Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Chem Biodivers ; 18(12): e2100633, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34643056

RESUMO

The increasing resistance of plant diseases caused by phytopathogenic fungi highlights the need for highly effective and environmentally benign agents. The antifungal activities of Cnidium monnieri fruit extracts and five isolated compounds as well as structurally related coumarins against five plant pathogenic fungi were evaluated. The acetone extract, which contained the highest amount of five coumarins, showed strongest antifungal activity. Among the coumarin compounds, we found that 4-methoxycoumarin exhibited stronger and broader antifungal activity against five phytopathogenic fungi, and was more potent than osthol. Especially, it could significantly inhibit the growth of Rhizoctonia solani mycelium with an EC50 value of 21 µg mL-1 . Further studies showed that 4-methoxycoumarin affected the structure and function of peroxisomes, inhibited the ß-oxidation of fatty acids, decreased the production of ATP and acetyl coenzyme A, and then accumulated ROS by damaging MMP and the mitochondrial function to cause the cell death of R. solani mycelia. 4-Methoxycoumarin presented antifungal efficacy in a concentration- dependent manner in vivo and could be used to prevent the potato black scurf. This study laid the foundation for the future development of 4-methoxycournamin as an alternative and friendly biofungicide.


Assuntos
Antifúngicos/farmacologia , Cnidium/química , Cumarínicos/farmacologia , Frutas/química , Rhizoctonia/efeitos dos fármacos , Acetilcoenzima A/antagonistas & inibidores , Acetilcoenzima A/biossíntese , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/biossíntese , Antifúngicos/química , Antifúngicos/isolamento & purificação , Cumarínicos/química , Cumarínicos/isolamento & purificação , Ácidos Graxos/antagonistas & inibidores , Ácidos Graxos/metabolismo , Testes de Sensibilidade Microbiana , Estrutura Molecular , Rhizoctonia/crescimento & desenvolvimento
2.
Appl Microbiol Biotechnol ; 105(19): 7321-7337, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34491400

RESUMO

Coenzyme A (CoA) and its derivatives such as acetyl-CoA are essential metabolites for several biosynthetic reactions. In the yeast S. cerevisiae, five enzymes (encoded by essential genes CAB1-CAB5; coenzyme A biosynthesis) are required to perform CoA biosynthesis from pantothenate, cysteine, and ATP. Similar to enzymes from other eukaryotes, yeast pantothenate kinase (PanK, encoded by CAB1) turned out to be inhibited by acetyl-CoA. By genetic selection of intragenic suppressors of a temperature-sensitive cab1 mutant combined with rationale mutagenesis of the presumed acetyl-CoA binding site within PanK, we were able to identify the variant CAB1 W331R, encoding a hyperactive PanK completely insensitive to inhibition by acetyl-CoA. Using a versatile gene integration cassette containing the TPI1 promoter, we constructed strains overexpressing CAB1 W331R in combination with additional genes of CoA biosynthesis (CAB2, CAB3, HAL3, CAB4, and CAB5). In these strains, the level of CoA nucleotides was 15-fold increased, compared to a reference strain without additional CAB genes. Overexpression of wild-type CAB1 instead of CAB1 W331R turned out as substantially less effective (fourfold increase of CoA nucleotides). Supplementation of overproducing strains with additional pantothenate could further elevate the level of CoA (2.3-fold). Minor increases were observed after overexpression of FEN2 (encoding a pantothenate permease) and deletion of PCD1 (CoA-specific phosphatase). We conclude that the strategy described in this work may improve the efficiency of biotechnological applications depending on acetyl-CoA. Key points • A gene encoding a hyperactive yeast pantothenate kinase (PanK) was constructed. • Overexpression of CoA biosynthetic genes elevated CoA nucleotides 15-fold. • Supplementation with pantothenate further increased the level of CoA nucleotides.


Assuntos
Acetilcoenzima A/biossíntese , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Saccharomyces cerevisiae , Vias Biossintéticas/genética , Microbiologia Industrial , Microrganismos Geneticamente Modificados , Saccharomyces cerevisiae/genética
4.
PLoS Biol ; 18(11): e3000981, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33253182

RESUMO

The metabolite acetyl-coenzyme A (acetyl-CoA) serves as an essential element for a wide range of cellular functions including adenosine triphosphate (ATP) production, lipid synthesis, and protein acetylation. Intracellular acetyl-CoA concentrations are associated with nutrient availability, but the mechanisms by which a cell responds to fluctuations in acetyl-CoA levels remain elusive. Here, we generate a cell system to selectively manipulate the nucleo-cytoplasmic levels of acetyl-CoA using clustered regularly interspaced short palindromic repeat (CRISPR)-mediated gene editing and acetate supplementation of the culture media. Using this system and quantitative omics analyses, we demonstrate that acetyl-CoA depletion alters the integrity of the nucleolus, impairing ribosomal RNA synthesis and evoking the ribosomal protein-dependent activation of p53. This nucleolar remodeling appears to be mediated through the class IIa histone deacetylases (HDACs). Our findings highlight acetylation-mediated control of the nucleolus as an important hub linking acetyl-CoA fluctuations to cellular stress responses.


Assuntos
Acetilcoenzima A/biossíntese , Nucléolo Celular/metabolismo , ATP Citrato (pro-S)-Liase/deficiência , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Acetatos/metabolismo , Acetilação , Linhagem Celular , Nucléolo Celular/ultraestrutura , Expressão Gênica , Técnicas de Inativação de Genes , Células HCT116 , Histona Desacetilases/metabolismo , Humanos , Modelos Biológicos , Proteínas Nucleares/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas Ribossômicas/metabolismo , Proteína Supressora de Tumor p53/metabolismo
5.
Tissue Cell ; 66: 101381, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32933704

RESUMO

Male infertility is a global problem in modern society of which capacitating defects are a major cause. Previous studies have demonstrated that Ca2+ ionophore A23187 can make mouse sperm capable of fertilizing in vitro, which may aid in clinical treatment of capacitating defects. However, the detailed role and mechanism of Ca2+ in the capacitating process are still unclear especially how A23187 quickly renders sperm immotile and inhibits cAMP/PKA-mediated phosphorylation. We report that A23187 induces a Ca2+ flux in the mitochondria enriched sperm tail and excess Ca2+ inhibits key metabolic enzymes involved in acetyl-CoA biosynthesis, TCA cycle and electron transport chain pathways resulting in reduced ATP and overall energy production, however this flux does not destroy the structure of the sperm tail. Due to the decrease in ATP production, which is the main phosphate group donator and the power of sperm, the sperm is rendered immobile and PKA-mediated phosphorylation is inhibited. Our study proposed a possible mechanism through which A23187 reduces sperm motility and PKA-mediated phosphorylation from ATP generation, thus providing basic data for exploring the functional roles of Ca2+ in sperm in the future.


Assuntos
Trifosfato de Adenosina/biossíntese , Calcimicina/farmacologia , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Ionóforos/farmacologia , Motilidade dos Espermatozoides/efeitos dos fármacos , Acetilcoenzima A/biossíntese , Animais , Ciclo do Ácido Cítrico/efeitos dos fármacos , Transporte de Elétrons/efeitos dos fármacos , Metabolismo Energético/efeitos dos fármacos , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Capacitação Espermática/efeitos dos fármacos , Cauda do Espermatozoide/efeitos dos fármacos , Cauda do Espermatozoide/metabolismo , Cauda do Espermatozoide/ultraestrutura
6.
Int J Mol Sci ; 21(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947972

RESUMO

Primary liver cancer is predicted to be the sixth most common cancer and the fourth leading cause of cancer mortality worldwide. Recent studies identified nonalcoholic fatty liver disease (NAFLD) as the underlying cause in 13-38.2% of patients with hepatocellular carcinoma unrelated to viral hepatitis and alcohol abuse. NAFLD progresses to nonalcoholic steatohepatitis (NASH), which increases the risk for the development of liver fibrosis, cirrhosis, and hepatocellular carcinoma. NAFLD is characterized by dysregulation of lipid metabolism. In addition, lipid metabolism is effected not only in NAFLD, but also in a broad range of chronic liver diseases and tumor development. Cancer cells manipulate a variety of metabolic pathways, including lipid metabolism, in order to build up their own cellular components. Identifying tumor dependencies on lipid metabolism would provide options for novel targeting strategies. This review article summarizes the research evidence on metabolic reprogramming and focuses on lipid metabolism in NAFLD, NASH, fibrosis, and cancer. As alternative routes of acetyl-CoA production for fatty acid synthesis, topics on glutamine and acetate metabolism are included. Further, studies on small compound inhibitors targeting lipid metabolism are discussed. Understanding reprogramming strategies in liver diseases, as well as the visualization of the metabolism reprogramming networks, could uncover novel therapeutic options.


Assuntos
Acetatos/metabolismo , Carcinoma Hepatocelular/metabolismo , Glutamina/metabolismo , Lipídeos/biossíntese , Neoplasias Hepáticas/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Acetilcoenzima A/biossíntese , Aciltransferases/metabolismo , Ensaios Clínicos como Assunto , Ácidos Graxos Dessaturases/metabolismo , Ácidos Graxos/biossíntese , Fibrose , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Redes e Vias Metabólicas , Transdução de Sinais , Proteínas de Ligação a Elemento Regulador de Esterol/metabolismo
7.
Nat Commun ; 10(1): 4255, 2019 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-31534141

RESUMO

Caspase-10 belongs to the class of initiator caspases and is a close homolog of caspase-8. However, the lack of caspase-10 in mice and limited substrate repertoire restricts the understanding of its physiological functions. Here, we report that ATP-citrate lyase (ACLY) is a caspase-10 substrate. Caspase-10 cleaves ACLY at the conserved Asp1026 site under conditions of altered metabolic homeostasis. Cleavage of ACLY abrogates its enzymatic activity and suppresses the generation of acetyl-CoA, which is critical for lipogenesis and histone acetylation. Thus, caspase-10-mediated ACLY cleavage results in reduced intracellular lipid levels and represses GCN5-mediated histone H3 and H4 acetylation. Furthermore, decline in GCN5 activity alters the epigenetic profile, resulting in downregulation of proliferative and metastatic genes. Thus caspase-10 suppresses ACLY-promoted malignant phenotype. These findings expand the substrate repertoire of caspase-10 and highlight its pivotal role in inhibiting tumorigenesis through metabolic and epigenetic mechanisms.


Assuntos
ATP Citrato (pro-S)-Liase/antagonistas & inibidores , Carcinogênese/patologia , Caspase 10/metabolismo , Epigênese Genética/genética , Neoplasias/patologia , Células A549 , Acetilcoenzima A/biossíntese , Acetilação , Animais , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Células HCT116 , Células HEK293 , Histonas/metabolismo , Humanos , Lipogênese/fisiologia , Camundongos , Camundongos Nus , Transplante de Neoplasias , Transplante Heterólogo , Fatores de Transcrição de p300-CBP/metabolismo
8.
Nat Immunol ; 20(9): 1186-1195, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31384058

RESUMO

Macrophages are activated during microbial infection to coordinate inflammatory responses and host defense. Here we find that in macrophages activated by bacterial lipopolysaccharide (LPS), mitochondrial glycerol 3-phosphate dehydrogenase (GPD2) regulates glucose oxidation to drive inflammatory responses. GPD2, a component of the glycerol phosphate shuttle, boosts glucose oxidation to fuel the production of acetyl coenzyme A, acetylation of histones and induction of genes encoding inflammatory mediators. While acute exposure to LPS drives macrophage activation, prolonged exposure to LPS triggers tolerance to LPS, where macrophages induce immunosuppression to limit the detrimental effects of sustained inflammation. The shift in the inflammatory response is modulated by GPD2, which coordinates a shutdown of oxidative metabolism; this limits the availability of acetyl coenzyme A for histone acetylation at genes encoding inflammatory mediators and thus contributes to the suppression of inflammatory responses. Therefore, GPD2 and the glycerol phosphate shuttle integrate the extent of microbial stimulation with glucose oxidation to balance the beneficial and detrimental effects of the inflammatory response.


Assuntos
Glucose/metabolismo , Glicerolfosfato Desidrogenase/metabolismo , Ativação de Macrófagos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Acetilcoenzima A/biossíntese , Acetilação , Animais , Feminino , Histonas/metabolismo , Inflamação/patologia , Lipopolissacarídeos , Macrófagos/citologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Oxirredução
9.
Trends Cell Biol ; 29(9): 695-703, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31160120

RESUMO

Acetate and the related metabolism of acetyl-coenzyme A (acetyl-CoA) confer numerous metabolic functions, including energy production, lipid synthesis, and protein acetylation. Despite its importance as a nutrient for cellular metabolism, its source has been unclear. Recent studies have provided evidence to support the existence of a de novo pathway for acetate production derived from pyruvate, the end product of glycolysis. This mechanism of pyruvate-derived acetate generation could have far-reaching implications for the regulation of central carbon metabolism. In this Opinion, we discuss our current understanding of acetate metabolism in the context of cell-autonomous metabolic regulation, cell-cell interactions, and systemic physiology. Applications relevant to health and disease, particularly cancer, are emphasized.


Assuntos
Acetatos/metabolismo , Glucose/metabolismo , Neoplasias/metabolismo , Acetilcoenzima A/biossíntese , Acetilcoenzima A/metabolismo , Acetilação , Glicólise , Humanos , Lipogênese , Mitocôndrias/metabolismo
10.
Metabolism ; 88: 12-21, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30172756

RESUMO

OBJECTIVE: The expansion capacity of white adipose tissue influences the distribution of fat depots in the body, the visceral accumulation of which is linked to metabolic syndrome, regardless of the degree of obesity of the subjects. Alterations in the adipose tissue-derived mesenchymal stem cells (ASCs) may contribute to the adipose tissue remodeling associated with metabolic syndrome and impact the regional distribution of adipose tissue by generating inherently dysfunctional adipocytes. Here we examine the expression levels of acetyl-CoA-producing enzymes and their relationship with the lipogenic, antioxidant and oxidative potential of adipocytes generated from visceral ASCs (adipo-visASCs) and subcutaneous ASCs (adipo-subASCs) from subjects with different metabolic profiles. MATERIALS/METHODS: Paired samples of visceral and subcutaneous adipose tissue were processed to isolate the respective ASCs from normal-weight (Nw) subjects and obese patients with metabolic syndrome (METS) and without METS (NonMETS). qPCR was used to quantify the expression levels of the genes studied in both adipo-ASCs from the patient groups and those generated after silencing by small interfering RNA of acetyl-CoA-producing enzymes. The accumulation of lipids was quantified by absorbance. RESULTS: No significant differences in cell yield or CD34+CD31-CD45- ASC percentage were observed between the different patient groups. Unlike adipo-visASCs, adipo-subASCs from METS patients showed a decrease in expression levels of acetyl-CoA-producing enzymes as well as proteins linked to lipogenesis, antioxidant defense and fatty acid oxidation. Transcriptional silencing of acetyl-CoA-producing enzymes in adipo-subASCs reduced lipid accumulation and affected transcription levels of lipogenic and antioxidant defense proteins. CONCLUSIONS: Adipo-subASCs may be more susceptible than adipo-visASCs to deterioration of the lipogenic, oxidative and antioxidant potential associated with metabolic syndrome. Intrinsic alterations in transcription levels of acetyl-CoA-producing enzymes may contribute to the metabolic reprogramming of adipo-subASCs from METS patients.


Assuntos
Acetilcoenzima A/biossíntese , Células-Tronco Mesenquimais/patologia , Síndrome Metabólica/enzimologia , Síndrome Metabólica/patologia , ATP Citrato (pro-S)-Liase/genética , Acetato-CoA Ligase/genética , Adulto , Antioxidantes/metabolismo , Carboxiliases/genética , Feminino , Inativação Gênica , Humanos , Lipogênese , Masculino , Células-Tronco Mesenquimais/metabolismo , Síndrome Metabólica/genética , Pessoa de Meia-Idade , Oxirredução , Transcrição Gênica
11.
Nat Commun ; 9(1): 2464, 2018 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-29942010

RESUMO

Most tumor cells take up more glucose than normal cells. Splicing dysregulation is one of the molecular hallmarks of cancer. However, the role of splicing factor in glucose metabolism and tumor development remains poorly defined. Here, we show that upon glucose intake, the splicing factor SRSF5 is specifically induced through Tip60-mediated acetylation on K125, which antagonizes Smurf1-mediated ubiquitylation. SRSF5 promotes the alternative splicing of CCAR1 to produce CCAR1S proteins, which promote tumor growth by enhancing glucose consumption and acetyl-CoA production. Conversely, upon glucose starvation, SRSF5 is deacetylated by HDAC1, and ubiquitylated by Smurf1 on the same lysine, resulting in proteasomal degradation of SRSF5. The CCAR1L proteins accumulate to promote apoptosis. Importantly, SRSF5 is hyperacetylated and upregulated in human lung cancers, which correlates with increased CCAR1S expression and tumor progression. Thus, SRSF5 responds to high glucose to promote cancer development, and SRSF5-CCAR1 axis may be valuable targets for cancer therapeutics.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Ciclo Celular/metabolismo , Transformação Celular Neoplásica/patologia , Glucose/metabolismo , Neoplasias Pulmonares/patologia , Fatores de Processamento de Serina-Arginina/metabolismo , Células A549 , Acetilcoenzima A/biossíntese , Acetilação , Processamento Alternativo/genética , Animais , Apoptose/genética , Proteínas Reguladoras de Apoptose/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Progressão da Doença , Células HEK293 , Células HeLa , Células Hep G2 , Histona Desacetilase 1/metabolismo , Humanos , Lisina Acetiltransferase 5/metabolismo , Células MCF-7 , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação
12.
J Biosci Bioeng ; 123(5): 625-633, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28214243

RESUMO

Almost all synthetic pathways for biofuel production are designed to require endogenous metabolites in glycolysis, such as phosphoenolpyruvate, pyruvate, and acetyl-CoA. However, such metabolites are also required for bacterial cell growth. To reduce the metabolic imbalance between cell growth and target chemical production, we previously constructed a metabolic toggle switch (MTS) as a conditional flux redirection tool controlling metabolic flux of TCA cycle toward isopropanol production. This approach succeeded to improve the isopropanol production titer and yield while ensuring sufficient cell growth. However, excess accumulation of pyruvate, the precursor for acetyl-CoA synthesis, was also observed. In this study, for efficient conversation of pyruvate to acetyl-CoA (pyruvate oxidation), we designed a synthetic metabolic bypass composed of poxB and acs with the MTS for acetyl-CoA supply from the excess pyruvate. When this designed bypass was expressed at the appropriate expression level associated with the conditional metabolic flux redirection, pyruvate accumulation was prevented, and the isopropanol production titer and yield were improved. Final isopropanol production titer of strain harboring MTS with the synthetic metabolic bypass improved 4.4-fold compared with strain without metabolic flux regulation, and it was 1.3-fold higher than that of strain harboring the conventional MTS alone. Additionally, glucose consumption was also improved 1.7-fold compared with strain without metabolic flux regulation. On the other hand, introduction of the synthetic metabolic bypass alone showed no improvement in isopropanol production and glucose consumption. These results showed that the improvement in bio-production process caused by synergy between the MTS and the synthetic metabolic bypass.


Assuntos
2-Propanol/metabolismo , Acetilcoenzima A/metabolismo , Escherichia coli/metabolismo , Engenharia Metabólica , 2-Propanol/provisão & distribuição , Acetilcoenzima A/biossíntese , Vias Biossintéticas , Ciclo do Ácido Cítrico , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/metabolismo , Glucose/metabolismo , Glicólise , Análise do Fluxo Metabólico , Ácido Pirúvico/metabolismo
13.
Genes Dev ; 30(21): 2345-2369, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881599

RESUMO

To make the appropriate developmental decisions or maintain homeostasis, cells and organisms must coordinate the expression of their genome and metabolic state. However, the molecular mechanisms that relay environmental cues such as nutrient availability to the appropriate gene expression response remain poorly understood. There is a growing awareness that central components of intermediary metabolism are cofactors or cosubstrates of chromatin-modifying enzymes. As such, their concentrations constitute a potential regulatory interface between the metabolic and chromatin states. In addition, there is increasing evidence for a direct involvement of classic metabolic enzymes in gene expression control. These dual-function proteins may provide a direct link between metabolic programing and the control of gene expression. Here, we discuss our current understanding of the molecular mechanisms connecting metabolism to gene expression and their implications for development and disease.


Assuntos
Núcleo Celular/enzimologia , Regulação da Expressão Gênica/genética , Metabolismo/genética , Acetilcoenzima A/biossíntese , Acetilcoenzima A/metabolismo , Animais , Núcleo Celular/metabolismo , Cromatina/química , Cromatina/metabolismo , Histonas/metabolismo , Humanos , NAD/metabolismo , Neoplasias/enzimologia , Neoplasias/fisiopatologia , Células-Tronco Pluripotentes/metabolismo
14.
Nature ; 537(7622): 694-697, 2016 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-27654918

RESUMO

A bio-based economy has the potential to provide sustainable substitutes for petroleum-based products and new chemical building blocks for advanced materials. We previously engineered Saccharomyces cerevisiae for industrial production of the isoprenoid artemisinic acid for use in antimalarial treatments. Adapting these strains for biosynthesis of other isoprenoids such as ß-farnesene (C15H24), a plant sesquiterpene with versatile industrial applications, is straightforward. However, S. cerevisiae uses a chemically inefficient pathway for isoprenoid biosynthesis, resulting in yield and productivity limitations incompatible with commodity-scale production. Here we use four non-native metabolic reactions to rewire central carbon metabolism in S. cerevisiae, enabling biosynthesis of cytosolic acetyl coenzyme A (acetyl-CoA, the two-carbon isoprenoid precursor) with a reduced ATP requirement, reduced loss of carbon to CO2-emitting reactions, and improved pathway redox balance. We show that strains with rewired central metabolism can devote an identical quantity of sugar to farnesene production as control strains, yet produce 25% more farnesene with that sugar while requiring 75% less oxygen. These changes lower feedstock costs and dramatically increase productivity in industrial fermentations which are by necessity oxygen-constrained. Despite altering key regulatory nodes, engineered strains grow robustly under taxing industrial conditions, maintaining stable yield for two weeks in broth that reaches >15% farnesene by volume. This illustrates that rewiring yeast central metabolism is a viable strategy for cost-effective, large-scale production of acetyl-CoA-derived molecules.


Assuntos
Reatores Biológicos , Carbono/metabolismo , Engenharia Metabólica , Saccharomyces cerevisiae/metabolismo , Terpenos/metabolismo , Acetilcoenzima A/biossíntese , Acetilcoenzima A/metabolismo , Trifosfato de Adenosina/metabolismo , Vias Biossintéticas , Metabolismo dos Carboidratos , Dióxido de Carbono/metabolismo , Citosol/metabolismo , Fermentação , Oxirredução , Oxigênio/metabolismo , Saccharomyces cerevisiae/enzimologia , Sesquiterpenos/metabolismo
15.
J Lipid Res ; 57(11): 2040-2050, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27561298

RESUMO

Long-chain bases (LCBs) are the precursors to ceramide and sphingolipids in eukaryotic cells. They are formed by the action of serine palmitoyl-CoA transferase (SPT), a complex of integral membrane proteins located in the endoplasmic reticulum. SPT activity is negatively regulated by Orm proteins to prevent the toxic overaccumulation of LCBs. Here we show that overaccumulation of LCBs in yeast results in their conversion to a hitherto undescribed LCB derivative, an LCB vinyl ether. The LCB vinyl ether is predominantly formed from phytosphingosine (PHS) as revealed by conversion of odd chain length tracers C17-dihydrosphingosine and C17-PHS into the corresponding LCB vinyl ether derivative. PHS vinyl ether formation depends on ongoing acetyl-CoA synthesis, and its levels are elevated when the LCB degradative pathway is blocked by deletion of the major LCB kinase, LCB4, or the LCB phosphate lyase, DPL1. PHS vinyl ether formation thus appears to constitute a shunt for the LCB phosphate- and lyase-dependent degradation of LCBs. Consistent with a role of PHS vinyl ether formation in LCB detoxification, the lipid is efficiently exported from the cells.


Assuntos
Ceramidas/metabolismo , Serina C-Palmitoiltransferase/metabolismo , Esfingolipídeos/metabolismo , Compostos de Vinila/metabolismo , Acetilcoenzima A/biossíntese , Acetilcoenzima A/química , Ceramidas/química , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Fosfatos/química , Fosfatos/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Serina C-Palmitoiltransferase/química , Esfingolipídeos/química , Esfingosina/análogos & derivados , Esfingosina/química , Esfingosina/metabolismo , Compostos de Vinila/química
16.
Biochem Biophys Res Commun ; 471(4): 646-51, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26915799

RESUMO

Antizyme (AZ) regulates cellular polyamines (i.e., putrescine, spermidine, and spermine) through binding to ornithine decarboxylase and subsequent ubiquitin-independent degradation of the enzyme protein by the 26S proteasome. Screening for AZ-binding proteins using a yeast two-hybrid system identified ATP citrate lyase (ACLY), a cytosolic enzyme which catalyzes the production of acetyl-CoA that is used for lipid anabolism or acetylation of cellular components. We confirmed that both AZ1 and AZ2 bind to ACLY and AZ colocalizes with ACLY to the cytoplasm. Unexpectedly, neither AZ1 nor AZ2 accelerated ACLY degradation. Additionally, purified AZ, particularly AZ1, increased the activity of purified ACLY in a dose-dependent manner in vitro, suggesting that AZ activates ACLY through protein-protein interaction. Polyamines themselves had no effect on the ACLY activity in vitro. Knockdown of AZ1 and/or AZ2 in human cancer cells significantly decreased the ACLY activity as well as cellular levels of acetyl-CoA and cholesterol. Our results are the first to show the crosstalk between polyamine and acetyl-CoA metabolism. We hypothesize that AZ may promote acetyl-CoA synthesis to downregulate spermidine and spermine through acetylation.


Assuntos
ATP Citrato (pro-S)-Liase/metabolismo , Acetilcoenzima A/biossíntese , Neoplasias/enzimologia , Proteínas/metabolismo , Espermidina/metabolismo , Acetilação , Proteínas de Transporte , Técnicas de Silenciamento de Genes , Humanos , Lipogênese , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas/genética , Proteólise , Técnicas do Sistema de Duplo-Híbrido
17.
Amino Acids ; 48(2): 549-58, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26475290

RESUMO

Taurine is a ß-amino acid found in high concentrations in excitable tissues, including the heart. A significant reduction in myocardial taurine content leads to the development of a unique dilated, atrophic cardiomyopathy. One of the major functions of taurine in the heart is the regulation of the respiratory chain. Hence, we tested the hypothesis that taurine deficiency-mediated defects in respiratory chain function lead to impaired energy metabolism and reduced ATP generation. We found that while the rate of glycolysis was significantly enhanced in the taurine-deficient heart, glucose oxidation was diminished. The major site of reduced glucose oxidation was pyruvate dehydrogenase, an enzyme whose activity is reduced by the increase in the NADH/NAD+ ratio and by decreased availability of pyruvate for oxidation to acetyl CoA and changes in [Mg2+]i. Also diminished in the taurine-deficient heart was the oxidation of two other precursors of acetyl CoA, endogenous fatty acids and exogenous acetate. In the taurine-deficient heart, impaired citric acid cycle activity decreased both acetate oxidation and endogenous fatty acid oxidation, but reductions in the activity of the mitochondrial transporter, carnitine palmitoyl transferase, appeared to also contribute to the reduction in fatty acid oxidation. These changes diminished the rate of ATP production, causing a decline in the phosphocreatine/ATP ratio, a sign of reduced energy status. The findings support the hypothesis that the taurine-deficient heart is energy starved primarily because of impaired respiratory chain function, an increase in the NADH/NAD+ ratio and diminished long chain fatty acid uptake by the mitochondria. The results suggest that improved energy metabolism contributes to the beneficial effect of taurine therapy in patients suffering from heart failure.


Assuntos
Transporte de Elétrons/genética , Metabolismo Energético/genética , Coração/fisiopatologia , Glicoproteínas de Membrana/genética , Proteínas de Membrana Transportadoras/genética , Taurina/deficiência , Acetilcoenzima A/biossíntese , Trifosfato de Adenosina/biossíntese , Animais , Carnitina O-Palmitoiltransferase/metabolismo , Ciclo do Ácido Cítrico/fisiologia , Metabolismo Energético/fisiologia , Glucose/metabolismo , Glicólise/genética , Magnésio/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/metabolismo , NAD/metabolismo , Oxirredução , Palmitatos/metabolismo , Ácido Pirúvico/metabolismo , Ratos , Ratos Wistar
19.
Mol Cell ; 56(3): 414-424, 2014 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-25458842

RESUMO

Alternative modes of metabolism enable cells to resist metabolic stress. Inhibiting these compensatory pathways may produce synthetic lethality. We previously demonstrated that glucose deprivation stimulated a pathway in which acetyl-CoA was formed from glutamine downstream of glutamate dehydrogenase (GDH). Here we show that import of pyruvate into the mitochondria suppresses GDH and glutamine-dependent acetyl-CoA formation. Inhibiting the mitochondrial pyruvate carrier (MPC) activates GDH and reroutes glutamine metabolism to generate both oxaloacetate and acetyl-CoA, enabling persistent tricarboxylic acid (TCA) cycle function. Pharmacological blockade of GDH elicited largely cytostatic effects in culture, but these effects became cytotoxic when combined with MPC inhibition. Concomitant administration of MPC and GDH inhibitors significantly impaired tumor growth compared to either inhibitor used as a single agent. Together, the data define a mechanism to induce glutaminolysis and uncover a survival pathway engaged during compromised supply of pyruvate to the mitochondria.


Assuntos
Sobrevivência Celular , Ciclo do Ácido Cítrico , Glutamina/metabolismo , Ácido Pirúvico/metabolismo , Acetilcoenzima A/biossíntese , Animais , Antineoplásicos/farmacologia , Transporte Biológico , Catequina/análogos & derivados , Catequina/farmacologia , Linhagem Celular Tumoral , Ácido Cítrico/metabolismo , Ácidos Cumáricos/farmacologia , Glucose/metabolismo , Humanos , Metabolismo dos Lipídeos , Masculino , Camundongos Nus , Mitocôndrias/metabolismo , Oxirredução , Desidrogenase do Álcool de Açúcar/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cell ; 158(1): 84-97, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-24995980

RESUMO

DNA transcription, replication, and repair are regulated by histone acetylation, a process that requires the generation of acetyl-coenzyme A (CoA). Here, we show that all the subunits of the mitochondrial pyruvate dehydrogenase complex (PDC) are also present and functional in the nucleus of mammalian cells. We found that knockdown of nuclear PDC in isolated functional nuclei decreased the de novo synthesis of acetyl-CoA and acetylation of core histones. Nuclear PDC levels increased in a cell-cycle-dependent manner and in response to serum, epidermal growth factor, or mitochondrial stress; this was accompanied by a corresponding decrease in mitochondrial PDC levels, suggesting a translocation from the mitochondria to the nucleus. Inhibition of nuclear PDC decreased acetylation of specific lysine residues on histones important for G1-S phase progression and expression of S phase markers. Dynamic translocation of mitochondrial PDC to the nucleus provides a pathway for nuclear acetyl-CoA synthesis required for histone acetylation and epigenetic regulation.


Assuntos
Acetilcoenzima A/biossíntese , Núcleo Celular/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Epigênese Genética , Histonas/metabolismo , Humanos , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA