Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Cell Stress Chaperones ; 29(1): 10-20, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38219840

RESUMO

Glutamate is a neurotransmitter that can cause excitatory neurotoxicity when its extracellular concentration is too high, leading to disrupted calcium balance and increased production of reactive oxygen species (ROS). Cordycepin, a nucleoside adenosine derivative, has been shown to protect against excitatory neurotoxicity induced by glutamate. To investigate its potential neuroprotective effects, the present study employed fluorescence detection and spectrophotometry techniques to analyze primary hippocampal-cultured neurons. The results showed that glutamate toxicity reduced hippocampal neuron viability, increased ROS production, and increased intracellular calcium levels. Additionally, glutamate-induced cytotoxicity activated acetylcholinesterase and decreased glutathione levels. However, cordycepin inhibited glutamate-induced cell death, improved cell viability, reduced ROS production, and lowered Ca2+ levels. It also inhibited acetylcholinesterase activation and increased glutathione levels. This study suggests that cordycepin can protect against glutamate-induced neuronal injury in cell models, and this effect was inhibited by adenosine A1 receptor blockers, indicating that its neuroprotective effect is achieved through activation of the adenosine A1 receptor.


Assuntos
Fármacos Neuroprotetores , Fármacos Neuroprotetores/farmacologia , Ácido Glutâmico/toxicidade , Ácido Glutâmico/metabolismo , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Cálcio/metabolismo , Apoptose , Desoxiadenosinas/farmacologia , Desoxiadenosinas/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Glutationa/metabolismo
2.
Inflammopharmacology ; 31(5): 2685-2699, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37515653

RESUMO

Alzheimer's disease (AD) is a major neurological disease affecting elderly individuals worldwide. Existing drugs only reduce the symptoms of the disease without addressing the underlying causes. Commonly, Aß25-35 peptide aggregation is the main reason for AD development. Recently, the discovery of multiple protein-targeting molecules has provided a new strategy for treating AD. This study demonstrates the neuroprotective potential of oxymatrine against multiple mechanisms, such as acetylcholinesterase, mitochondrial damage, and ß-amyloid-induced cell toxicity. The in vitro cell culture studies showed that oxymatrine possesses significant potential to inhibit acetylcholine esterase and promotes antioxidant, antiapoptotic effects while preventing Aß25-35 peptide aggregation in PC12 cells. Furthermore, oxymatrine protects PC12 cells against Aß25-35-induced cytotoxicity and down-regulates the reactive oxygen species generation. The in vivo acute toxicological studies confirm the safety of oxymatrine without causing organ damage or death in animals. Overall, this study provided evidence that oxymatrine is an efficient neuroprotective agent, with a potential to be a multifunctional drug for Alzheimer's disease treatment. These findings present a reliable and synergistic approach for treating AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Humanos , Ratos , Animais , Idoso , Peptídeos beta-Amiloides/metabolismo , Células PC12 , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Acetilcolinesterase/farmacologia , Apoptose , Fragmentos de Peptídeos/toxicidade , Técnicas de Cultura de Células , Cognição , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico
3.
Expert Opin Drug Deliv ; 20(12): 1859-1873, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37357778

RESUMO

OBJECTIVES: Oxaliplatin induces chemobrain in cancer patients/survivors. Nutraceutical naringin has antioxidant and anti-inflammatory properties with low oral bioavailability. Our aim was to formulate naringin in chitosan nanoparticles for nose to brain delivery and assess its neuroprotective effect against oxaliplatin-induced chemobrain in rats. METHODS: Naringin chitosan nanoparticles were prepared by ionic gelation. Rats were administered oral naringin (80 mg/kg), intranasal naringin (0.3 mg/kg) or intranasal naringin-loaded chitosan nanoparticles (0.3 mg/kg). Naringin's neuroprotective efficacy was assessed based on behavioral tests, histopathology, and measuring oxidative stress and inflammatory markers. RESULTS: Selected nanoparticles formulation showed drug loading of 5%, size of 150 nm and were cationic. Intranasal naringin administration enhanced memory function, inhibited hippocampal acetylcholinesterase activity, and corrected oxaliplatin-induced histological changes. Moreover, it reduced malondialdehyde and elevated reduced glutathione hippocampal levels. Furthermore, it decreased levels of inflammatory markers: NF-kB and TNF-α by 1.25-fold. Upstream to this inflammatory status, intranasal naringin downregulated the hippocampal protein levels of two pathways: cGAS/STING and HMGB1/RAGE/TLR2/MYD88. CONCLUSION: Intranasal naringin-loaded chitosan nanoparticles showed superior amelioration of oxaliplatin-induced chemobrain in rats at a dose 267-fold lower to that administered orally. The potential involvement of cGAS/STING and HMGB1/RAGE/TLR2/MYD88 pathways in the mechanistic process of either oxaliplatin-induced chemobrain or naringin-mediated neuroprotection was evidenced.


Assuntos
Comprometimento Cognitivo Relacionado à Quimioterapia , Quitosana , Proteína HMGB1 , Nanopartículas , Humanos , Ratos , Animais , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 88 de Diferenciação Mieloide/farmacologia , Oxaliplatina/metabolismo , Oxaliplatina/farmacologia , Receptor 2 Toll-Like/metabolismo , Proteína HMGB1/metabolismo , Proteína HMGB1/farmacologia , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Comprometimento Cognitivo Relacionado à Quimioterapia/metabolismo , Encéfalo/metabolismo , Estresse Oxidativo , Administração Intranasal
4.
J Neuroimmune Pharmacol ; 18(3): 310-326, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37140732

RESUMO

Chemotherapy-induced cognitive impairment in cancer patients is known as "chemobrain". Doxorubicin and Cyclophosphamide are two chemotherapeutic agents used in combination to treat solid tumors. L-carnitine was reported for its anti-oxidant and anti-inflammatory activities. The goal of the present study was to elucidate the neuroprotective effect of L-carnitine against chemobrain induced by Doxorubicin and Cyclophosphamide in rats. Rats were divided into five groups: Control group; Doxorubicin (4mg/kg, IV) and Cyclophosphamide (40mg/kg, IV)-treated group; two L-carnitine-treated groups (150 and 300mg/kg, ip) with Doxorubicin and Cyclophosphamide; and L-carnitine alone-treated group (300mg/kg). Doxorubicin and Cyclophosphamide induced histopathological changes in rats' hippocampi and prefrontal cortices, as well as reduced memory as evidenced by behavioural testing. L-carnitine treatment showed opposite effects. In addition, chemotherapy treatment enhanced oxidative stress via reducing catalase and glutathione levels, and inducing lipid peroxidation. By contrast, L-carnitine treatment showed powerful antioxidant effects reversing chemotherapy-induced oxidative damage. Moreover, chemotherapy combination induced inflammation via their effect on nuclear factor kappa B (p65), interleukin-1ß, and tumor necrosis factor-α. However, L-carnitine treatment corrected such inflammatory responses. Furthermore, Doxorubicin and Cyclophosphamide reduced synaptic plasticity via hindering expression of brain-derived neurotrophic factor, phosphorylated cyclase response element binding protein, synaptophysin, and postsynaptic density protein 95 whereas protein expression of such synaptic plasticity biomarkers was enhanced by L-carnitine treatment. Finally, acetylcholinesterase activity was found to be enhanced by chemotherapy treatment affecting rats' memory while L-carnitine treatment reduced acetylcholinesterase activity. L-carnitine also showed hepatoprotective and renal protective effects suggesting liver/brain and kidney/brain axes as possible mechanisms for its neuroprotective effects.


Assuntos
Acetilcolinesterase , Disfunção Cognitiva , Humanos , Ratos , Animais , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Carnitina/efeitos adversos , Estresse Oxidativo , Antioxidantes/farmacologia , Doxorrubicina/toxicidade , Encéfalo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Fígado/metabolismo , Rim/metabolismo , Rim/patologia , Ciclofosfamida/toxicidade
5.
Molecules ; 28(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37049672

RESUMO

The species Morella pubescens, commonly known as wax laurel, is a tree belonging to the Myricaceae family that can be found from Costa Rica to Bolivia. In this study, the chemical composition, enantiomeric distribution, and biological activity of essential oil isolated from the leaves of this species was determined. Hydrodistillation was used to isolate the essential oil (EO). Gas chromatography coupled with mass spectrometry was used to determine the qualitative composition, gas chromatography equipped with a flame ionization detector was used to determine quantitative composition, and gas chromatography on an enantioselective column was used to determine enantiomeric distribution. The broth microdilution method was employed to assess the antibacterial capacity of the essential oil against seven opportunistic microorganisms, including three Gram-positive cocci bacteria, a Gram-positive bacilli bacterium and three Gram-negative bacilli bacteria. 2,2'-azinobis-3-ethylbenzothiazoline-6-sulfonic acid radical cation and 2,2-diphenyl-1-picrylhydryl free radical were used as reagents to determine the antioxidant activity of essential oil. The spectrophotometric method was used to analyze the acetylcholinesterase inhibitory effect of the essential oil. The extraction method afforded a low yield of around 0.076 ± 0.008% (v/w). Fifty-eight chemical compounds, which represent 97.9% of the total composition, were identified in the essential oil. Sesquiterpene hydrocarbons were the most representative group with 24 compounds (67.8%). The principal constituents were (E)-caryophyllene (27.5 ± 1.3%), limonene (11.8 ± 0.6%), δ-selinene (9.1 ± 0.2%), ß-selinene (8.0 ± 0.2%), selina-3,7(11)-diene (5.3 ± 0.2%) and germacrene B (5.0 ± 0.5%). Three pairs of enantiomers were identified in the essential oil of Morella pubescens. Essential oil presented strong activity against the bacterium Enterococcus faecium (ATCC 27270) with an MIC of 250 µg/mL. The antioxidant activity of essential oil was very strong in the ABTS method with an SC50 of 46.4 ± 1.0 µg/mL and was strong in the DPPH method with an SC50 of 237.1 ± 1.8 µg/mL. Additionally, the essential oil reported strong anticholinesterase activity with an IC50 of 133.5 ± 1.06 µg/mL.


Assuntos
Óleos Voláteis , Óleos Voláteis/química , Antioxidantes/química , Acetilcolinesterase/farmacologia , Estereoisomerismo , Cromatografia Gasosa-Espectrometria de Massas , Bactérias , Bactérias Gram-Positivas , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana
6.
J Biophotonics ; 16(8): e202300012, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37074708

RESUMO

The loss and progressive dysfunction of neurons are hallmarks of neurodegenerative diseases. The aim of the current study is to explore the effects of photobiomodulation at 460-660 nm (100-1000 lux units) on the progression of scopolamine-induced cognitive dysfunctions in Wistar male rats. Photobiomodulation (PBM) is defined as "the use of monochromatic or quasi-monochromatic light from a low-power laser or light-emitting diode (LED) source to modify or modulate biological functions." Neuroprotective activity was assessed by in vivo models such as the Morris water maze, the elevated plus maze (EPM), and the T-maze. After using scopolamine (1 mg/kg/day) as a dementia induction model for 21 days, the induction was primarily due to impairments in cholinergic transmission, oxidative stress, and inflammation. The in vitro determinations, including acetylcholinesterase (AChE), butyrylcholinesterase (BChE), reduced glutathione (GSH), malondialdehyde (MDA), superoxide dismutase (SOD), tumor necrosis factor-alpha (TNF-α), Interleukin 1 beta (IL-1ß), and alkaline phosphatase (ALP), were assessed biochemicals and biomarkers. The structural and morphological integrity of the cortex and hippocampus was investigated through histopathology. In vivo studies of exteroceptive behavior models such as the Morris water maze, the EPM, and the T-maze revealed that administration of scopolamine resulted in enhanced escape latency time (ELT), transfer latency (TL), and decreased percentage alternation, respectively. The levels of AChE, BChE, reduced, GSH, SOD, TNF-α, IL-1ß and ALP were increased, while MDA level was decreased. In contrast to normal and control groups with treatment groups, histopathology of the cortex and hippocampus examination revealed the maintenance of structural integrity and densities of CA1 and CA3 neuronal cells. However, network pharmacology predicted Ca+2 modulation of various pathways, among the treatments with red LED light showed highly significant amelioration compared with normal and control groups. Photobiomodulation by hormesis, chromophores in cells, and tissues excitation can influence neuroprotective effect mainly by scavenging of ROS, variation in the level of GSH MDA and SOD mitochondrial electron transfer, the improved abscopal effects on improved in gut microbiome by resembles the of fecal ALP level correlation of intestinal microbiome, cholinergic neurotransmissions, anti-inflammatory, and antioxidant activities.


Assuntos
Doenças Neurodegenerativas , Fármacos Neuroprotetores , Ratos , Masculino , Animais , Escopolamina/efeitos adversos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Acetilcolinesterase/uso terapêutico , Hormese , Butirilcolinesterase/metabolismo , Butirilcolinesterase/farmacologia , Butirilcolinesterase/uso terapêutico , Fator de Necrose Tumoral alfa/farmacologia , Ratos Wistar , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Estresse Oxidativo , Colinérgicos/metabolismo , Colinérgicos/farmacologia , Colinérgicos/uso terapêutico , Superóxido Dismutase/metabolismo , Superóxido Dismutase/farmacologia , Superóxido Dismutase/uso terapêutico , Hipocampo/metabolismo
7.
Environ Entomol ; 52(1): 81-87, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36545824

RESUMO

Research on the invasive plant Phytolacca americana (L.) mostly focuses on its medicinal value and enrichment of heavy metals. However, little is known regarding its impact on native herbivorous insects. In this study, we explored the effects of P. americana and the exotic noninvasive Phytolacca icosandra (L.) on the Spodoptera litura (Fabricius) (native tobacco cutworm) via bioassay, oviposition preference, detoxifying enzyme activity analysis, and phytochemical determination. We found that the oviposition preference index (OPI) of S. litura feeding on P. icosandra was higher than that of P. americana. The developmental duration of S. litura feeding on P. icosandra was shorter than that of P. americana. Additionally, the Acetylcholinesterase (AchE) and Glutathione-S-transferase (GST) activities of S. litura feeding on P. americana were higher than that of S. litura feeding on artificial diets or P. icosandra. The content of lignin and flavonoids in P. americana was relatively high, whereas starch content was relatively low. These findings suggest invasive plants have higher resistance to herbivores, thereby suffering less damage than exotic noninvasive plants.


Assuntos
Acetilcolinesterase , Herbivoria , Phytolacca , Spodoptera , Animais , Feminino , Acetilcolinesterase/farmacologia , Larva , Spodoptera/fisiologia , Phytolacca americana
8.
Folia Morphol (Warsz) ; 82(2): 248-255, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35347698

RESUMO

BACKGROUND: Cognitive dysfunction is a severe issue of Alzheimer's disease. Thus, the present study was conducted to enumerate the protective effect of propofol (PPL) in rats against intra-cerebroventricular streptozotocin (STZ)-induced cognitive dysfunction and neuronal damage. MATERIALS AND METHODS: The effect of PPL was investigated to evaluate behavioural changes in STZ-induced cognitive dysfunction in Wistar rats using Object Recognition Task (ORT) for nonspatial, Morris Water Maze (MWM) for spatial and locomotor activity. The effect of PPL was also investigated on acetylcholine (ACh) esterase (AChE) activity and oxidative stress markers, e.g., nitrite, malonaldehyde (MDA), superoxide dismutase (SOD), and glutathione (GSH). The level of pro-inflammatory cytokines, e.g., tumour necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6, was also studied in the PPL-treated group. The effect of PPL on the level of neurotransmitters, e.g., dopamine (DA), serotonin (5-HT), and norepinephrine (NE) and their metabolites 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindoleacetic acid (5-HIAA), and homovanillic acid (HVA) levels were also estimated in frozen hippocampal tissues by high-performance liquid chromatography. Histopathology analysis of neurons in the hippocampus of rats was performed using haematoxylin and eosin (H&E) staining. RESULTS: Propofol showed significant improvement in the spatial and nonspatial memory deficit of rats in the MWM test and ORT in rats. It also causes improvement in locomotor activity of rats by preserving ACh via inhibition of AChE. It also potentiates the expression of DA, 5-HT, and NE with a simultaneous reduction in the level of metabolites (DOPAC, HVA, and 5-HIAA). PPL showed a reduction of oxidative stress in rats by restoring the level of nitrite, SOD, MDA, and GSH near to normal. In the PPL-treated group, the level of TNF-α, IL-1ß, and IL-6 was found reduced in a dose-dependent manner. In histopathology analysis of neurons in the hippocampus of the STZ rats, PPL causes dose-dependent reduction of pyknosis in the nucleus, which confirmed the protective effect of PPL. CONCLUSIONS: The present study demonstrated that PPL could significantly attenuate cognitive dysfunction and neuronal damage in STZ-induced rats.


Assuntos
Disfunção Cognitiva , Propofol , Animais , Ratos , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Disfunção Cognitiva/induzido quimicamente , Disfunção Cognitiva/prevenção & controle , Disfunção Cognitiva/metabolismo , Dopamina/metabolismo , Hipocampo , Ácido Hidroxi-Indolacético/metabolismo , Ácido Hidroxi-Indolacético/farmacologia , Interleucina-6/metabolismo , Neurônios/metabolismo , Nitritos/metabolismo , Norepinefrina/metabolismo , Estresse Oxidativo , Propofol/metabolismo , Propofol/uso terapêutico , Ratos Wistar , Serotonina/metabolismo , Estreptozocina/efeitos adversos , Estreptozocina/metabolismo , Superóxido Dismutase/metabolismo
9.
Niger J Physiol Sci ; 38(1): 91-99, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243363

RESUMO

Decline in cholinergic function and oxidative/nitrosative stress play a central role in Alzheimer's disease (AD). Previous quantitative HPLC profiling analysis has revealed the presence of Pinostrobin, formononetin, vitexin and other neuroprotective flavonoids in Cajanus cajan seed extract. This study was designed to investigate the protective action of Cajanus cajan ethanol seed extract (CC) on learning and memory functions using scopolamine mouse model of amnesia. Materials and methods: Adult mice were pretreated with CC (50, 100, or 200mg/kg, p.o) or vehicle (10ml/kg, p.o) for 16 days consecutively. Scopolamine, a competitive muscarinic cholinergic receptor antagonist (1mg/kg, i.p.) was given an hour after CC pretreatment from days 3 to 16.  The mice were subjected to behavioural tests from day 11 (open field test (OFT)/ Y-maze test (YMT) and Morris water maze task (MWM) from days 12-16. Animals were euthanized 1h after behavioral test on day 16 and discrete brain regions isolated for markers of oxidative stress and cholinergic signaling. Molecular docking analysis was undertaken to predict the possible mechanism(s) of CC-induced anti-amnesic action.  pre-administration of CC significantly reversed working memory and learning deficits caused by scopolamine in YMT and MWM tests, respectively. Moreover, CC prevented scopolamine-induced oxidative and nitrosative stress radicals in the hippocampus evidenced in significant increase in glutathione (GSH) level, superoxide dismutase (SOD) and catalase (CAT) activities with a marked decrease in malondialdehyde (MDA) production, as well as significant inhibition of hippocampal scopolamine-induced increase in acetylcholinesterase activity by CC. The molecular docking analysis showed that out of the 19 compounds, the following had the highest binding affinity; Pinostrobin (-8.7 Kcal/mol), friedeline (-7.5kCal/mol), and lupeol (-8.2 Kcal/mol), respectively, to neuronal muscarinic M1 acetylcholine receptor, α7 nicotinic acetylcholine receptor and amyloid beta peptide binding pockets, which further supports the ability of CC to enhance neuronal cholinergic signaling and possible inhibition of amyloid beta aggregation. This study showed that Cajanus cajan seeds extract improved working memory and learning through enhancement of cholinergic signaling, antioxidant capacity and reduction in amyloidogenesis.


Assuntos
Antioxidantes , Cajanus , Camundongos , Animais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Escopolamina/farmacologia , Cajanus/metabolismo , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Peptídeos beta-Amiloides/efeitos adversos , Peptídeos beta-Amiloides/metabolismo , Simulação de Acoplamento Molecular , Aprendizagem em Labirinto , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/prevenção & controle , Estresse Oxidativo , Glutationa/metabolismo , Transmissão Sináptica , Hipocampo , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Colinérgicos/efeitos adversos , Colinérgicos/metabolismo , Mecanismos de Defesa , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo
10.
Niger J Physiol Sci ; 38(1): 65-72, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38243358

RESUMO

The neuro-pharmacological effect of Eucalyptus globulus ethanol leaf extract in fructose-streptozotocin-induced diabetic rats was evaluated in this study. The phytochemical analysis of the extract was carried out using HPLC-DAD. Diabetes was induced in rats with 10% fructose in drinking water and a single intraperitoneal injection of 40 mg/kg streptozotocin (STZ). Diabetic animals were orally treated with 100-400 mg/kg of the extract for 21 days with glibenclamide as the reference drug. Blood and brain tissue were processed for the determination of serum electrolyte levels, hematological indices, and biochemical estimations. Ergosterol, pinitol, catechin, quercetin, robinetinidol, and other polyphenols were identified in the extract. Diabetic animals showed decreased serum potassium and sodium ion levels and decreased hematocrit, hemoglobin, red blood cells, white blood cells and lymphocytes but increased neutrophils. The brains of animals in the untreated diabetic group with increased blood glucose level showed oxidative stress (increased level of MDA and myeloperoxidase but decreased level of reduced glutathione and superoxide dismutase) and disturbed neurochemistry (increased level of acetylcholinesterase and monoamine oxidase but decreased level of Na+K+ATPase, tyrosine hydroxylase and dopamine). Administration of the Eucalyptus globulus leaf extract remarkably ameliorated the observed hyperglycemia, electrolyte, and hematological imbalances in animals. In addition, the administration of the extract attenuated the brain redox imbalance, and neurochemical disturbances in the rats. These results show that Eucalyptus globulus leaves contain antioxidant and neurotransmitter modulating phytochemicals with the potential to be developed as therapeutic agents for the management of diabetic cerebrovascular problems and related complications.


Assuntos
Diabetes Mellitus Experimental , Eucalyptus , Neuroquímica , Ratos , Animais , Ratos Wistar , Estreptozocina/farmacologia , Glicemia , Diabetes Mellitus Experimental/induzido quimicamente , Diabetes Mellitus Experimental/tratamento farmacológico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Acetilcolinesterase/farmacologia , Acetilcolinesterase/uso terapêutico , Estresse Oxidativo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Encéfalo , Eletrólitos , Hipoglicemiantes/farmacologia
11.
Molecules ; 27(24)2022 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-36557821

RESUMO

The present work was designed to study the chemical composition and the antioxidant and antimicrobial properties of fruits (SFr) and leaf (SF) extracts from Solanum elaeagnifolium var. obtusifolium (Dunal) Dunal (S. elaeagnifolium). The chemical composition was determined using HPLC-DAD analysis. Colorimetric methods were used to determine polyphenols and flavonoids. Antioxidant capacity was assessed with DPPH, TAC, and FRAP assays. Antimicrobial activity was assessed using disk diffusion and microdilution assays against two Gram (+) bacteria (Staphylococcus aureus ATCC-6633 and Bacillus subtilis DSM-6333) and two Gram (-) bacteria (Escherichia coli K-12 and Proteus mirabilis ATCC-29906), while the antifungal effect was tested vs. Candida albicans ATCC-1023. By use of in silico studies, the antioxidant and antimicrobial properties of the studied extracts were also investigated. HPLC analysis showed that both fruits and leaf extracts from S. elaeagnifolium were rich in luteolin, quercetin, gallic acid, and naringenin. Both SFr and SF generated good antioxidant activity, with IC50 values of 35.15 ± 6.09 µg/mL and 132.46 ± 11.73 µg/mL, respectively. The EC50 of SFr and SF was 35.15 ± 6.09 µg/mL and 132.46 ± 11.73 µg/mL, respectively. SFr and SF also showed a good total antioxidant capacity of 939.66 ± 5.01 µg AAE/and 890.1 ± 7.76 µg AAE/g, respectively. SFr had important antibacterial activity vs. all tested strains-most notably B. subtilis DSM-6333 and E. coli, with MICs values of 2.5 ± 0.00 mg/mL and 2.50 ± 0.00 mg/mL, respectively. SFr demonstrated potent antifungal activity against C. albicans, with an inhibition diameter of 9.00 ± 0.50 mm and an MIC of 0.31 ± 0.00 mg/mL. The in silico approach showed that all compounds detected in SFr and SF had high activity (between -5.368 and 8.416 kcal/mol) against the receptors studied, including NADPH oxidase, human acetylcholinesterase, and beta-ketoacyl-[acyl carrier protein] synthase.


Assuntos
Anti-Infecciosos , Escherichia coli K12 , Humanos , Antioxidantes/farmacologia , Antioxidantes/química , Polifenóis/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Acetilcolinesterase/farmacologia , Escherichia coli , Fenóis/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Infecciosos/farmacologia , Testes de Sensibilidade Microbiana , Candida albicans
12.
Environ Mol Mutagen ; 63(6): 286-295, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-36053843

RESUMO

In this study, the neuroprotective action potential by ulexite (UX) (18.75 mg/L) against acetylferrocene (AFC) (3.82 mg/L) induced neurotoxicity was aimed to investigate in brain tissues of Oncorhynchus mykiss. For this purpose, the effects on neurotoxicity markers, proinflammatory cytokines, antioxidant immune system, DNA, and apoptosis mechanisms were assessed on brain tissues in the 48-96  h of the 96- trial period. In this research, it was determined that brain-derived nerve cell growth factor (BDNF) level and acetylcholinesterase (AChE) activity were inhibited in the brain tissue compared to the control group by AFC. In addition, inhibition in glutathione peroxidase (GPx), catalase (CAT), superoxide dismutase (SOD), and glutathione (GSH) values (which are antioxidant system biomarkers), and inductions in malondialdehyde (MDA) and myeloperoxidase (MPO) amounts (which are indicators of lipid peroxidation) were determined (p < 0.05) after exposure to AFC. And, while tumor necrosis factor-α (TNF-α) and IL-6 levels were increased in the AFC-exposed group, Nrf-2 levels were found to be remarkably decreased. Upregulation was also detected in 8-hydroxydeoxyguanosine (8-OHdG) and caspase-3 levels, which are related to DNA damage and apoptosis mechanism. On the contrary, UX (single/with AFC) suppressed the AChE and BDNF inhibition by AFC. Moreover, UX mitigated AFC-induced oxidative, inflammatory, and DNA damage and attenuated AFC-mediated neurotoxicity via activating Nrf2 signaling in fish. Collectively, our findings revealed that UX supplementation might exert beneficial effects and may be considered as a natural and promising neuroprotective agent against AFC-induced toxicity.


Assuntos
Fármacos Neuroprotetores , Oncorhynchus mykiss , 8-Hidroxi-2'-Desoxiguanosina , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Biomarcadores/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Caspase 3/metabolismo , Caspase 3/farmacologia , Catalase/metabolismo , Compostos Ferrosos , Glutationa/metabolismo , Glutationa Peroxidase/metabolismo , Glutationa Peroxidase/farmacologia , Interleucina-6/metabolismo , Malondialdeído , Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores/farmacologia , Estresse Oxidativo , Peroxidase/metabolismo , Peroxidase/farmacologia , Superóxido Dismutase , Fator de Necrose Tumoral alfa
13.
J Environ Manage ; 322: 115989, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36055090

RESUMO

Flupyradifurone (FLU) has great application potential in agricultural production as a new generation of neonicotinoid insecticide after imidacloprid. Nevertheless, the toxic effects of FLU on non-target soil organisms remain unclear, resulting in considerable environmental risks. We evaluated the acute and subchronic toxicities of FLU to earthworms. The results of acute toxicity show that the median lethal concentration (LC50) values (14 d) of FLU were 186.9773 mg kg-1 for adult earthworms and 157.6502 mg kg-1 for juveniles, respectively. The subchronic toxicity of FLU that focused on the activities of antioxidant and detoxication enzymes showed the superoxide dismutase (SOD), catalase (CAT), and glutathione-S transferase (GST) activities in earthworms increased while the peroxidase (POD) and acetylcholinesterase (AChE) activities decreased after exposure to FLU. Oxidative damage analyses revealed that the reactive oxygen species (ROS) level and malonaldehyde (MDA) content in earthworms were increased by FLU, resulting in DNA damage. Transcriptomics and RT-qPCR confirmed that FLU influenced the expression of genes related to antioxidant response and detoxification of earthworms. Ultimately detoxification metabolism, environmental information processing, cell processes, and immune system pathways are significantly enriched to respond jointly to FLU. Our study fills the gaps in the toxicity of FLU to earthworms, providing a basis for its risk assessment of soil ecosystems and non-target biological toxicity.


Assuntos
Inseticidas , Oligoquetos , Poluentes do Solo , 4-Butirolactona/análogos & derivados , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Catalase/genética , Catalase/metabolismo , Catalase/farmacologia , Ecossistema , Glutationa/metabolismo , Glutationa/farmacologia , Inseticidas/metabolismo , Malondialdeído/metabolismo , Malondialdeído/farmacologia , Neonicotinoides/metabolismo , Neonicotinoides/toxicidade , Oligoquetos/metabolismo , Estresse Oxidativo , Piridinas , Espécies Reativas de Oxigênio , Solo , Poluentes do Solo/metabolismo , Superóxido Dismutase/metabolismo , Transferases/metabolismo , Transferases/farmacologia
14.
Br J Pharmacol ; 179(24): 5273-5289, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36028305

RESUMO

BACKGROUND AND PURPOSE: Donepezil, a piperidine inhibitor of acetylcholinesterase (AChE) prescribed for treatment of Alzheimer's disease, has adverse neuromuscular effects in humans, including requirement for higher concentrations of non-depolarising neuromuscular blockers during surgery. Here, we examined the effects of donepezil on synaptic transmission at neuromuscular junctions (NMJs) in isolated nerve-muscle preparations from mice. EXPERIMENTAL APPROACH: We measured effects of therapeutic concentrations of donepezil (10 nM to 1 µM) on AChE enzymic activity, muscle force responses to repetitive stimulation, and spontaneous and evoked endplate potentials (EPPs) recorded intracellularly from flexor digitorum brevis muscles from CD01 or C57BlWldS mice. KEY RESULTS: Donepezil inhibited muscle AChE with an approximate IC50 of 30 nM. Tetanic stimulation in sub-micromolar concentrations of donepezil prolonged post-tetanic muscle contractions. Preliminary Fluo4-imaging indicated an association of these contractions with an increase and slow decay of intracellular Ca2+ transients at motor endplates. Donepezil prolonged spontaneous miniature EPP (MEPP) decay time constants by about 65% and extended evoked EPP duration almost threefold. The mean frequency of spontaneous MEPPs was unaffected but the incidence of 'giant' MEPPs (gMEPPs), some exceeding 10 mV in amplitude, was increased. Neither mean MEPP amplitude (excluding gMEPPs), mean EPP amplitude, quantal content or synaptic depression during repetitive stimulation were significantly altered by concentrations of donepezil up to 1 µM. CONCLUSION AND IMPLICATIONS: Adverse neuromuscular signs associated with donepezil therapy, including relative insensitivity to neuromuscular blockers, are probably due to inhibition of AChE at NMJs, prolonging the action of ACh on postsynaptic nicotinic acetylcholine receptors but without substantively impairing evoked ACh release.


Assuntos
Acetilcolinesterase , Junção Neuromuscular , Humanos , Camundongos , Animais , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Donepezila/farmacologia , Junção Neuromuscular/metabolismo , Transmissão Sináptica , Músculo Esquelético/metabolismo
15.
J Neuroinflammation ; 19(1): 39, 2022 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-35130930

RESUMO

BACKGROUND: Mounting evidences indicate that oxidative stress, neuroinflammation, and dysregulation of gut microbiota are related to neurodegenerative disorders (NDs). Butyrolactone I (BTL-I), a marine fungal metabolite, was previously reported as an in vitro neuroprotectant and inflammation inhibitor. However, little is known regarding its in vivo effects, whereas zebrafish (Danio rerio) could be used as a convenient in vivo model of toxicology and central nervous system (CNS) diseases. METHODS: Here, we employed in vivo and in silico methods to investigate the anti-NDs potential of BTL-I. Specifically, we established a cognitive deficit model in zebrafish by intraperitoneal (i.p.) injection of aluminum trichloride (AlCl3) (21 µg) and assessed their behaviors in the T-maze test. The proinflammatory cytokines interleukin-1ß (IL-1ß) and tumor necrosis factor-α (TNF-α) as well as acetylcholinesterase (AChE) activity or glutathione (GSH) levels were assayed 24 h after AlCl3 injection. The intestinal flora variation of the zebrafish was investigated by 16S rDNA high-throughput analysis. The marine fungal metabolite, butyrolactone I (BTL-I), was used to modulate zebrafish cognitive deficits evoked by AlCl3 and evaluated about its effects on the above inflammatory, cholinergic, oxidative stress, and gut floral indicators. Furthermore, the absorption, distribution, metabolism, excretion, and toxicity (ADMET) and drug-likeness properties of BTL-I were studied by the in silico tool ADMETlab. RESULTS: BTL-I dose-dependently ameliorated AlCl3-induced cognitive deficits in zebrafish. While AlCl3 treatment elevated the levels of central and peripheral proinflammatory cytokines, increased AChE activity, and lowered GSH in the brains of zebrafish, these effects, except GSH reduction, were reversed by 25-100 mg/kg BTL-I administration. Besides, 16S rDNA high-throughput sequencing of the intestinal flora of zebrafish showed that AlCl3 decreased Gram-positive bacteria and increased proinflammatory Gram-negative bacteria, while BTL-I contributed to maintaining the predominance of beneficial Gram-positive bacteria. Moreover, the in silico analysis indicated that BTL-I exhibits acceptable drug-likeness and ADMET profiles. CONCLUSIONS: The present findings suggest that BTL-I is a potential therapeutic agent for preventing CNS deficits caused by inflammation, neurotoxicity, and gut flora imbalance.


Assuntos
Microbioma Gastrointestinal , Peixe-Zebra , 4-Butirolactona/análogos & derivados , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Cloreto de Alumínio/toxicidade , Animais , Cognição , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Estresse Oxidativo , Peixe-Zebra/metabolismo
16.
Trop Biomed ; 39(4): 531-538, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36602212

RESUMO

Melia azedarach L. (Meliaceae) is a botanical species with focal point of global research for its biological properties. The Melia azedarach tree is distinguished by its rapid growth, its adaptation to different temperate zones, as well as its insecticidal properties. All this made us think of exploiting it in biological control against different stages of mosquitoes. To this end, we aim, through the present work, to evaluate the effectiveness of Melia azedarach extracts against Culex pipiens mosquito. More specifically, our study focuses on determining the chemical composition of Melia almond oil, as well as the larvicidal, ovicidal and repellent activities on Culex pipiens L. mosquito as well as the activities of acetylcholinesterase (AChE) and glutathione-S-transferase (GST). Almond oil was extracted by a Soxhlet and subjected to gas chromatography-mass spectrometry (GC/MS). The yield was found to be 35.17%. The chemical composition revealed the presence of various phytoconstituents. A total of 7 compounds were identified, the main ones being 9,11-Octadecadienoic acid, methyl ester, (E,E)- (79.32%), 9-octadecenoic acid (Z)-, methyl ester (13.24%), hexadecanoic acid and methyl ester (3.69%). The larvicidal bioassays were performed according to the protocol recommended by the World Health Organization with concentrations varying from 20 to 80 mg/L depending on the exposure time (24, 48 and 72 hours). The almond oil exhibited remarkable larvicidal activity against fourth instar larvae and the lethal concentrations were determined (LC25= 23.70 mg/L, LC50=35.49 mg/L, LC90=79.61 mg/L). The results also showed that the oil caused an ovicidal activity with a significant effect on egg hatch. The recorded hatching percentages were respectively 88.79% and 72.40% for the LC25 and LC50, and this compared to the control series. Moreover, this oil exhibited significant repellency against adult mosquitoes. Furthermore, the enzymatic measurements performed on LC50 and LC90 treated larvae revealed a neurotoxic activity and a stimulation of the detoxification system as evidenced, respectively, by an inhibition of AChE and induction in GST activity. Overall, our data proved that Melia azedarach almond oil could be considered as a potent biorational alternative to synthetic insecticides for mosquito control.


Assuntos
Aedes , Culex , Inseticidas , Melia azedarach , Animais , Melia azedarach/química , Extratos Vegetais/farmacologia , Acetilcolinesterase/farmacologia , Larva , Compostos Fitoquímicos/farmacologia , Inseticidas/farmacologia
17.
J Food Biochem ; 46(1): e14032, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34914114

RESUMO

Reactive oxygen species (ROS)-induced oxidative stress is reportedly associated with progressive neuronal cell damage. Glechoma hederacea L. (Lamiaceae), belonging to the Labiatae family, has demonstrated several biologic activities including depigmentation, antimelanogenic, antitumor, antioxidative, hepatoprotective, and anti-inflammatory activities. Previously, we reported that rosmarinic acid, chlorogenic acid, caffeic acid, rutin, genistin, and ferulic acids were the most abundant phytochemicals detected in hot water extracts of G. hederacea L. (HWG). This study aimed to study the neuroprotective effects of phenolic acids and flavonoid-rich HWG against hydrogen peroxide (H2 O2 )-induced oxidative damage in PC12 cells and its inhibitory effect on acetylcholinesterase (AChE). The experiment analyzed cytotoxicity, ROS production, mitochondrial transmembrane potential (MMP) level, and caspase-3 activity and used comet assay and antioxidant enzyme activity to determine the redox status of PC12 cells. Results showed that the inhibitory effect of HWG on AChE was in a competitive pattern (IC50 , 23.23 mg/ml). HWG antagonized H2 O2 -mediated cytotoxicity and DNA damage, reduced ROS production, stabilized MMP, and inhibited caspase-3 activity and apoptosis. Furthermore, HWG inhibited the release of cytochrome C and apoptosis-inducing factors (AIF) and decreased the malondialdehyde levels in PC12 cells. Collectively, HWG rich in antioxidant phenolic acids and flavonoids may have neuroprotective effects. PRACTICAL APPLICATIONS: Polyphenolic compounds are one of the most important natural products, known to possess a range of health-promoting effects. In this study, it was found that HWG, which is rich in antioxidant phenolic acids and flavonoids, can protect PC12 cells from oxidative stress induced by H2 O2 and may have neuroprotective effects.


Assuntos
Lamiaceae , Acetilcolinesterase/farmacologia , Animais , Apoptose , Flavonoides/farmacologia , Lamiaceae/química , Células PC12 , Ratos , Água
18.
Braz. J. Pharm. Sci. (Online) ; 58: e19958, 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1383955

RESUMO

Abstract The ß-carboline-1,3,5-triazine hydrochlorides 8-13 were evaluated in vitro against acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE). The analysed compounds were selective to BuChE, with IC50 values in the range from 1.0-18.8 µM being obtained. The N-{2-[(4,6-dihydrazinyl-1,3,5-triazin-2-yl)amino]ethyl}-1-phenyl-ß-carboline-3-carboxamide (12) was the most potent compound and kinetic studies indicate that it acts as a competitive inhibitor of BuChE. Molecular docking studies show that 12 strongly interacts with the residues of His438 (residue of the catalytic triad) and Trp82 (residue of catalytic anionic site), confirming that this compound competes with the same binding site of the butyrylthiocholine


Assuntos
Triazinas/efeitos adversos , Técnicas In Vitro/métodos , Dor , Acetilcolinesterase/farmacologia , Butirilcolinesterase/farmacologia , Butiriltiocolina/efeitos adversos , Carbolinas/agonistas , Inibidores da Colinesterase/administração & dosagem , Simulação de Acoplamento Molecular/instrumentação
19.
Neurotoxicol Teratol ; 81: 106914, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32652103

RESUMO

High doses of malathion, an organophosphorus (OP) insecticide ubiquitously used in agriculture, residential settings, and public health programs worldwide, induce a well-defined toxidrome that results from the inhibition of acetylcholinesterase (AChE). However, prenatal exposures to malathion levels that are below the threshold for AChE inhibition have been associated with increased risks of neurodevelopmental disorders, including autism spectrum disorder with intellectual disability comorbidity. The present study tested the hypothesis that prenatal exposures to a non-AChE-inhibiting dose of malathion are causally related to sex-biased cognitive deficits later in life in a precocial species. To this end, pregnant guinea pigs were injected subcutaneously with malathion (20 mg/kg) or vehicle (peanut oil, 0.5 ml/kg) once daily between approximate gestational days 53 and 63. This malathion dose regimen caused no significant AChE inhibition in the brain or blood of dams and offspring and had no significant effect on the postnatal growth of the offspring. Around postnatal day 30, locomotor activity and habituation, a form of non-associative learning, were comparable between malathion- and peanut oil-exposed offspring. However, in the Morris water maze, malathion-exposed offspring presented significant sex-dependent spatial learning deficits in addition to memory impairments. These results are far-reaching as they indicate that: (i) malathion is a developmental neurotoxicant and (ii) AChE inhibition is not an adequate biomarker to derive safety limits of malathion exposures during gestation. Continued studies are necessary to identify the time and dose dependence of the developmental neurotoxicity of malathion and the mechanisms underlying the detrimental effects of this insecticide in the developing brain.


Assuntos
Encéfalo/efeitos dos fármacos , Inseticidas/farmacologia , Aprendizagem/efeitos dos fármacos , Memória/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Acetilcolinesterase/farmacologia , Animais , Inibidores da Colinesterase/farmacologia , Feminino , Cobaias , Malation/farmacologia , Masculino , Síndromes Neurotóxicas/etiologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal , Aprendizagem Espacial/efeitos dos fármacos
20.
Phytother Res ; 34(9): 2287-2302, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32309898

RESUMO

The aim of this study was to compare the micro-morphological features of two different non-drug Cannabis sativa L. biotypes (Chinese accession G-309 and one fibrante variety) and to evaluate the phytochemical profile as well as some biological properties of the essential oils (EOs) obtained by hydrodistillation of dried flowering tops. After a micro-morphological evaluation by scanning electron microscopy, the phytochemical composition was analysed by GC-FID and GC-MS analyses. Antioxidant and anti-acetylcholinesterase properties were investigated by several in vitro cell-free assays, while neuroactive effects were evaluated on mouse cortical neuronal as well as human iPS cell-derived central nervous system cells grown on MEA chips. Both EOs showed strong antioxidant properties mainly attributable to the high content of hydroxylated compounds as well as significant anti-acetylcholinesterase activities (IC50 74.64 and 57.31 µg/ml for Chinese accession and fibrante variety, respectively). Furthermore, they showed a concentration-dependent inhibition of spontaneous electrical activity of human and mouse neuronal networks, with the fibrante variety, which showed the best activity (MFR, IC50 0.71 and 10.60 µg/ml, respectively). The observed biological activities could be due to a synergic effect between terpenes and phytocannabinoids, although in vivo studies, which clarify the molecular mechanism, are still lacking.


Assuntos
Acetilcolinesterase/uso terapêutico , Antioxidantes/uso terapêutico , Cannabis/química , Óleos Voláteis/uso terapêutico , Extratos Vegetais/uso terapêutico , Acetilcolinesterase/farmacologia , Animais , Antioxidantes/farmacologia , Humanos , Camundongos , Óleos Voláteis/farmacologia , Extratos Vegetais/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA