Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Anal Chim Acta ; 1301: 342464, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38553122

RESUMO

BACKGROUND: Organophosphorus pesticides (OPs) play important roles in the natural environment, agricultural fields, and biological prevention. The development of OPs detection has gradually become an effective strategy to avoid the dangers of pesticides abuse and solve the severe environmental and health problems in humans. Although conventional assays for OPs analysis such as the bulky instrument required analytical methods have been well-developed, it still remains the limitation of inconvenient, inefficient and lab-dependence analysis in real samples. Hence, there is an urgent demand to develop efficient detection methods for OPs analysis in real scenarios. RESULTS: Here, by virtue of the highly efficient catalytic performance in Fe7S8 nanoflakes (Fe7S8 NFs), we propose an OPs detection method that rationally integrated Fe7S8 NFs into the acetylcholine (ACh) triggered enzymatic cascade reaction (ATECR) for proceeding better detection performances. In this method, OPs serve as the enzyme inhibitors for inhibiting ATECR among ACh, acetylcholinesterase (AChE), and choline oxidase (CHO), then reduce the generation of H2O2 to suppress the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) that catalyzed by Fe7S8 NFs. Benefiting from the integration of Fe7S8 NFs and ATECR, it enables a sensitive detection for OPs (e.g. dimethoate). The proposed method has presented good linear ranges of OPs detection ranging from 0.1 to 10 µg mL-1. Compared to the other methods, the comparable limits of detection (LOD) of OPs are as low as 0.05 µg mL-1. SIGNIFICANCE: Furthermore, the proposed method has also achieved a favorable visual detection performance of revealing OPs analysis in real samples. The visual signals of OPs can be transformed into RGB values and gathered by using smartphones, indicating the great potential in simple, sensitive, instrument-free and on-site analysis of pesticide residues in environmental monitoring and biosecurity research.


Assuntos
Técnicas Biossensoriais , Praguicidas , Piperidinas , Humanos , Praguicidas/análise , Acetilcolina/química , Acetilcolinesterase/química , Compostos Organofosforados/análise , Peróxido de Hidrogênio/química , Catálise , Técnicas Biossensoriais/métodos
2.
J Phys Chem B ; 126(43): 8669-8679, 2022 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-36260486

RESUMO

Biomolecular binding relies on specific attractive interactions between two partner molecules, including electrostatics, dispersion, hydrophobicity, and solvation. Assessing the contributions of electrostatic interactions to binding is key to the understanding of ligand binding mechanisms and the design of improved biomolecular binders. For example, nicotine is a well-known agonist of nicotinic acetylcholine receptors (nAChRs), but the molecular mechanisms for the differential action of nicotine on brain and muscle nAChRs remain elusive. In this work, we have chosen the acetylcholine binding protein (AChBP) in complex with nicotine as a model system to interrogate the electrostatic contributions to nicotine binding. Our absolute binding free energy simulations confirm that nicotine binds AChBP predominantly in its protonated (charged) form. By comparing energetic contributions from decomposed interactions for either neutral or charged nicotine, our calculations shed light on the nature of the binding of nicotine to the AChBP. The preferred binding of charged nicotine over neutral nicotine originates from its stronger electrostatic interactions with AChBP, a cation-π interaction to a tryptophan residue and a hydrogen bond between nicotine and the backbone carbonyl of the tryptophan, whereas the major force driving the binding process appears to be van der Waals interactions. The various nonelectrostatic terms can also indirectly modulate the electrostatic interactions through fine-tuning the binding pose of the ligand in the binding site, providing an explanation of why the binding specificity of nicotine to the brain versus muscle nAChRs is driven by electrostatic interaction, given that the immediate binding site residues, including the key tryptophan residue, are identical in the two receptors.


Assuntos
Nicotina , Receptores Nicotínicos , Nicotina/química , Nicotina/metabolismo , Acetilcolina/química , Ligantes , Proteínas de Transporte/química , Eletricidade Estática , Triptofano/química , Modelos Moleculares , Receptores Nicotínicos/química , Sítios de Ligação , Ligação Proteica
3.
Cells ; 10(12)2021 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-34944045

RESUMO

Acetylcholinesterase (AChE) inhibition is a key element in enhancing cholinergic transmission and subsequently relieving major symptoms of several neurological and neuromuscular disorders. Here, the inhibitory potential of geraniol and its mechanism of inhibition against AChE were elucidated in vitro and validated via an in silico study. Our in vitro enzyme inhibition kinetics results show that at increasing concentrations of geraniol and substrate, Vmax did not change significantly, but Km increased, which indicates that geraniol is a competitive inhibitor against AChE with an IC50 value 98.06 ± 3.92 µM. All the parameters of the ADME study revealed that geraniol is an acceptable drug candidate. A docking study showed that the binding energy of geraniol (-5.6 kcal mol-1) was lower than that of acetylcholine (-4.1 kcal mol-1) with AChE, which exhibited around a 12.58-fold higher binding affinity of geraniol. Furthermore, molecular dynamics simulation revealed that the RMSD of AChE alone or in complex with geraniol fluctuated within acceptable limits throughout the simulation. The mean RMSF value of the complex ensures that the overall conformation of the protein remains conserved. The average values of Rg, MolSA, SASA, and PSA of the complex were 3.16 Å, 204.78, 9.13, and 51.58 Å2, respectively. We found that the total SSE of AChE in the complex was 38.84% (α-helix: 26.57% and ß-sheets: 12.27%) and remained consistent throughout the simulation. These findings suggest that geraniol remained inside the binding cavity of AChE in a stable conformation. Further in vivo investigation is required to fully characterize the pharmacokinetic properties, optimization of dose administration, and efficacy of this plant-based natural compound.


Assuntos
Acetilcolinesterase/metabolismo , Monoterpenos Acíclicos/farmacologia , Inibidores da Colinesterase/farmacologia , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Acetilcolina/química , Monoterpenos Acíclicos/química , Monoterpenos Acíclicos/farmacocinética , Animais , Inibidores da Colinesterase/química , Cinética , Ligantes , Ligação Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Tacrina/farmacologia
4.
Adv Sci (Weinh) ; 8(12): 2003995, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34194928

RESUMO

Implantable electrophoretic drug delivery devices have shown promise for applications ranging from treating pathologies such as epilepsy and cancer to regulating plant physiology. Upon applying a voltage, the devices electrophoretically transport charged drug molecules across an ion-conducting membrane out to the local implanted area. This solvent-flow-free "dry" delivery enables controlled drug release with minimal pressure increase at the outlet. However, a major challenge these devices face is limiting drug leakage in their idle state. Here, a method of reducing passive drug leakage through the choice of the drug co-ion is presented. By switching acetylcholine's associated co-ion from chloride to carboxylate co-ions as well as sulfopropyl acrylate-based polyanions, steady-state drug leakage rate is reduced up to sevenfold with minimal effect on the active drug delivery rate. Numerical simulations further illustrate the potential of this method and offer guidance for new material systems to suppress passive drug leakage in electrophoretic drug delivery devices.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Eletroforese , Acetilcolina/química , Desenho de Equipamento , Polieletrólitos/química
5.
Cell Mol Life Sci ; 78(3): 1051-1064, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32472188

RESUMO

Nicotinic acetylcholine receptors (nAChRs) are pentameric ion channels expressed in the central nervous systems. nAChRs containing the α4, ß2 and α5 subunits are specifically involved in addictive processes, but their functional architecture is poorly understood due to the intricacy of assembly of these subunits. Here we constrained the subunit assembly by designing fully concatenated human α4ß2 and α4ß2α5 receptors and characterized their properties by two-electrodes voltage-clamp electrophysiology in Xenopus oocytes. We found that α5-containing nAChRs are irreversibly blocked by methanethiosulfonate (MTS) reagents through a covalent reaction with a cysteine present only in α5. MTS-block experiments establish that the concatemers are expressed in intact form at the oocyte surface, but that reconstitution of nAChRs from loose subunits show inefficient and highly variable assembly of α5 with α4 and ß2. Mutational analysis shows that the concatemers assemble both in clockwise and anticlockwise orientations, and that α5 does not contribute to ACh binding from its principal (+) site. Reinvestigation of suspected α5-ligands such as galantamine show no specific effect on α5-containing concatemers. Analysis of the α5-D398N mutation that is linked to smoking and lung cancer shows no significant effect on the electrophysiological function, suggesting that its effect might arise from alteration of other cellular processes. The concatemeric strategy provides a well-characterized platform for mechanistic analysis and screening of human α5-specific ligands.


Assuntos
Receptores Nicotínicos/metabolismo , Regiões 5' não Traduzidas , Acetilcolina/química , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Potenciais de Ação/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Sítios de Ligação , Humanos , Mesilatos/farmacologia , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Oócitos/fisiologia , Oxidiazóis/farmacologia , Técnicas de Patch-Clamp , Ligação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Piridinas/farmacologia , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Xenopus/crescimento & desenvolvimento , Xenopus/metabolismo , Proteínas de Xenopus/genética , Globinas beta/genética
6.
Anal Chem ; 92(14): 9706-9713, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32580546

RESUMO

Quaternary ammonium (QA) plays multiple roles in biological functions, whose dysregulation may result in multiple diseases. However, how to efficiently detect QA-based materials such as acetylcholine (ACh) still remains a great challenge, especially in complex biological environments. Here, a new effect [called quaternary-ammonium-modulated surface-enhanced Raman spectroscopy (QAM-SERS) effect] is discovered, showing that the existence of QA will modulate the intensity of SERS signals in a concentration-dependent manner. When the QAM-SERS effect is used, a new method is easily developed for in vitro detection of ACh with an extremely high sensitivity and an ultrawide dynamic range. Particularly, the linear dynamic range can be freely tuned to adapt for various physiological samples. As a proof-of-concept experiment, the time-dependent secretion of ACh from PC12 cells was successfully monitored using the QAM-SERS method, which were under either the stimulation of potassium ions or the incubation of drugs. The discovery of the QAM-SERS effect provides an easy and universal strategy for detecting ACh as well as other QA-contained molecules, which can also inspire new insights into the roles that QA could play in biology and chemistry.


Assuntos
Acetilcolina/química , Compostos de Amônio Quaternário/química , Análise Espectral Raman/métodos , Acetofenonas/farmacologia , Acetilcolina/metabolismo , Animais , Técnicas Analíticas Microfluídicas , Células PC12 , Quinacrina/farmacologia , Ratos
7.
Int J Mol Sci ; 21(3)2020 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-32041338

RESUMO

The effect of cholesterol was investigated on the OCTN1 transport activity measured as [14C]-tetraethylamonium or [3H]-acetylcholine uptake in proteoliposomes reconstituted with native transporter extracted from HeLa cells or the human recombinant OCTN1 over-expressed in E. coli. Removal of cholesterol from the native transporter by MßCD before reconstitution led to impairment of transport activity. A similar activity impairment was observed after treatment of proteoliposomes harboring the recombinant (cholesterol-free) protein by MßCD, suggesting that the lipid mixture used for reconstitution contained some cholesterol. An enzymatic assay revealed the presence of 10 µg cholesterol/mg total lipids corresponding to 1% cholesterol in the phospholipid mixture used for the proteoliposome preparation. On the other way around, the activity of the recombinant OCTN1 was stimulated by adding the cholesterol analogue, CHS to the proteoliposome preparation. Optimal transport activity was detected in the presence of 83 µg CHS/ mg total lipids for both [14C]-tetraethylamonium or [3H]-acetylcholine uptake. Kinetic analysis of transport demonstrated that the stimulation of transport activity by CHS consisted in an increase of the Vmax of transport with no changes of the Km. Altogether, the data suggests a direct interaction of cholesterol with the protein. A further support to this interpretation was given by a docking analysis indicating the interaction of cholesterol with some protein sites corresponding to CARC-CRAC motifs. The observed direct interaction of cholesterol with OCTN1 points to a possible direct influence of cholesterol on tumor cells or on acetylcholine transport in neuronal and non-neuronal cells via OCTN1.


Assuntos
Acetilcolina/análise , Colesterol/farmacologia , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Simportadores/metabolismo , Tetraetilamônio/análise , Acetilcolina/química , Radioisótopos de Carbono/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Proteolipídeos/análise , Proteolipídeos/química , Tetraetilamônio/química , Trítio/química
8.
Molecules ; 24(20)2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31652614

RESUMO

Nicotinic acetylcholine receptors (nAChRs), serotonin transporters (SERT) and dopamine transporters (DAT) represent targets for the development of novel nicotinic derivatives acting as multiligands associated with different health conditions, such as depressive, anxiety and addiction disorders. In the present work, a series of functionalized esters structurally related to acetylcholine and nicotine were synthesized and pharmacologically assayed with respect to these targets. The synthesized compounds were studied in radioligand binding assays at α4ß2 nAChR, h-SERT and h-DAT. SERT experiments showed not radioligand [3H]-paroxetine displacement, but rather an increase in the radioligand binding percentage at the central binding site was observed. Compound 20 showed Ki values of 1.008 ± 0.230 µM for h-DAT and 0.031 ± 0.006 µM for α4ß2 nAChR, and [3H]-paroxetine binding of 191.50% in h-SERT displacement studies, being the only compound displaying triple affinity. Compound 21 displayed Ki values of 0.113 ± 0.037 µM for α4ß2 nAChR and 0.075 ± 0.009 µM for h-DAT acting as a dual ligand. Molecular docking studies on homology models of α4ß2 nAChR, h-DAT and h-SERT suggested potential interactions among the compounds and agonist binding site at the α4/ß2 subunit interfaces of α4ß2 nAChR, central binding site of h-DAT and allosteric modulator effect in h-SERT.


Assuntos
Acetilcolina/análogos & derivados , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Nicotina/análogos & derivados , Receptores Nicotínicos/química , Proteínas da Membrana Plasmática de Transporte de Serotonina/química , Acetilcolina/agonistas , Acetilcolina/síntese química , Acetilcolina/química , Regulação Alostérica , Sítios de Ligação , Dopamina/química , Agonistas de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/agonistas , Ésteres/química , Células HEK293 , Humanos , Ligantes , Simulação de Acoplamento Molecular , Nicotina/agonistas , Nicotina/síntese química , Nicotina/química , Agonistas Nicotínicos/química , Pirrolidinas/química , Ensaio Radioligante , Proteínas da Membrana Plasmática de Transporte de Serotonina/agonistas , Relação Estrutura-Atividade
9.
Anal Chim Acta ; 1071: 1-7, 2019 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-31128750

RESUMO

Quantitatively paper-based senor is performed with simple distance-readout on mixed cellulose ester (MCE) filter paper based on acetylcholinesterase (AChE)-mediated alginate hydrogel. The method is accomplished with the aid of the inhibition effect of target samples on the AChE enzyme-catalyzed hydrolysis of acetylcholine, which changes the pH value of the solution to release Ca2+ and trigger alginate hydrogelation. The viscosity of the solution is thus regulated with the presence of target samples in the reaction mixture, leading to a significant change in the diffusion diameter of the solution spotted on the filter paper. The concentration in the sample is quantitatively determined by ruler-measureable diffusion diameter of the spot on the paper. With successfully application for quantitatively sensing of organophosphorus pesticides (OPs), we show that the method exhibits excellent reproducibility with RSD (n = 5) as low as 0.09% and good selectivity for detection of OPs. The dynamic range of the method is up to 66.7 ng/mL with the limit-of-detection (LOD) of 3.3 ng/mL. The present study provides a new approach for developing paper-based sensors with quantitative distance-readout, by utilizing enzymatic inhibition to modulate liquid viscosity, which would be of value for target detection in complex samples.


Assuntos
Acetilcolinesterase/química , Alginatos/química , Hidrogéis/química , Compostos Organofosforados/análise , Papel , Praguicidas/análise , Acetilcolina/química , Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/métodos , Difusão , Contaminação de Alimentos/análise , Limite de Detecção , Malus/química , Reprodutibilidade dos Testes , Viscosidade
10.
Med Hypotheses ; 127: 23-25, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31088643

RESUMO

The theory that antibody (Ab) directed against the TSH receptor (TSHR) (TSHRAb) is the causal factor of Graves' disease seems unlikely. Corticosteroids have not had a curative effect on the hyperthyroidism of Graves' disease despite their effectiveness for other autoimmune diseases. Two kinds of TSHRAb, thyroid-stimulating Ab (TSAb) and thyroid-blocking Ab (TBAb), are known as causal factors of hyperthyroidism and hypothyroidism, respectively. Previously, we reported that TSAb may be thyroid stimulating animal IgG-like hormone and TBAb may be the precursor of TSAb. In this paper we suggested that TBAb (precursor) converts to TSAb (active form) via the action of the protease, colloid antigen 2 (CA2). We speculate that the conversion of TBAb to TSAb is controlled by two factors: the protease and an anti-protease Ab. When anti-protease Ab levels are high, the patient exhibits hypothyroidism due to the increase in TBAb levels caused by neutralization of the protease. When anti-protease Ab levels are negative, the patient's hypothyroidism disappeared by the negative serum TBAb due to increased protease. An immunoglobulin G (IgG) with enzyme activity is known as an abzyme, which may be an undeveloped form. IgG with hormone activity may be likewise called an abhormone, which could also be an undeveloped form. The tumor marker CEA is a known member of the IgG supergene family. Many ancestral versions of proteins may have been produced as an IgG form. Possible participation of colloid antigen 2 and abhormone for the etiology of Graves' disease is suggested.


Assuntos
Anticorpos/química , Antígenos/química , Doença de Graves/etiologia , Imunoglobulina G/química , Imunoglobulinas Estimuladoras da Glândula Tireoide/química , Tireotropina/química , Acetilcolina/química , Animais , Autoanticorpos/sangue , Antígeno Carcinoembrionário/análise , Humanos , Hipertireoidismo/complicações , Hipotireoidismo/complicações , Modelos Biológicos , Receptores da Tireotropina/química , Suínos , Glândula Tireoide/patologia , Tiroxina/química
11.
Anticancer Agents Med Chem ; 18(10): 1440-1447, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29623856

RESUMO

BACKGROUND: Many studies suggested that Acetylcholine (ACh) might serve as an autocrine/ paracrine growth factor in several types of tumors or tumor cell lines. High levels of Acetylcholinesterase (AChE) activity have been reported in primary brain tumors, ovarian, colon and lung tumors. OBJECTIVES: The role of cholinergic signaling needs to be clarified in in leukemia. METHOD: K562 cells were derived from a chronic myelogenous leukemia patient during blast crisis serving as pluripotent hematopoietic stem cells. K562 cells were incubated with various cholinergic agonists or antagonists to investigate the role of ACh in different differentiated cell lines. RESULTS: Our experiments showed that AChE activity was increased in response to ACh in undifferentiated K562 cells, but in the erythroid differentiated K562 cells a high concentration of ACh (1 mM) decreased the AChE activity. ACh failed to elevate the AChE activity in the megakaryocytic differentiated K562 cells. An AChE inhibitor, eserine, also suppressed the AChE activity in a concentration-dependent manner. Choline uptake inhibition by hemicholinium did increase the AChE activity but not in the erythroid differentiated K562 cell line. Likewise, megakaryocytic differentiated K562 cells also displayed a similar pattern. Vesamicole, a vesicular choline uptake inhibitor, produced similar results. Curare, a nicotinic antagonist, elevated the cell counts of the megakaryocytic differentiated cells. CONCLUSION: Our findings may suggest excess extracellular ACh will decrease the cell growth in undifferentiated and megakaryocytic differentiated K562 cell lines through nicotinic type cholinoceptors.


Assuntos
Acetilcolina/farmacologia , Antineoplásicos/farmacologia , Leucemia Megacarioblástica Aguda/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Acetilcolina/química , Antineoplásicos/química , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Células K562 , Leucemia Megacarioblástica Aguda/patologia , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Modelos Moleculares , Conformação Molecular , Relação Estrutura-Atividade , Células Tumorais Cultivadas
12.
Talanta ; 183: 258-267, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29567174

RESUMO

A highly sensitive electrochemical biosensor based on the synthetized L-Cysteine-Ag(I) coordination polymer (L-Cys-Ag(I) CP), which looks like a protein-mimicking nanowire, was constructed to detect acetylcholinesterase (AChE) activity and screen its inhibitors. This sensing strategy involves the reaction of acetylcholine chloride (ACh) with acetylcholinesterase (AChE) to form choline that is in turn catalytically oxidized by choline oxidase (ChOx) to produce hydrogen peroxide (H2O2), thus L-Cys-Ag(I) CP possesses the electro-catalytic property to H2O2 reduction. Herein, the protein-mimicking nanowire-based platform was capable of investigating successive of H2O2 effectively by amperometric i-t (current-time) response, and was further applied for the turn-on electrochemical detection of AChE activity. The proposed sensor is highly sensitive (limit of detection is 0.0006 U/L) and is feasible for screening inhibitors of AChE. The model for AChE inhibition was further established and two traditional AChE inhibitors (donepezil and tacrine) were employed to verify the feasibility of the system. The IC50 of donepezil and tacrine were estimated to be 1.4 nM and 3.5 nM, respectively. The developed protocol provides a new and promising platform for probing AChE activity and screening its inhibitors with low cost, high sensitivity and selectivity.


Assuntos
Acetilcolinesterase/metabolismo , Técnicas Biossensoriais , Inibidores da Colinesterase/farmacologia , Avaliação Pré-Clínica de Medicamentos/instrumentação , Avaliação Pré-Clínica de Medicamentos/métodos , Técnicas Eletroquímicas , Nanofios/química , Acetilcolina/química , Acetilcolina/metabolismo , Biocatálise , Colina/biossíntese , Colina/química , Inibidores da Colinesterase/química , Cisteína/química , Cisteína/farmacologia , Eletrodos , Polímeros/química , Polímeros/farmacologia , Prata/química , Prata/farmacologia
13.
J Biol Chem ; 293(8): 2903-2914, 2018 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-29298898

RESUMO

Cys-loop receptors are pentameric ligand-gated ion channels that facilitate communication within the nervous system. Upon neurotransmitter binding, these receptors undergo an allosteric activation mechanism connecting the binding event to the membrane-spanning channel pore, which expands to conduct ions. Some of the earliest steps in this activation mechanism are carried out by residues proximal to the binding site, the relative positioning of which may reflect functional differences among members of the Cys-loop family of receptors. Herein, we investigated key side-chain interactions near the binding site via mutagenesis and two-electrode voltage-clamp electrophysiology in serotonin-gated 5-HT3A receptors (5-HT3ARs) and nicotinic acetylcholine receptors (nAChRs) expressed in Xenopus laevis oocytes. We found that a triad of residues aligning to Thr-152, Glu-209, and Lys-211 in the 5-HT3AR can be exchanged between the homomeric 5-HT3AR and the muscle-type nAChR α-subunit with small functional consequences. Via triple mutant cycle analysis, we demonstrated that this triad forms an interdependent network in the muscle-type nAChR. Furthermore, nAChR-type mutations of the 5-HT3AR affect the affinity of nicotine, a competitive antagonist of 5-HT3ARs, in a cooperative manner. Using mutant cycle analyses between the 5-HT3A triad, loop A residues Asn-101 and Glu-102, ß9 residue Lys-197, and the channel gate at Thr-257, we observed that residues in this region are energetically linked to the channel gate and are particularly sensitive to mutations that introduce a net positive charge. This study expands our understanding of the differences and similarities in the activation mechanisms of Cys-loop receptors.


Assuntos
Modelos Moleculares , Receptores Nicotínicos/metabolismo , Receptores 5-HT3 de Serotonina/metabolismo , Acetilcolina/química , Acetilcolina/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Sítios de Ligação , Ligação Competitiva , Agonistas Colinérgicos/química , Agonistas Colinérgicos/metabolismo , Humanos , Cinética , Ligantes , Camundongos , Mutagênese Sítio-Dirigida , Mutação , Nicotina/química , Nicotina/metabolismo , Antagonistas Nicotínicos/química , Antagonistas Nicotínicos/metabolismo , Conformação Proteica , Receptores Nicotínicos/química , Receptores Nicotínicos/genética , Receptores 5-HT3 de Serotonina/química , Receptores 5-HT3 de Serotonina/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência
14.
J Liposome Res ; 28(2): 97-105, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28103719

RESUMO

Light chain (AL) amyloidosis is a disease associated with significant morbidity and mortality arising from multi-organ injury induced by amyloidogenic light chain proteins (LC). There is no available treatment to reverse the toxicity of LC. We previously showed that chaperone glycoprotein clusterin (CLU) and nanoliposomes (NL), separately, restore human microvascular endothelial function impaired by LC. In this work, we aim to prepare PEGylated-nanoliposomal clusterin (NL-CLU) formulations that could allow combined benefit against LC while potentially enabling efficient delivery to microvascular tissue, and test efficacy on human arteriole endothelial function. NL-CLU was prepared by a conjugation reaction between the carboxylated surface of NL and the primary amines of the CLU protein. NL were made of phosphatidylcholine (PC), cholesterol (Chol) and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[carboxy(polyethylene glycol)-2000] (DSPE-PEG 2000 carboxylic acid) at 70:25:5 mol%. The protective effect of NL-CLU was tested by measuring the dilation response to acetylcholine and papaverine in human adipose arterioles exposed to LC. LC treatment significantly reduced the dilation response to acetylcholine and papaverine; co-treatment of LC with PEGylated-nanoliposomal CLU or free CLU restored the dilator response. NL-CLU is a feasible and promising approach to reverse LC-induced endothelial damage.


Assuntos
Proteínas Amiloidogênicas/metabolismo , Amiloidose/tratamento farmacológico , Clusterina/administração & dosagem , Endotélio Vascular/efeitos dos fármacos , Lipossomos/química , Nanopartículas/química , Acetilcolina/química , Arteríolas/efeitos dos fármacos , Arteríolas/metabolismo , Colesterol/química , Clusterina/química , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Humanos , Papaverina/química , Tamanho da Partícula , Fosfatidilcolinas/química , Polietilenoglicóis/química , Vasodilatação/efeitos dos fármacos
15.
Biochemistry ; 56(13): 1836-1840, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28287260

RESUMO

Designing subtype-selective agonists for neuronal nicotinic acetylcholine receptors is a challenging and significant goal aided by intricate knowledge of each subtype's binding patterns. We previously reported that in α6ß2 receptors, acetylcholine makes a functional cation-π interaction with Trp149, but nicotine and TC299423 do not, suggesting a distinctive binding site. This work explores hydrogen binding at the backbone carbonyl associated with α6ß2 Trp149. Substituting residue i + 1, Thr150, with its α-hydroxy analogue (Tah) attenuates the carbonyl's hydrogen bond accepting ability. At α6(T150Tah)ß2, nicotine shows a 24-fold loss of function, TC299423 shows a modest loss, and acetylcholine shows no effect. Nicotine was further analyzed via a double-mutant cycle analysis utilizing N'-methylnicotinium, which indicated a hydrogen bond in α6ß2 with a ΔΔG of 2.6 kcal/mol. Thus, even though nicotine does not make the conserved cation-π interaction with Trp149, it still makes a functional hydrogen bond to its associated backbone carbonyl.


Assuntos
Acetilcolina/química , Nicotina/análogos & derivados , Agonistas Nicotínicos/química , Receptores Nicotínicos/química , Acetilcolina/farmacologia , Animais , Expressão Gênica , Ligação de Hidrogênio , Mutagênese Sítio-Dirigida , Mutação , Nicotina/química , Nicotina/farmacologia , Agonistas Nicotínicos/farmacologia , Técnicas de Patch-Clamp , Ligação Proteica , Ratos , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Termodinâmica , Triptofano/química , Triptofano/metabolismo , Xenopus laevis
16.
Talanta ; 162: 151-158, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837811

RESUMO

First-generation amperometric biosensors are often based on the electro-oxidation of oxidase-generated H2O2. At the applied potential used in most studies, other molecules such as ascorbic acid or dopamine can be oxidized. Phenylenediamines are commonly used to avoid this problem: when these compounds are electro-deposited onto the transducer surface in the form of poly-phenylenediamine, a highly selective membrane is formed. Although there is no evidence of toxicity of the resulting polymer, phenylenediamine monomers are considered carcinogenic. An aim of this work was to evaluate the suitability of natural phenols as non-toxic alternatives to the ortho isomer of phenylenediamine. Electrosynthesis over Pt-Ir electrodes of 2-methoxy phenols (guaiacol, eugenol and isoeugenol), and hydroxylated biphenyls (dehydrodieugenol and magnolol) was achieved. The potentials used in the present study are significantly lower than values commonly applied during electro-polymerization. Polymers were obtained by means of constant potential amperometry, instead of cyclic voltammetry, in order to achieve multiple polymerizations, hence decreasing the time of realization and variability. Permselective properties of natural phenols were significantly improved at low polymerization potentials. Among the tested compounds, isoeugenol and magnolol, polymerized respectively at +25mV and +170mV against Ag/AgCl reference electrode, proved as permselective as poly-ortho-phenylenediamine and may be considered as effective polymeric alternatives. The natural phenol-coated electrodes were stable and responsive throughout 14 days. A biosensor prototype based on acetylcholine esterase and choline oxidase was electro-coated with poly-magnolol in order to evaluate the interference-rejecting properties of the electrosynthesized film in an amperometric biosensor; a moderate decrease in ascorbic acid rejection was observed during in vitro calibration of biosensors.


Assuntos
Técnicas Biossensoriais/métodos , Técnicas Eletroquímicas/métodos , Fenóis/química , Polímeros/química , Acetilcolina/química , Acetilcolina/metabolismo , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Ácido Ascórbico/química , Técnicas Biossensoriais/instrumentação , Compostos de Bifenilo/química , Técnicas Eletroquímicas/instrumentação , Eugenol/análogos & derivados , Eugenol/química , Lignanas/química , Microscopia Eletrônica de Varredura , Fenilenodiaminas/química , Polimerização , Polímeros/síntese química , Reprodutibilidade dos Testes
17.
J Phys Chem B ; 120(47): 12105-12110, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27933942

RESUMO

The microenvironments in photosynthetic proteins affect the absorption by chlorophyll (Chl) pigments. It is, however, a challenge to disentangle the impact on the transition energies of different perturbations, for example, the global electrostatics of the protein (nonbonded environmental effects), exciton coupling between Chl's, conformational variations, and binding of an axial ligand to the magnesium center. This is needed to distinguish between the two most commonly proposed mechanisms for energy transport in photosynthetic proteins, relying on either weakly or strongly coupled pigments. Here, on the basis of photodissociation action spectroscopy, we establish that the redshift of the Soret absorption band due to binding of a negatively charged carboxylate (as present in aspartic acid and glutamic acid residues) is 0.1-0.2 eV for Chl a and b. This effect is almost enough to reproduce the well-known green color of plants and can account for the strong spectral variation between Chl's. The experimental data serve to benchmark future high-level calculations of excited-state energies. Finally, we demonstrate that complexes between Chl a and histidine, tagged by a quaternary ammonium ion, can be made in the gas phase by electrospray ionization, but more work is needed to produce enough ions for gas-phase spectroscopy.


Assuntos
Clorofila/química , Complexo de Proteína do Fotossistema II/química , Pisum sativum/química , Acetilcolina/química , Ácido Aspártico/química , Clorofila A , Transferência de Energia , Formiatos/química , Ácido Glutâmico/química , Histidina/química , Cinética , Ligantes , Magnésio/química , Modelos Moleculares , Pisum sativum/fisiologia , Estrutura Secundária de Proteína , Análise Espectral/métodos , Eletricidade Estática , Termodinâmica
18.
J Control Release ; 243: 283-290, 2016 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-27793684

RESUMO

Implantable devices for electronically triggered drug release are attractive to achieve spatial and temporal control over drug concentrations in patients. Realization of such devices is, however, associated with technical and biological challenges. Among these are containment of drug reservoirs, lack of precise control cues, as well as the charge and size of the drug. Here, we present a method for electronically triggered release of the quaternary ammonium cation acetylcholine (ACh) from an impregnated conductive polymer film. Using supercritical carbon dioxide (scCO2), a film of PEDOT/PSS (poly(3,4)-ethylenedioxythiophene doped with poly(styrenesulfonate)) is impregnated with the neurotransmitter acetylcholine. The gentle scCO2 process generated a dry, drug-impregnated surface, well suited for interaction with biological material, while maintaining normal electrochemical properties of the polymer. Electrochemical switching of impregnated PEDOT/PSS films stimulated release of ACh from the polymer matrix, likely due to swelling mediated by the influx and efflux of charged and solvated ions. Triggered release of ACh did not affect the biological activity of the drug. This was shown by real-time monitoring of intracellular Ca2+ signaling in neurotypic cells growing on the impregnated polymer surface. Collectively, scCO2 impregnation of conducting polymers offers the first one-step, dopant-independent drug impregnation process, potentially facilitating loading of both anionic and cationic drugs that can be dissolved in scCO2 on its own or by using a co-solvent. We foresee that scCO2-loaded devices for electronically triggered drug release will create novel opportunities when generating active bio-coatings, tunable for specific needs, in a variety of medical settings.


Assuntos
Acetilcolina/administração & dosagem , Dióxido de Carbono/química , Neuroblastoma/metabolismo , Polímeros/química , Acetilcolina/química , Acetilcolina/metabolismo , Sinalização do Cálcio , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Liberação Controlada de Fármacos , Humanos , Poliestirenos/química , Solventes/química , Tiofenos/química
19.
Med Hypotheses ; 89: 84-8, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26968916

RESUMO

Acetylcholine (ACh) is a central neurotransmitter that is used for signal transmission among neurons. For signal transmission in neurons, a neurotransmitter must bind to its receptor in order to produce an action potential. It is known that in Myasthenia Gravis (MG) cases, autoantibodies could block this binding. In the future, the treatment of MG could be achieved via modulation of molecular interaction between ACh and acetylcholine receptor (AChR). This study suggests that if an atom on a ligand (i.e. a neurotransmitter) is replaced with its isotope, it may cause charge redistribution such as that the binding between ligand and its receptor may be improved. Hence suggesting that with replacement of atoms with their isotopes in any biologically important ligand could alter its affinity towards its corresponding receptor, which would have a wide array of applications in medicine.


Assuntos
Acetilcolina/química , Acetilcolina/metabolismo , Isótopos/química , Miastenia Gravis/metabolismo , Receptores Colinérgicos/química , Receptores Colinérgicos/metabolismo , Sítios de Ligação , Simulação por Computador , Modelos Químicos , Modelos Moleculares , Terapia de Alvo Molecular/métodos , Miastenia Gravis/tratamento farmacológico , Neurotransmissores/química , Neurotransmissores/metabolismo , Ligação Proteica
20.
ACS Appl Mater Interfaces ; 8(15): 9590-9, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27010971

RESUMO

Successful regeneration of nerves can benefit from biomaterials that provide a supportive biochemical and mechanical environment while also degrading with controlled inflammation and minimal scar formation. Herein, we report a neuroactive polymer functionalized by covalent attachment of the neurotransmitter acetylcholine (Ach). The polymer was readily synthesized in two steps from poly(sebacoyl diglyceride) (PSeD), which previously demonstrated biocompatibility and biodegradation in vivo. Distinct from prior acetylcholine-biomimetic polymers, PSeD-Ach contains both quaternary ammonium and free acetyl moieties, closely resembling native acetylcholine structure. The polymer structure was confirmed via (1)H nuclear magnetic resonance and Fourier-transform infrared spectroscopy. Hydrophilicity, charge, and thermal properties of PSeD-Ach were determined by tensiometer, zetasizer, differential scanning calorimetry, and thermal gravimetric analysis, respectively. PC12 cells exhibited the greatest proliferation and neurite outgrowth on PSeD-Ach and laminin substrates, with no significant difference between these groups. PSeD-Ach yielded much longer neurite outgrowth than the control polymer containing ammonium but no the acetyl group, confirming the importance of the entire acetylcholine-like moiety. Furthermore, PSeD-Ach supports adhesion of primary rat dorsal root ganglions and subsequent neurite sprouting and extension. The sprouting rate is comparable to the best conditions from previous report. Our findings are significant in that they were obtained with acetylcholine-like functionalities in 100% repeating units, a condition shown to yield significant toxicity in prior publications. Moreover, PSeD-Ach exhibited favorable mechanical and degradation properties for nerve tissue engineering application. Humidified PSeD-Ach had an elastic modulus of 76.9 kPa, close to native neural tissue, and could well recover from cyclic dynamic compression. PSeD-Ach showed a gradual in vitro degradation under physiologic conditions with a mass loss of 60% within 4 weeks. Overall, this simple and versatile synthesis provides a useful tool to produce biomaterials for creating the appropriate stimulatory environment for nerve regeneration.


Assuntos
Acetilcolina/farmacologia , Neuritos/metabolismo , Poliésteres/farmacologia , Acetilcolina/síntese química , Acetilcolina/química , Alcanos/química , Animais , Materiais Biocompatíveis/farmacologia , Varredura Diferencial de Calorimetria , Comunicação Celular/efeitos dos fármacos , Forma Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Tecido Nervoso/efeitos dos fármacos , Neuritos/efeitos dos fármacos , Células PC12 , Poliésteres/síntese química , Poliésteres/química , Espectroscopia de Prótons por Ressonância Magnética , Ratos , Ratos Sprague-Dawley , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA