos , Camundongos , Camundongos Nus , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Oxirredução , RNA Longo não Codificante/genética , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Transfecção
10.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 36(3): 199-202, 2019 Mar 10.
Artigo em Chinês | MEDLINE | ID: mdl-30835345

RESUMO

OBJECTIVE: To summarize the clinical, biochemical and molecular characteristics of 8 patients with beta-ketothiolase deficiency (BKD). METHODS: Clinical characteristics, biochemical markers detected by tandem mass spectrometry (MS-MS) and gas chromatography-mass spectrometry (GC-MS), and variations of ACAT1 gene of the 8 patients were reviewed. RESULTS: Three patients were diagnosed by newborn screening and were asymptomatic. Five patients showed dyspnea and metabolic acidosis through high risk screening. Blood methylcrotonyl carnitine (C5:1) were 0.43 (0.20-0.89) µmol/L and 3-hydroxyisovaleryl carnitine(C5-OH) were 1.37 (0.98-3.40) µmol/L. Both were significantly higher than those of healthy controls (P<0.01). Urinary 2-methyl-3-hydroxybutyric acid was 56.04 (7.69-182.20) and methylcrotonyl glycine was 42.83 (9.20-127.01), both were higher than normal levels. In 5 patients urinary 2-methyl-3-hydroxybutyric acid level was remarkably decreased (P<0.05) after treatment. Analysis of ACAT1 gene mutation was performed in six families. Missense variations were detected in 78.6% of the cases. 42.8% of the 7 BKD patients have carried c.1124A>G (p.N375S) variant, which accounted for 28.6% of all 14 mutant alleles. Four novel variants, namely c.229delG (p.E77KfsTer10), c.373G>T (p.V125F), c.419T>G (p.L140R) and c.72+1G>A, were discovered. Pathogenicity assessment of two highly conservative missense variants (p.V125F) and (p.L140R) were 0.994 and 1.0 (Scores obtained from PolyPhen2), and PROVEAN scores were -4.652 and -5.399, respectively. c.72+1g>a was suspected (by Human Splicing Finder) to alter the wild type donor motif and most probably affect the splicing. CONCLUSION: Clinicians should consider MS/MS and GC/MS testing for those with unexplained neurological symptoms and metabolic acidosis in order to attain early diagnosis of BKD. Genetic testing should be used to confirm the diagnosis.


Assuntos
Acetil-CoA C-Aciltransferase/deficiência , Erros Inatos do Metabolismo dos Aminoácidos , Carnitina , Humanos , Recém-Nascido , Estudos Retrospectivos , Espectrometria de Massas em Tandem
11.
Cell Biol Toxicol ; 35(5): 457-470, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30721374

RESUMO

Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD+)-dependent deacetylase, and the function is linked to cellular metabolism including mitochondrial biogenesis. Hepatic L-serine concentration is decreased significantly in fatty liver disease. We reported that the supplementation of the amino acid ameliorated the alcoholic fatty liver by enhancing L-serine-dependent homocysteine metabolism. In this study, we hypothesized that the metabolic production of NAD+ from L-serine and thus activation of SIRT1 contribute to the action of L-serine. To this end, we evaluated the effects of L-serine on SIRT1 activity and mitochondria biogenesis in C2C12 myotubes. L-Serine increased intracellular NAD+ content and led to the activation of SIRT1 as determined by p53 luciferase assay and western blot analysis of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) acetylation. L-Serine treatment increased the expression of the genes associated with mitochondrial biogenesis and enhanced mitochondrial mass and function. In addition, L-serine reversed cellular insulin resistance determined by insulin-induced phosphorylation of Akt and GLUT4 expression and membrane translocation. L-Serine-induced mitochondrial gene expression, fatty acid oxidation, and insulin sensitization were mediated by enhanced SIRT1 activity, which was verified by selective SIRT1 inhibitor (Ex-527) and siRNA directed to SIRT1. L-Serine effect on cellular NAD+ level is dependent on the L-serine metabolism to pyruvate that is subsequently converted to lactate by lactate dehydrogenase. In summary, these data suggest that L-serine increases cellular NAD+ level and thus SIRT1 activity in C2C12 myotubes.


Assuntos
Ácidos Graxos/metabolismo , Resistência à Insulina/fisiologia , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Serina/farmacologia , Sirtuína 1/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Acetilação , Animais , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Linhagem Celular , Enoil-CoA Hidratase/metabolismo , Células Hep G2 , Humanos , Insulina/farmacologia , Metabolismo dos Lipídeos , Camundongos , Mitocôndrias/metabolismo , Fibras Musculares Esqueléticas/citologia , Músculo Esquelético/metabolismo , Oxirredução , Fosforilação , Racemases e Epimerases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transativadores/metabolismo , Fatores de Transcrição/metabolismo
12.
Sci Rep ; 8(1): 417, 2018 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-29323178

RESUMO

Mammary epithelial cells (MECs) affect milk production capacity during lactation and are critical for the maintenance of tissue homeostasis. Our previous studies have revealed that the expression of miR-152 was increased significantly in MECs of cows with high milk production. In the present study, bioinformatics analysis identified ACAA2 and HSD17B12 as the potential targets of miR-152, which were further validated by dual-luciferase repoter assay. In addition, the expressions of miR-152 was shown to be negatively correlated with levels of mRNA and protein of ACAA2, HSD17B12 genes by qPCR and western bot analysis. Furthermore, transfection with miR-152 significantly up-regulated triglyceride production, promoted proliferation and inhibited apoptosis in MECs. Furthermore, overexpression of ACAA2 and HSD17B12 could inhibit triglyceride production, cells proliferation and induce apoptosis; but sh234-ACAA2-181/sh234-HSD17B12-474 could reverse the trend. These findings suggested that miR-152 could significantly influence triglyceride production and suppress apoptosis, possibly via the expression of target genes ACAA2 and HSD17B12.


Assuntos
17-Hidroxiesteroide Desidrogenases/genética , Acetil-CoA C-Aciltransferase/genética , Glândulas Mamárias Animais/citologia , MicroRNAs/genética , Triglicerídeos/metabolismo , 17-Hidroxiesteroide Desidrogenases/metabolismo , Regiões 3' não Traduzidas , Acetil-CoA C-Aciltransferase/metabolismo , Animais , Apoptose , Bovinos , Proliferação de Células , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Feminino , Regulação da Expressão Gênica , Lactação , Glândulas Mamárias Animais/metabolismo
13.
Curr Genet ; 64(2): 417-422, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29043484

RESUMO

The precise and controlled regulation of gene expression at transcriptional and post-transcriptional levels is crucial for the eukaryotic cell survival and functions. In eukaryotes, more than 100 types of post-transcriptional RNA modifications have been identified. The N6-methyladenosine (m6A) modification in mRNA is among the most common post-transcriptional RNA modifications known in eukaryotic organisms, and the m6A RNA modification can regulate gene expression. The role of yeast m6A methyltransferase (Ime4) in meiosis, sporulation, triacylglycerol metabolism, vacuolar morphology, and mitochondrial functions has been reported. Stress triggers triacylglycerol accumulation as lipid droplets. Lipid droplets are physically connected to the different organelles such as endoplasmic reticulum, mitochondria, and peroxisomes. However, the physiological relevance of these physical interactions remains poorly understood. In yeast, peroxisome is the sole site of fatty acid ß-oxidation. The metabolic status of the cell readily governs the number and physiological function of peroxisomes. Under low-glucose or stationary-phase conditions, peroxisome biogenesis and proliferation increase in the cells. Therefore, we hypothesized a possible role of Ime4 in the peroxisomal functions. There is no report on the role of Ime4 in peroxisomal biology. Here, we report that IME4 gene deletion causes peroxisomal dysfunction under stationary-phase conditions in Saccharomyces cerevisiae; besides, the ime4Δ cells showed a significant decrease in the expression of the key genes involved in peroxisomal ß-oxidation compared to the wild-type cells. Therefore, identification and determination of the target genes of Ime4 that are directly involved in the peroxisomal biogenesis, morphology, and functions will pave the way to better understand the role of m6A methylation in peroxisomal biology.


Assuntos
Adenosina/análogos & derivados , Ácidos Graxos/genética , Metiltransferases/genética , Peroxissomos/genética , Proteínas de Saccharomyces cerevisiae/genética , 3-Hidroxiacil-CoA Desidrogenases/genética , Acetil-CoA C-Aciltransferase/genética , Adenosina/genética , Adenosina/metabolismo , Isomerases de Ligação Dupla Carbono-Carbono/genética , Enoil-CoA Hidratase/genética , Ácidos Graxos/metabolismo , Regulação Fúngica da Expressão Gênica/genética , Metabolismo dos Lipídeos/genética , Metiltransferases/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Peroxissomos/enzimologia , Processamento Pós-Transcricional do RNA/genética , Racemases e Epimerases/genética , Saccharomyces cerevisiae/genética , Vacúolos/enzimologia , Vacúolos/genética
14.
Cancer Lett ; 409: 104-115, 2017 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-28923398

RESUMO

The class III deacetylase sirtuin 1 (SIRT1), a member of the sirtuin family proteins, plays a key role in many types of cancers including colorectal cancer (CRC). Here we report that SIRT1 suppressed CRC metastasis in vitro and in vivo as a negative regulator for miR-15b-5p transcription. Mechanistically, SIRT1 impaired regulatory effects of activator protein (AP-1) on miR-15b-5p trans-activation through deacetylation of AP-1. Importantly, acyl-CoA oxidase 1 (ACOX1), a key enzyme of the fatty acid oxidation (FAO) pathway, was found as a direct target for miR-15b-5p. SIRT1 expression was positively correlated with ACOX1 expression in CRC cells and in xenografts. Moreover, ACOX1 overexpression attenuated the augmentation of migration and invasion of CRC cells by miR-15b-5p overexpression. In conclusion, our study demonstrated a functional role of the SIRT1/miR-15b-5p/ACOX1 axis in CRC metastasis and suggested a potential target for metastatic CRC therapy.


Assuntos
Neoplasias Colorretais/genética , MicroRNAs/genética , Sirtuína 1/genética , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Animais , Células CACO-2 , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Enoil-CoA Hidratase/metabolismo , Células HCT116 , Células HT29 , Xenoenxertos , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/metabolismo , Metástase Neoplásica , Racemases e Epimerases/metabolismo , Transdução de Sinais , Sirtuína 1/metabolismo , Transcrição Gênica , Transfecção
15.
Mol Nutr Food Res ; 61(10)2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28608394

RESUMO

SCOPE: The aim of this work was to study the urinary metabolomics changes of participants that consumed beer, nonalcoholic beer (na-beer), and gin. METHODS AND RESULTS: Thirty-three males at high cardiovascular risk between 55 and 75 years old participated in an open, randomized, crossover, controlled trial with three nutritional interventions consisting of beer, na-beer, and gin for 4 wk. Diet and physical activity was monitored throughout the study and compliance was assessed by measurement of urinary isoxanthohumol. Metabolomic analysis was performed in urine samples by LC coupled to an LTQ-Orbitrap mass spectrometer combined with univariate and multivariate statistical analysis. Ten metabolites were identified. Eight were exogenous metabolites related to beer, na-beer, or gin consumption, but two of them were related to endogenic changes: hydroxyadipic acid linked to fatty acid oxidation, and 4-guanidinobutanoic acid, which correlated with a decrease in urinary creatinine. Plasmatic acylcarnitines were quantified by targeted MS. A regular and moderate consumption of beer and na-beer decreased stearoylcarnitine concentrations. CONCLUSION: Humulinone and 2,3-dihydroxy-3-methylvaleric acid showed to be potential biomarkers of beer and na-beer consumption. Moreover, the results of this trial provide new evidence that the nonalcoholic fraction of beer may increase fatty oxidation.


Assuntos
Cerveja/efeitos adversos , Biomarcadores/urina , Doenças Cardiovasculares/urina , Metaboloma , Metabolômica , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Adipatos/sangue , Idoso , Consumo de Bebidas Alcoólicas , Bebidas , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Carnitina/análogos & derivados , Carnitina/sangue , Creatinina/urina , Estudos Cross-Over , Dieta , Enoil-CoA Hidratase/metabolismo , Exercício Físico , Humanos , Masculino , Pessoa de Meia-Idade , Cooperação do Paciente , Ácidos Pentanoicos/urina , Racemases e Epimerases/metabolismo , Fatores de Risco , Xantonas/urina
16.
Int J Cardiol ; 234: 1-6, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28256321

RESUMO

Trimetazidine (TMZ) has traditionally been used as an anti-ischemic drug for coronary artery disease by selectively inhibiting the mitochondrial long-chain 3-ketoacyl-CoA thiolase. Recently, new applications for this therapy have been investigated. This article reviews alternative uses for TMZ in non-coronary artery diseases, such as non-ischemic cardiomyopathy, sepsis, myocardial dysfunction induced by anti-cancer drugs, diabetic cardiomyopathy and contrast-induced nephropathy.


Assuntos
Antineoplásicos/efeitos adversos , Distúrbios Induzidos Quimicamente/tratamento farmacológico , Doença da Artéria Coronariana , Cardiomiopatias Diabéticas/tratamento farmacológico , Nefropatias , Trimetazidina/farmacologia , Acetil-CoA C-Aciltransferase/metabolismo , Distúrbios Induzidos Quimicamente/etiologia , Doença da Artéria Coronariana/tratamento farmacológico , Doença da Artéria Coronariana/metabolismo , Reposicionamento de Medicamentos , Humanos , Nefropatias/induzido quimicamente , Nefropatias/tratamento farmacológico , Mitocôndrias Cardíacas/metabolismo , Vasodilatadores/farmacologia
17.
Immunity ; 44(6): 1325-36, 2016 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-27332732

RESUMO

Greater understanding of the complex host responses induced by type 1 interferon (IFN) cytokines could allow new therapeutic approaches for diseases in which these cytokines are implicated. We found that in response to the Toll-like receptor-9 agonist CpGA, plasmacytoid dendritic cells (pDC) produced type 1 IFNs, which, through an autocrine type 1 IFN receptor-dependent pathway, induced changes in cellular metabolism characterized by increased fatty acid oxidation (FAO) and oxidative phosphorylation (OXPHOS). Direct inhibition of FAO and of pathways that support this process, such as fatty acid synthesis, prevented full pDC activation. Type 1 IFNs also induced increased FAO and OXPHOS in non-hematopoietic cells and were found to be responsible for increased FAO and OXPHOS in virus-infected cells. Increased FAO and OXPHOS in response to type 1 IFNs was regulated by PPARα. Our findings reveal FAO, OXPHOS and PPARα as potential targets to therapeutically modulate downstream effects of type 1 IFNs.


Assuntos
Células Dendríticas/imunologia , Interferon Tipo I/metabolismo , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , PPAR alfa/metabolismo , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Animais , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Diferenciação Celular , Células Cultivadas , Ilhas de CpG/imunologia , Enoil-CoA Hidratase/metabolismo , Regulação da Expressão Gênica , Imunidade , Metabolismo dos Lipídeos , Camundongos , Camundongos Endogâmicos C57BL , Oligodesoxirribonucleotídeos/imunologia , Fosforilação Oxidativa , Racemases e Epimerases/metabolismo , Receptores de Interferon/metabolismo , Transdução de Sinais , Receptor Toll-Like 9/metabolismo
18.
Int J Biol Macromol ; 82: 425-31, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26499087

RESUMO

The protein ReH16_B0759 from Ralstoniaeutropha is a 3-ketoacyl-coenzyme A (CoA) thiolase that catalyzes the fourth step of the ß-oxidation degradative pathways by converting 3-ketoacyl-CoAto acyl-CoA. The crystal structures of ReH16_B0759 in its apo form and as a complex with its CoA substrate have been determined. Although ReH16_B0759 exhibited an overall structure similar to the ReH16_A1887 isozyme, the proteindoes not make a complex for ß-oxidation. Similar to other degradative thiolases, ReH16_B0759 functions as a dimer, and the monomer comprises three subdomains. Unlike ReH16_A1887, a substantial structural change was not observed upon the binding of the CoA substrate in ReH16_B0759. Exceptionally, the Arg220 residue moved about 5.00Å to make room for the binding of the adenosine ring. Several charged residues including Arg220 are involved in the stabilization of CoA through hydrogen bond interactions. At the active site of ReH16_B0759, highly conserved residues such as Cys89, His347, and Cys377 were located near the thiol-group of CoA, suggesting that ReH16_B0759 may catalyze the thiolase reaction in a manner similar to that of other degradative thiolases. The residues involved in substrate binding and enzyme catalysis were further confirmed by site-directed mutagenesis.


Assuntos
Acetil-CoA C-Aciltransferase/química , Betaproteobacteria/enzimologia , Modelos Moleculares , Conformação Proteica , Acetil-CoA C-Aciltransferase/genética , Sequência de Aminoácidos , Betaproteobacteria/genética , Sítios de Ligação , Catálise , Cristalografia por Raios X , Cinética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Ligação Proteica , Alinhamento de Sequência , Especificidade por Substrato
19.
PLoS One ; 10(12): e0144653, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26684752

RESUMO

In the remodeling pathway for the synthesis of phosphatidylcholine (PC), acyl-CoA-dependent lysophosphatidylcholine (lysoPC) acyltransferase (LPCAT) catalyzes the reacylation of lysoPC. A number of genes encoding LPCATs have been cloned and characterized from several plants in recent years. Using Arabidopsis and other plant LPCAT sequences to screen the genome database of Nicotiana benthamiana, we identified two cDNAs encoding the putative tobacco LPCATs (NbLPCAT1 and NbLPCAT2). Both of them were predicted to encode a protein of 463 amino acids with high similarity to LPCATs from other plants. Protein sequence features such as the presence of at least eight putative transmembrane regions, four highly conserved signature motifs and several invariant residues indicate that NbLPCATs belong to the membrane bound O-acyltransferase family. Lysophospholipid acyltransferase activity of NbLPCATs was confirmed by testing lyso-platelet-activating factor (lysoPAF) sensitivity through heterologous expression of each full-length cDNA in a yeast mutant Y02431 (lca1△) disrupted in endogenous LPCAT enzyme activity. Analysis of fatty acid profiles of phospholipids from the NbLPCAT-expressing yeast mutant Y02431 cultures supplemented with polyunsaturated fatty acids suggested more incorporation of linoleic acid (18:2n6, LA) and α-linolenic acid (18:3n3, ALA) into PC compared to yeast mutant harbouring empty vector. In vitro enzymatic assay demonstrated that NbLPCAT1had high lysoPC acyltransferase activity with a clear preference for α-linolenoyl-CoA (18:3), while NbLPCAT2 showed a high lysophosphatidic acid (lysoPA) acyltransferase activity towards α-linolenoyl-CoA and a weak lysoPC acyltransferase activity. Tissue-specific expression analysis showed a ubiquitous expression of NbLPCAT1 and NbLPCAT2 in roots, stems, leaves, flowers and seeds, and a strong expression in developing flowers. This is the first report on the cloning and characterization of lysophospholipid acyltransferases from N. benthamiana.


Assuntos
1-Acilglicerofosfocolina O-Aciltransferase/genética , 1-Acilglicerofosfocolina O-Aciltransferase/metabolismo , Acetil-CoA C-Aciltransferase/genética , Acetil-CoA C-Aciltransferase/metabolismo , Nicotiana/enzimologia , Clonagem Molecular , Lisofosfolipídeos/metabolismo , Família Multigênica , Fases de Leitura Aberta , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Nicotiana/genética
20.
Rinsho Byori ; 63(4): 441-9, 2015 Apr.
Artigo em Japonês | MEDLINE | ID: mdl-26536777

RESUMO

Neonatal mass screening is a project aiming at the prevention of disorders by discovering and treating diseases which damage health left untreated in all newborns. The bacterial inhibition assay (BIA) was developed in about .1961 and used as the Guthrie method for a long time, but it was replaced by tandem mass spectrometry due to the recent development of mass spectrometers, and its nationwide introduction in Japan was completed. With this introduction, 13 diseases were newly included in screening. Fatty acid and organic acid metabolic disorders and urea cycle disorders were included, and favorable results have been obtained.


Assuntos
Programas de Rastreamento/métodos , Erros Inatos do Metabolismo/diagnóstico , Erros Inatos do Metabolismo/prevenção & controle , Espectrometria de Massas em Tandem , 3-Hidroxiacil-CoA Desidrogenases/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Acil-CoA Desidrogenase/deficiência , Acil-CoA Desidrogenase de Cadeia Longa/deficiência , Isomerases de Ligação Dupla Carbono-Carbono/metabolismo , Síndrome Congênita de Insuficiência da Medula Óssea , Enoil-CoA Hidratase/metabolismo , Ácidos Graxos/metabolismo , Humanos , Recém-Nascido , Japão , Erros Inatos do Metabolismo Lipídico/diagnóstico , Erros Inatos do Metabolismo Lipídico/terapia , Erros Inatos do Metabolismo/metabolismo , Erros Inatos do Metabolismo/terapia , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/terapia , Doenças Musculares/diagnóstico , Doenças Musculares/terapia , Racemases e Epimerases/metabolismo , Espectrometria de Massas em Tandem/instrumentação , Espectrometria de Massas em Tandem/métodos , Distúrbios Congênitos do Ciclo da Ureia/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA