Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 791
Filtrar
1.
Int J Mol Sci ; 22(14)2021 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-34298986

RESUMO

Alzheimer's disease (AD) is the leading cause of dementia and cognitive function impairment. The multi-faced character of AD requires new drug solutions based on substances that incorporate a wide range of activities. Antioxidants, AChE/BChE inhibitors, BACE1, or anti-amyloid platelet aggregation substances are most desirable because they improve cognition with minimal side effects. Plant secondary metabolites, used in traditional medicine and pharmacy, are promising. Among these are the monoterpenes-low-molecular compounds with anti-inflammatory, antioxidant, enzyme inhibitory, analgesic, sedative, as well as other biological properties. The presented review focuses on the pathophysiology of AD and a selected group of anti-neurodegenerative monoterpenes and monoterpenoids for which possible mechanisms of action have been explained. The main body of the article focuses on monoterpenes that have shown improved memory and learning, anxiolytic and sleep-regulating effects as determined by in vitro and in silico tests-followed by validation in in vivo models.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Monoterpenos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Nootrópicos/uso terapêutico , Fitoterapia , Acetilcolina/fisiologia , Acetilcolinesterase/química , Doença de Alzheimer/metabolismo , Animais , Ansiolíticos/farmacologia , Ansiolíticos/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Apolipoproteínas E/genética , Apolipoproteínas E/fisiologia , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Simulação por Computador , Avaliação Pré-Clínica de Medicamentos , Encefalite/complicações , Encefalite/metabolismo , Humanos , Iridoides/uso terapêutico , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Camundongos , Modelos Moleculares , Monoterpenos/farmacologia , Proteínas do Tecido Nervoso/fisiologia , Fármacos Neuroprotetores/farmacologia , Nootrópicos/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/farmacologia , Polifenóis/uso terapêutico , Conformação Proteica , Ratos , Distúrbios do Início e da Manutenção do Sono/tratamento farmacológico , Distúrbios do Início e da Manutenção do Sono/etiologia
2.
J Neurosci ; 41(11): 2318-2328, 2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33627325

RESUMO

Neuromodulatory communication among various neurons and non-neuronal cells mediates myriad physiological and pathologic processes, yet defining regulatory and functional features of neuromodulatory transmission remains challenging because of limitations of available monitoring tools. Recently developed genetically encoded neuromodulatory transmitter sensors, when combined with superresolution and/or deconvolution microscopy, allow the first visualization of neuromodulatory transmission with nanoscale or microscale spatiotemporal resolution. In vitro and in vivo experiments have validated several high-performing sensors to have the qualities necessary for demarcating fundamental synaptic properties of neuromodulatory transmission, and initial analysis has unveiled unexpected fine control and precision of neuromodulation. These new findings underscore the importance of synaptic dynamics in synapse-, subcellular-, and circuit-specific neuromodulation, as well as the prospect of genetically encoded transmitter sensors in expanding our knowledge of various behaviors and diseases, including Alzheimer's disease, sleeping disorders, tumorigenesis, and many others.


Assuntos
Acetilcolina/fisiologia , Monoaminas Biogênicas/fisiologia , Comunicação Celular/genética , Neurônios/fisiologia , Neurotransmissores/fisiologia , Sinapses/fisiologia , Transmissão Sináptica/fisiologia , Animais , Humanos
3.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33361149

RESUMO

Acetylcholine (ACh) promotes various cell migrations in vitro, but there are few investigations into this nonsynaptic role of ACh signaling in vivo. Here we investigate the function of a muscarinic receptor on an epithelial cell migration in Caenorhabditis elegans We show that the migratory gonad leader cell, the linker cell (LC), uses an M1/M3/M5-like muscarinic ACh receptor GAR-3 to receive extrasynaptic ACh signaling from cholinergic neurons for its migration. Either the loss of the GAR-3 receptor in the LC or the inhibition of ACh release from cholinergic neurons resulted in migratory path defects. The overactivation of the GAR-3 muscarinic receptor caused the LC to reverse its orientation through its downstream effectors Gαq/egl-30, PLCß/egl-8, and TRIO/unc-73 This reversal response only occurred in the fourth larval stage, which corresponds to the developmental time when the GAR-3::yellow fluorescent protein receptor in the membrane relocalizes from a uniform to an asymmetric distribution. These findings suggest a role for the GAR-3 muscarinic receptor in determining the direction of LC migration.


Assuntos
Acetilcolina/metabolismo , Movimento Celular/fisiologia , Receptores Muscarínicos/metabolismo , Acetilcolina/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/fisiologia , Células Epiteliais/metabolismo , Contração Muscular/fisiologia , Terminações Pré-Sinápticas/metabolismo , Receptores Muscarínicos/fisiologia , Transdução de Sinais
4.
Mol Neurobiol ; 58(3): 1017-1023, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33078369

RESUMO

COVID-19, the global threat to humanity, shares etiological cofactors with multiple diseases including Alzheimer's disease (AD). Understanding the common links between COVID-19 and AD would harness strategizing therapeutic approaches against both. Considering the urgency of formulating COVID-19 medication, its AD association and manifestations have been reviewed here, putting emphasis on memory and learning disruption. COVID-19 and AD share common links with respect to angiotensin-converting enzyme 2 (ACE2) receptors and pro-inflammatory markers such as interleukin-1 (IL-1), IL-6, cytoskeleton-associated protein 4 (CKAP4), galectin-9 (GAL-9 or Gal-9), and APOE4 allele. Common etiological factors and common manifestations described in this review would aid in developing therapeutic strategies for both COVID-19 and AD and thus impact on eradicating the ongoing global threat. Thus, people suffering from COVID-19 or who have come round of it as well as people at risk of developing AD or already suffering from AD, would be benefitted.


Assuntos
Doença de Alzheimer/fisiopatologia , COVID-19/fisiopatologia , SARS-CoV-2/fisiologia , Acetilcolina/fisiologia , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/complicações , Enzima de Conversão de Angiotensina 2/fisiologia , Animais , Anosmia/etiologia , Apolipoproteína E4/genética , Encéfalo/patologia , Encéfalo/virologia , COVID-19/complicações , Síndrome da Liberação de Citocina/etiologia , Citocinas/fisiologia , Feminino , Galectinas/fisiologia , Humanos , Hipóxia/etiologia , Interleucinas/fisiologia , Masculino , Proteínas de Membrana/fisiologia , Camundongos , Receptores Virais/fisiologia , Fatores Sexuais , Fumar/efeitos adversos
5.
STAR Protoc ; 1(3): 100193, 2020 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-33377087

RESUMO

Cholinergic neurons control numerous primate-specific and sexually dimorphic brain functions. Here, we present our differentiation protocol for the closely related human female and male neuroblastoma-originated cell lines LA-N-2 and LA-N-5. Pro-cholinergic differentiation (with upregulation of choline acetyltransferase) of both lines can be achieved using neurokines such as ciliary neurotrophic factor (CNTF). Comparative RNA sequencing and mass spectrometry analyses between those two cell lines, supported by experimental intervention, will deepen our understanding of cholinergic systems in human psychiatric and neurologic disease. For complete details on the use and execution of this protocol, please refer to Lobentanzer et al. (2019).


Assuntos
Técnicas de Cultura de Células/métodos , Neurônios Colinérgicos/metabolismo , Neurônios Colinérgicos/fisiologia , Acetilcolina/fisiologia , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Células Cultivadas , Colina O-Acetiltransferase/metabolismo , Fator Neurotrófico Ciliar/metabolismo , Feminino , Humanos , Masculino , Proteínas do Tecido Nervoso/fisiologia , Células-Tronco Neurais/metabolismo , Neuroblastoma/metabolismo , Neuroblastoma/fisiopatologia , Células Tumorais Cultivadas
6.
Int J Neurosci ; 130(8): 788-803, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31906749

RESUMO

Purpose of the study: Multiple sclerosis is a CD4+ T cell mediated autoimmune disease characterized by inflammatory demyelination in the central nervous system. Acetylcholine (ACh) has been reported to be released by T lymphocytes and plays as an inflammation and immune regulator through the participation of T cells. However, both attenuated and aggravated effects of ACh in inflammation were found. The aim of this study is to further investigate the role of ACh in experimental autoimmune encephalomyelitis (EAE).Materials and methods: The left cervical vagotomy was performed to inhibit ACh release with the sham-operation as control. ACh in cerebral cortex and splenocytes culture supernatants of EAE mice were determined. Interleukin-6, interferon-γ, interleukin-4 and interleukin-17A in brain and splenocytes culture supernatants were evaluated by enzyme-linked immunosorbent assay. The proportion of CD4+ T cells and subsets were assessed by flow cytometry.Results: Compared with the sham-operation group, improved clinical and pathological parameters as well as decreased interleukin-6, interferon-γ, interleukin-4 and interleukin-17A were found in EAE mice with vagotomy suppressing the ACh. Marked reductions of CD4+ and CD4+ChAT+ cells, as well as significant decrease in Th1 with a bias to Th2 in Th1/Th2 balance and increased ChAT+Th2 proportion in the spleen were also observed in vagotomized mice.Conclusions: These findings emphasize that inhibiting ACh release by vagotomy can ameliorate the exacerbation of EAE through suppressing CD4+ T cells proliferation and regulating the differentiation of Th1, Th2 and Th17.


Assuntos
Acetilcolina/fisiologia , Linfócitos T CD4-Positivos/fisiologia , Diferenciação Celular/fisiologia , Proliferação de Células/fisiologia , Encefalomielite Autoimune Experimental/metabolismo , Interferon gama/metabolismo , Interleucina-17/metabolismo , Interleucina-4/metabolismo , Interleucina-6/metabolismo , Células T Auxiliares Foliculares/fisiologia , Acetilcolina/metabolismo , Animais , Técnicas de Cultura de Células , Córtex Cerebral/metabolismo , Camundongos , Baço/metabolismo , Células Th1/fisiologia , Células Th17/fisiologia , Células Th2/fisiologia , Vagotomia
7.
Cereb Cortex ; 30(2): 488-504, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31210267

RESUMO

Neocortical GABAergic interneurons expressing vasoactive intestinal polypeptide (VIP) contribute to sensory processing, sensorimotor integration, and behavioral control. In contrast to other major subpopulations of GABAergic interneurons, VIP neurons show a remarkable diversity. Studying morphological and electrophysiological properties of VIP cells, we found a peculiar group of neurons in layer II/III of mouse primary somatosensory (barrel) cortex, which showed a highly dynamic burst firing behavior at resting membrane potential that switched to tonic mode at depolarized membrane potentials. Furthermore, we demonstrate that burst firing depends on T-type calcium channels. The burst-tonic switch could be induced by acetylcholine (ACh) and serotonin. ACh mediated a depolarization via nicotinic receptors whereas serotonin evoked a biphasic depolarization via ionotropic and metabotropic receptors in 48% of the population and a purely monophasic depolarization via metabotropic receptors in the remaining cells. These data disclose an electrophysiologically defined subpopulation of VIP neurons that via neuromodulator-induced changes in firing behavior is likely to regulate the state of cortical circuits in a profound manner.


Assuntos
Potenciais de Ação , Neurônios GABAérgicos/fisiologia , Córtex Somatossensorial/fisiologia , Peptídeo Intestinal Vasoativo/análise , Acetilcolina/administração & dosagem , Acetilcolina/fisiologia , Animais , Canais de Cálcio Tipo T/fisiologia , Agonistas Colinérgicos/administração & dosagem , Neurônios GABAérgicos/efeitos dos fármacos , Camundongos Transgênicos , Serotonina/administração & dosagem , Serotonina/fisiologia , Serotoninérgicos/administração & dosagem , Córtex Somatossensorial/diagnóstico por imagem
8.
Brain Res ; 1727: 146568, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31785233

RESUMO

BACKGROUND: Preoperative pain and impaired endogenous analgesia are risk factors of chronic postsurgical persistent pain (CPSP). A Chronic neuropathic pain model induced by spinal nerve ligation (SNL6W) shows impaired endogenous analgesia and delayed recovery from incisional pain. Repeated amitriptyline treatment can restore the endogenous analgesia, but its effects on delayed recovery are not clear. METHODS: A plantar incision was made on the side contralateral to the nerve ligation in SNL6W rats. Withdrawal thresholds were measured by von Frey filament test until 28 d after surgery. Amitriptyline (10 mg·kg-1·d-1) or vehicle was administered for 13 d perioperatively. To examine the roles of noradrenergic and cholinergic signals in the spinal dorsal horn, pharmacological antagonism, measurement of each neurotransmitter concentration, and immunohistochemistry were conducted. RESULTS: Recovery of the withdrawal threshold of SNL6W animals to pre-incision values required 28 d after surgery, while naive animals recovered within 14 d. Intrathecal injection of alpha2 adrenoceptor antagonist (idazoxan) or muscarinic cholinergic receptor antagonist (atropine) decreased the withdrawal threshold on POD14 and 21 in naive animals, but not in SNL6W rats. Repeated amitriptyline treatment attenuated the delayed recovery in SNL6W rats, and the effect was antagonized by muscarinic cholinergic receptor antagonist. Beside the concentration of acetylcholine and its synthetic enzyme were not altered by the treatment. CONCLUSIONS: Noradrenergic and cholinergic analgesia, which is necessary for normal recovery, is lost in the SNL6W rats. A strategy to enhance endogenous analgesia using antidepressants, rather than simple analgesia, may help to prevent CPSP in chronic pain patients.


Assuntos
Analgesia , Neuralgia/fisiopatologia , Ferida Cirúrgica/complicações , Acetilcolina/fisiologia , Animais , Modelos Animais de Doenças , Masculino , Neuralgia/prevenção & controle , Norepinefrina/fisiologia , Limiar da Dor , Dor Pós-Operatória/prevenção & controle , Ratos Sprague-Dawley , Corno Dorsal da Medula Espinal/efeitos dos fármacos
9.
J Intern Med ; 287(2): 120-133, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31710126

RESUMO

Acetylcholine (ACh) is best known as a neurotransmitter and was the first such molecule identified. ACh signalling in the neuronal cholinergic system has long been known to regulate numerous biological processes (reviewed by Beckmann and Lips). In actuality, ACh is a ubiquitous signalling molecule that is produced by numerous non-neuronal cell types and even by some single-celled organisms. Within multicellular organisms, a non-neuronal cholinergic system that includes the immune system functions in parallel with the neuronal cholinergic system. Several immune cell types both respond to ACh signals and can directly produce ACh. Recent work from our laboratory has demonstrated that the capacity to produce ACh is an intrinsic property of T cells responding to viral infection, and that this ability to produce ACh is dependent upon IL-21 signalling to the T cells. Furthermore, during infection this immune-derived ACh is necessary for the T cells to migrate into infected tissues. In this review, we will discuss the various sources of ACh that are relevant during immune responses and describe how ACh acts on immune cells to influence their functions. We will also address the clinical implications of this fascinating aspect of immunity, focusing on ACh's role in the migration of T cells during infection and cancer.


Assuntos
Acetilcolina/fisiologia , Sistema Imunitário/fisiologia , Inflamação/fisiopatologia , Animais , Movimento Celular/fisiologia , Humanos , Infecções/fisiopatologia , Neoplasias/fisiopatologia , Transdução de Sinais
10.
Elife ; 82019 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31032798

RESUMO

Most neurons do not simply convert inputs into firing rates. Instead, moment-to-moment firing rates reflect interactions between synaptic inputs and intrinsic currents. Few studies investigated how intrinsic currents function together to modulate output discharges and which of the currents attenuated by synthetic cholinergic ligands are actually modulated by endogenous acetylcholine (ACh). In this study we optogenetically stimulated cholinergic fibers in rat neocortex and find that ACh enhances excitability by reducing Ether-à-go-go Related Gene (ERG) K+ current. We find ERG mediates the late phase of spike-frequency adaptation in pyramidal cells and is recruited later than both SK and M currents. Attenuation of ERG during coincident depolarization and ACh release leads to reduced late phase spike-frequency adaptation and persistent firing. In neuronal ensembles, attenuating ERG enhanced signal-to-noise ratios and reduced signal correlation, suggesting that these two hallmarks of cholinergic function in vivo may result from modulation of intrinsic properties.


Assuntos
Acetilcolina/fisiologia , Adaptação Fisiológica , Canais de Potássio Éter-A-Go-Go/fisiologia , Neocórtex/fisiologia , Potenciais de Ação/fisiologia , Animais , Canais de Potássio Éter-A-Go-Go/efeitos dos fármacos , Feminino , Cinética , Masculino , Potenciais da Membrana , Neurônios , Bloqueadores dos Canais de Potássio/farmacologia , Células Piramidais/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/metabolismo
11.
Pharmacol Res ; 141: 236-248, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30616018

RESUMO

Much research now indicates that vagal nerve stimulation results in a systemic reduction in inflammatory cytokine production and an increase in anti-inflammatory cell populations that originates from the spleen. Termed the 'cholinergic anti-inflammatory pathway', therapeutic activation of this innate physiological response holds enormous promise for the treatment of inflammatory disease. Much controversy remains however, regarding the underlying physiological pathways mediating this response. This controversy is anchored in the fact that the vagal nerve itself does not innervate the spleen. Recent research from our own laboratory indicating that oral intake of sodium bicarbonate stimulates splenic anti-inflammatory pathways, and that this effect may require transmission of signals to the spleen through the mesothelium, provide new insight into the physiological pathways mediating the cholinergic anti-inflammatory pathway. In this review, we examine proposed models of the cholinergic anti-inflammatory pathway and attempt to frame our recent results in relation to these hypotheses. Following this discussion, we then provide an alternative model of the cholinergic anti-inflammatory pathway which is consistent both with our recent findings and the published literature. We then discuss experimental approaches that may be useful to delineate these hypotheses. We believe the outcome of these experiments will be critical in identifying the most appropriate methods to harness the therapeutic potential of the cholinergic anti-inflammatory pathway for the treatment of disease and may also shed light on the etiology of other pathologies, such as idiopathic fibrosis.


Assuntos
Epitélio/fisiologia , Inflamação/fisiopatologia , Neuroimunomodulação/fisiologia , Acetilcolina/fisiologia , Animais , Humanos , Rim/fisiologia , Baço/inervação , Linfócitos T/fisiologia , Nervo Vago/fisiologia
12.
Neuromolecular Med ; 20(2): 205-214, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29696584

RESUMO

Congenital myasthenic syndromes (CMS) are heterogeneous genetic diseases in which neuromuscular transmission is compromised. CMS resembling the Lambert-Eaton myasthenic syndrome (CMS-LEMS) are emerging as a rare group of distinct presynaptic CMS that share the same electrophysiological features. They have low compound muscular action potential amplitude that increment after brief exercise (facilitation) or high-frequency repetitive nerve stimulation. Although clinical signs similar to LEMS can be present, the main hallmark is the electrophysiological findings, which are identical to autoimmune LEMS. CMS-LEMS occurs due to deficits in acetylcholine vesicle release caused by dysfunction of different components in its pathway. To date, the genes that have been associated with CMS-LEMS are AGRN, SYT2, MUNC13-1, VAMP1, and LAMA5. Clinicians should keep in mind these newest subtypes of CMS-LEMS to achieve the correct diagnosis and therapy. We believe that CMS-LEMS must be included as an important diagnostic clue to genetic investigation in the diagnostic algorithms to CMS. We briefly review the main features of CMS-LEMS.


Assuntos
Síndrome Miastênica de Lambert-Eaton/diagnóstico , Síndromes Miastênicas Congênitas/diagnóstico , Acetilcolina/fisiologia , Agrina/genética , Autoimunidade , Sinalização do Cálcio , Eletrofisiologia , Exercício Físico , Exocitose , Humanos , Laminina/genética , Síndromes Miastênicas Congênitas/genética , Proteínas do Tecido Nervoso/genética , Condução Nervosa , Junção Neuromuscular/fisiopatologia , Proteínas SNARE/fisiologia , Transmissão Sináptica , Sinaptotagmina II/genética , Proteína 1 Associada à Membrana da Vesícula/genética
13.
Neuron ; 97(3): 611-625.e5, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29420933

RESUMO

Sleep, waking, locomotion, and attention are associated with cell-type-specific changes in neocortical activity. The effect of brain state on circuit output requires understanding of how neuromodulators influence specific neuronal classes and their synapses, with normal patterns of neuromodulator release from endogenous sources. We investigated the state-dependent modulation of a ubiquitous feedforward inhibitory motif in mouse sensory cortex, local pyramidal (Pyr) inputs onto somatostatin (SST)-expressing interneurons. Paired whole-cell recordings in acute brain slices and in vivo showed that Pyr-to-SST synapses are remarkably weak, with failure rates approaching 80%. Pharmacological screening revealed that cholinergic agonists uniquely enhance synaptic efficacy. Brief, optogenetically gated acetylcholine release dramatically enhanced Pyr-to-SST input, via nicotinic receptors and presynaptic PKA signaling. Importantly, endogenous acetylcholine release preferentially activated nicotinic, not muscarinic, receptors, thus differentiating drug effects from endogenous neurotransmission. Brain state- and synapse-specific unmasking of synapses may be a powerful way to functionally rewire cortical circuits dependent on behavioral demands.


Assuntos
Acetilcolina/fisiologia , Potenciais Pós-Sinápticos Excitadores , Interneurônios/fisiologia , Neocórtex/fisiologia , Inibição Neural , Células Piramidais/fisiologia , Receptores Nicotínicos/fisiologia , Animais , Prosencéfalo Basal/fisiologia , Carbacol/administração & dosagem , Agonistas Colinérgicos/administração & dosagem , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Interneurônios/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Somatostatina/metabolismo
14.
Muscle Nerve ; 57(2): 305-311, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-28686790

RESUMO

INTRODUCTION: In this study we investigated the interaction between adipose tissue-derived stem cells (ASCs) and myoblasts in co-culture experiments. METHODS: Specific inductive media were used to differentiate ASCs in vitro into a Schwann cell-like phenotype (differentiated adipose tissue-derived stem cells, or dASCs) and, subsequently, the expression of acetylcholine (ACh)-related machinery was determined. In addition, the expression of muscarinic ACh receptors was examined in denervated rat gastrocnemius muscles. RESULTS: In contrast to undifferentiated ASCs, dASCs expressed more choline acetyltransferase and vesicular acetylcholine transporter. When co-cultured with myoblasts, dASCs enhanced the proliferation rate, as did ACh administration alone. Western blotting and pharmacological inhibitor studies showed that phosphorylated extracellular signal-regulated kinase 1/2 signaling mediated these effects. In addition, denervated muscle showed higher expression of muscarinic ACh receptors than control muscle. DISCUSSION: Our findings suggest that dASCs promote proliferation of myoblasts through paracrine secretion of ACh, which could explain some of their regenerative capacity in vivo. Muscle Nerve 57: 305-311, 2018.


Assuntos
Acetilcolina/fisiologia , Adipócitos , Sistema de Sinalização das MAP Quinases/fisiologia , Mioblastos , Transplante de Células-Tronco/métodos , Animais , Diferenciação Celular , Proliferação de Células , Técnicas de Cocultura , Feminino , Denervação Muscular , Músculo Esquelético/citologia , Músculo Esquelético/metabolismo , Regeneração Nervosa , Comunicação Parácrina , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/biossíntese , Células de Schwann/fisiologia
15.
Ann N Y Acad Sci ; 1412(1): 170-177, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28981978

RESUMO

A number of studies in the past 20 years have shown that perturbation of activity of the nervous system leads to compensatory changes in synaptic strength that serve to return network activity to its original level. This response has been termed homeostatic synaptic plasticity. Despite the intense interest in homeostatic synaptic plasticity, little attention has been paid to its role in the prototypic synaptic disease, myasthenia gravis. In this review, we discuss mechanisms that have been shown to mediate homeostatic synaptic plasticity at the mammalian neuromuscular junction. A subset of these mechanisms have been shown to occur in myasthenia gravis. The homeostatic changes occurring in myasthenia gravis appear to involve the presynaptic nerve terminal and may even involve changes in the excitability of motor neurons within the spinal cord. The finding of presynaptic homeostatic synaptic plasticity in myasthenia gravis leads us to propose that changes in the motor unit in myasthenia gravis may be more widespread than previously appreciated.


Assuntos
Miastenia Gravis/fisiopatologia , Junção Neuromuscular/fisiopatologia , Plasticidade Neuronal/fisiologia , Acetilcolina/fisiologia , Potenciais de Ação/fisiologia , Animais , Homeostase/fisiologia , Humanos , Camundongos , Modelos Neurológicos , Receptores Colinérgicos/fisiologia , Transmissão Sináptica/fisiologia
16.
Br J Dermatol ; 178(6): 1246-1256, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-28714085

RESUMO

BACKGROUND: Humans have 4 million exocrine sweat glands, which can be classified into two types: eccrine and apocrine glands. Sweat secretion, a constitutive feature, is directly involved in thermoregulation and metabolism, and is regulated by both the central nervous system (CNS) and autonomic nervous system (ANS). OBJECTIVES: To explore how sweat secretion is controlled by both the CNS and the ANS and the mechanisms behind the neural control of sweat secretion. METHODS: We conducted a literature search on PubMed for reports in English from 1 January 1950 to 31 December 2016. RESULTS AND CONCLUSIONS: Acetylcholine acts as a potent stimulator for sweat secretion, which is released by sympathetic nerves. ß-adrenoceptors are found in adipocytes as well as apocrine glands, and these receptors may mediate lipid secretion from apocrine glands for sweat secretion. The activation of ß-adrenoceptors could increase sweat secretion through opening of Ca2+ channels to elevate intracellular Ca2+ concentration. Ca2+ and cyclic adenosine monophosphate play a part in the secretion of lipids and proteins from apocrine glands for sweat secretion. The translocation of aquaporin 5 plays an important role in sweat secretion from eccrine glands. Dysfunction of the ANS, especially the sympathetic nervous system, may cause sweating disorders, such as hypohidrosis and hyperhidrosis.


Assuntos
Glândulas Apócrinas/metabolismo , Sistema Nervoso Autônomo/fisiologia , Sistema Nervoso Central/fisiologia , Glândulas Écrinas/metabolismo , Suor/metabolismo , Acetilcolina/fisiologia , Glândulas Apócrinas/inervação , Regulação da Temperatura Corporal/fisiologia , Canais de Cálcio/fisiologia , AMP Cíclico/fisiologia , Glândulas Écrinas/inervação , Humanos , Sistema Límbico/fisiologia , Norepinefrina/fisiologia , Receptores Adrenérgicos beta/fisiologia , Receptores Acoplados a Proteínas G/fisiologia , Via Secretória/fisiologia , Doenças das Glândulas Sudoríparas/fisiopatologia
17.
Curr Opin Gastroenterol ; 33(6): 430-438, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28787289

RESUMO

PURPOSE OF REVIEW: The present review summarizes the past year's literature, both clinical and basic science, regarding physiologic and pharmacologic regulation of gastric acid secretion in health and disease. RECENT FINDINGS: Gastric acid kills microorganisms, assists digestion, and facilitates absorption of iron, calcium, and vitamin B12. The main stimulants of acid secretion are the hormone gastrin, released from antral G cells; paracrine agent histamine, released from oxyntic enterochromaffin-like cells; and neuropeptide acetylcholine, released from antral and oxyntic intramural neurons. Gastrin is also a trophic hormone that participates in carcinogenesis. Helicobacter pylori may increase or decrease acid secretion depending upon the acuity and predominant anatomic focus of infection; most patients manifest hypochlorhydria. Despite the fact that proton pump inhibitors (PPIs) are amongst the most widely prescribed drugs, they are underutilized in patients at high risk for UGI bleeding. Although generally considered well tolerated, concerns have been raised regarding associations between PPI use and dementia, kidney disease, myocardial infarction, pneumonia, osteoporosis, dysbiosis, small bowel injury, micronutrient deficiency, and fundic gland polyps. SUMMARY: Our understanding of the physiologic, pathophysiologic, and pharmacologic regulation of gastric secretion continues to advance. Such knowledge is crucial for improved and safe management of acid-peptic disorders.


Assuntos
Ácido Gástrico/metabolismo , Mucosa Gástrica/metabolismo , Acetilcolina/fisiologia , Ácido Gástrico/fisiologia , Gastrinas/fisiologia , Infecções por Helicobacter/metabolismo , Helicobacter pylori , Histamina/fisiologia , Humanos , Inibidores da Bomba de Prótons/farmacologia
18.
J Physiol ; 595(17): 5875-5893, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28714121

RESUMO

KEY POINTS: The ascending brainstem transmitter acetylcholine depolarizes thalamocortical relay neurons while it induces hyperpolarization in local circuit inhibitory interneurons. Sustained K+ currents are modulated in thalamic neurons to control their activity modes; for the interneurons the molecular nature of the underlying ion channels is as yet unknown. Activation of TASK-1 K+ channels results in hyperpolarization of interneurons and suppression of their action potential firing. The modulation cascade involves a non-receptor tyrosine kinase, c-Src. The present study identifies a novel pathway for the activation of TASK-1 channels in CNS neurons that resembles cholinergic signalling and TASK-1 current modulation during hypoxia in smooth muscle cells. ABSTRACT: The dorsal part of the lateral geniculate nucleus (dLGN) is the main thalamic site for state-dependent transmission of visual information. Non-retinal inputs from the ascending arousal system and inhibition provided by γ-aminobutyric acid (GABA)ergic local circuit interneurons (INs) control neuronal activity within the dLGN. In particular, acetylcholine (ACh) depolarizes thalamocortical relay neurons by inhibiting two-pore domain potassium (K2P ) channels. Conversely, ACh also hyperpolarizes INs via an as-yet-unknown mechanism. By using whole cell patch-clamp recordings in brain slices and appropriate pharmacological tools we here report that stimulation of type 2 muscarinic ACh receptors induces IN hyperpolarization by recruiting the G-protein ßγ subunit (Gßγ), class-1A phosphatidylinositol-4,5-bisphosphate 3-kinase, and cellular and sarcoma (c-Src) tyrosine kinase, leading to activation of two-pore domain weakly inwardly rectifying K+ channel (TWIK)-related acid-sensitive K+ (TASK)-1 channels. The latter was confirmed by the use of TASK-1-deficient mice. Furthermore inhibition of phospholipase Cß as well as an increase in the intracellular level of phosphatidylinositol-3,4,5-trisphosphate facilitated the muscarinic effect. Our results have uncovered a previously unknown role of c-Src tyrosine kinase in regulating IN function in the brain and identified a novel mechanism by which TASK-1 channels are activated in neurons.


Assuntos
Acetilcolina/fisiologia , Interneurônios/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Canais de Potássio de Domínios Poros em Tandem/fisiologia , Tálamo/fisiologia , Quinases da Família src/fisiologia , Animais , Proteína Tirosina Quinase CSK , Feminino , Subunidades beta da Proteína de Ligação ao GTP/fisiologia , Subunidades gama da Proteína de Ligação ao GTP/fisiologia , Masculino , Camundongos Transgênicos , Agonistas Muscarínicos/farmacologia , Proteínas do Tecido Nervoso/genética , Oxotremorina/análogos & derivados , Oxotremorina/farmacologia , Técnicas de Patch-Clamp , Fosfatidilinositol 3-Quinases/fisiologia , Canais de Potássio de Domínios Poros em Tandem/genética , Receptores Muscarínicos/fisiologia , Transdução de Sinais , Regulação para Cima
19.
Pharmacol Ther ; 179: 1-16, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28529069

RESUMO

The nervous system and immune system have broad and overlapping distributions in the body, and interactions of these ubiquitous systems are central to the field of neuroimmunology. Over the past two decades, there has been explosive growth in our understanding of neuroanatomical, cellular, and molecular mechanisms that mediate central modulation of immune functions through the autonomic nervous system. A major catalyst for growth in this field was the discovery that vagal nerve stimulation (VNS) caused a prominent attenuation of the systemic inflammatory response evoked by endotoxin in experimental animals. This effect was mediated by acetylcholine (ACh) stimulation of nicotinic receptors on splenic macrophages. Hence, the circuit was dubbed the "cholinergic anti-inflammatory pathway". Subsequent work identified the α7 nicotinic ACh receptor (α7nAChR) as the crucial target for attenuation of pro-inflammatory cytokine release from macrophages and dendritic cells. Further investigation made the important discovery that cholinergic T cells within the spleen and not cholinergic nerve cells were the source of ACh that stimulated α7 receptors on splenic macrophages. Given the important role that inflammation plays in numerous disease processes, cholinergic anti-inflammatory mechanisms are under intensive investigation from a basic science perspective and in translational studies of animal models of diseases such as inflammatory bowel disease and rheumatoid arthritis. This basic work has already fostered several clinical trials examining the efficacy of VNS and cholinergic therapeutics in human inflammatory diseases. This review provides an overview of basic and translational aspects of the cholinergic anti-inflammatory response and relevant pharmacology of drugs acting at the α7nAChR.


Assuntos
Anti-Inflamatórios/farmacologia , Colinérgicos/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/fisiologia , Acetilcolina/fisiologia , Animais , Anti-Inflamatórios/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico , Queimaduras/tratamento farmacológico , Colinérgicos/uso terapêutico , Humanos , Imunomodulação , Macrófagos/efeitos dos fármacos , Macrófagos/fisiologia , Microglia/efeitos dos fármacos , Microglia/fisiologia , Sepse/tratamento farmacológico , Acidente Vascular Cerebral/tratamento farmacológico , Estimulação do Nervo Vago , Receptor Nicotínico de Acetilcolina alfa7/agonistas
20.
J Neurosci ; 37(6): 1518-1531, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28069927

RESUMO

Brain imaging techniques that use vascular signals to map changes in neuronal activity rely on the coupling between electrophysiology and hemodynamics, a phenomenon referred to as "neurovascular coupling" (NVC). It is unknown whether this relationship remains reliable under altered brain states associated with acetylcholine (ACh) levels, such as attention and arousal and in pathological conditions such as Alzheimer's disease. We therefore assessed the effects of varying ACh tone on whisker-evoked NVC responses in rat barrel cortex, measured by cerebral blood flow (CBF) and neurophysiological recordings (local field potentials, LFPs). We found that acutely enhanced ACh tone significantly potentiated whisker-evoked CBF responses through muscarinic ACh receptors and concurrently facilitated neuronal responses, as illustrated by increases in the amplitude and power in high frequencies of the evoked LFPs. However, the cellular identity of the activated neuronal network within the responsive barrel was unchanged, as characterized by c-Fos upregulation in pyramidal cells and GABA interneurons coexpressing vasoactive intestinal polypeptide. In contrast, chronic ACh deprivation hindered whisker-evoked CBF responses and the amplitude and power in most frequency bands of the evoked LFPs and reduced the rostrocaudal extent and area of the activated barrel without altering its identity. Correlations between LFP power and CBF, used to estimate NVC, were enhanced under high ACh tone and disturbed significantly by ACh depletion. We conclude that ACh is not only a facilitator but also a prerequisite for the full expression of sensory-evoked NVC responses, indicating that ACh may alter the fidelity of hemodynamic signals in assessing changes in evoked neuronal activity.SIGNIFICANCE STATEMENT Neurovascular coupling, defined as the tight relationship between activated neurons and hemodynamic responses, is a fundamental brain function that underlies hemodynamic-based functional brain imaging techniques. However, the impact of altered brain states on this relationship is largely unknown. We therefore investigated how acetylcholine (ACh), known to drive brain states of attention and arousal and to be deficient in pathologies such as Alzheimer's disease, would alter neurovascular coupling responses to sensory stimulation. Whereas acutely increased ACh enhanced neuronal responses and the resulting hemodynamic signals, chronic loss of cholinergic input resulted in dramatic impairments in both types of sensory-evoked signals. We conclude that ACh is not only a potent modulator but also a requirement for the full expression of sensory-evoked neurovascular coupling responses.


Assuntos
Acetilcolina/fisiologia , Circulação Cerebrovascular/fisiologia , Acoplamento Neurovascular/fisiologia , Receptores Nicotínicos/fisiologia , Vibrissas/fisiologia , Animais , Córtex Cerebral/irrigação sanguínea , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Circulação Cerebrovascular/efeitos dos fármacos , Masculino , Acoplamento Neurovascular/efeitos dos fármacos , Antagonistas Nicotínicos/farmacologia , Estimulação Física/métodos , Ratos , Ratos Sprague-Dawley , Vibrissas/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA