Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.832
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Molecules ; 29(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731452

RESUMO

In this study, two "on-off" probes (BF2-cur-Ben and BF2-cur-But) recognizing acetylcholinesterase (AChE) were designed and synthesized. The obtained probes can achieve recognition of AChE with good selectivity and pH-independence with a linear range of 0.5~7 U/mL and 0.5~25 U/mL respectively. BF2-cur-Ben has a lower limit of detection (LOD) (0.031 U/mL), higher enzyme affinity (Km = 16 ± 1.6 µM), and higher inhibitor sensitivity. A responsive mechanism of the probes for AChE was proposed based on HPLC and mass spectra (MS) experiments, as well as calculations. In molecular simulation, BF2-cur-Ben forms more hydrogen bonds (seven, while BF2-cur-But has only four) and thus has a more stable enzyme affinity, which is mirrored by the results of the comparison of Km values. These two probes could enable recognition of intracellular AChE and probe BF2-cur-Ben has superior cell membrane penetration due to its higher log p value. These probes can monitor the overexpression of AChE during apoptosis of lung cancer cells. The ability of BF2-cur-Ben to monitor AChE in vivo was confirmed by a zebrafish experiment.


Assuntos
Acetilcolinesterase , Corantes Fluorescentes , Peixe-Zebra , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Animais , Humanos , Limite de Detecção , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química
2.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38732097

RESUMO

The olive oil sector is a fundamental food in the Mediterranean diet. It has been demonstrated that the consumption of extra virgin olive oil (EVOO) with a high content of phenolic compounds is beneficial in the prevention and/or treatment of many diseases. The main objective of this work was to study the relationship between the content of phenolic compounds and the in vitro neuroprotective and anti-inflammatory activity of EVOOs from two PDOs in the province of Granada. To this purpose, the amounts of phenolic compounds were determined by liquid chromatography coupled to mass spectrometry (HPLC-MS) and the inhibitory activity of acetylcholinesterase (AChE) and cyclooxygenase-2 (COX-2) enzymes by spectrophotometric and fluorimetric assays. The main families identified were phenolic alcohols, secoiridoids, lignans, flavonoids, and phenolic acids. The EVOO samples with the highest total concentration of compounds and the highest inhibitory activity belonged to the Picual and Manzanillo varieties. Statistical analysis showed a positive correlation between identified compounds and AChE and COX-2 inhibitory activity, except for lignans. These results confirm EVOO's compounds possess neuroprotective potential.


Assuntos
Fármacos Neuroprotetores , Azeite de Oliva , Fenóis , Azeite de Oliva/química , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Fenóis/análise , Fenóis/química , Fenóis/farmacologia , Espanha , Ciclo-Oxigenase 2/metabolismo , Acetilcolinesterase/metabolismo , Cromatografia Líquida de Alta Pressão , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/química , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/química , Flavonoides/análise , Flavonoides/farmacologia , Flavonoides/química
3.
Int J Mol Sci ; 25(9)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38732252

RESUMO

Several studies have shown an inverse correlation between the likelihood of developing a neurodegenerative disorder and cancer. We previously reported that the levels of amyloid beta (Aß), at the center of Alzheimer's disease pathophysiology, are regulated by acetylcholinesterase (AChE) in non-small cell lung cancer (NSCLC). Here, we examined the effect of Aß or its fragments on the levels of ACh in A549 (p53 wild-type) and H1299 (p53-null) NSCLC cell media. ACh levels were reduced by cell treatment with Aß 1-42, Aß 1-40, Aß 1-28, and Aß 25-35. AChE and p53 activities increased upon A549 cell treatment with Aß, while knockdown of p53 in A549 cells increased ACh levels, decreased AChE activity, and diminished the Aß effects. Aß increased the ratio of phospho/total p38 MAPK and decreased the activity of PKC. Inhibiting p38 MAPK reduced the activity of p53 in A549 cells and increased ACh levels in the media of both cell lines, while opposite effects were found upon inhibiting PKC. ACh decreased the activity of p53 in A549 cells, decreased p38 MAPK activity, increased PKC activity, and diminished the effect of Aß on those activities. Moreover, the negative effect of Aß on cell viability was diminished by cell co-treatment with ACh.


Assuntos
Acetilcolina , Acetilcolinesterase , Peptídeos beta-Amiloides , Carcinoma Pulmonar de Células não Pequenas , Sobrevivência Celular , Neoplasias Pulmonares , Proteína Quinase C , Proteína Supressora de Tumor p53 , Proteínas Quinases p38 Ativadas por Mitógeno , Humanos , Peptídeos beta-Amiloides/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/genética , Proteína Supressora de Tumor p53/metabolismo , Acetilcolina/metabolismo , Acetilcolina/farmacologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/genética , Sobrevivência Celular/efeitos dos fármacos , Proteína Quinase C/metabolismo , Acetilcolinesterase/metabolismo , Linhagem Celular Tumoral , Células A549
4.
Neuropharmacology ; 253: 109983, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704023

RESUMO

Exposure to organophosphorus compounds, such as soman (GD), cause widespread toxic effects, sustained status epilepticus, neuropathology, and death. The A1 adenosine receptor agonist N-bicyclo-(2.2.1)-hept-2-yl-5'-chloro-5'-deoxyadenosine (ENBA), when given 1 min after GD exposure, provides neuroprotection and prevents behavioral impairments. Here, we tested the ability of ENBA at delayed treatment times to improve behavioral outcomes via a two-way active avoidance task in two male animal models, each consisting of saline and GD exposure groups. In a rat model, animals received medical treatments (atropine sulfate [A], 2-PAM [P], and midazolam [MDZ]) or AP + MDZ + ENBA at 15 or 30 min after seizure onset and were subjected to behavioral testing for up to 14 days. In a human acetylcholinesterase knock-in serum carboxylesterase knock-out mouse model, animals received AP, AP + MDZ, AP + ENBA, or AP + MDZ + ENBA at 15 min post seizure onset and were subjected to the behavioral task on days 7 and 14. In rats, the GD/AP + MDZ + ENBA group recovered to saline-exposed avoidance levels while the GD/AP + MDZ group did not. In mice, in comparison with GD/AP + MDZ group, the GD/AP + MDZ + ENBA showed decreases in escape latency, response latency, and pre-session crossings, as well as increases in avoidances. In both models, only ENBA-treated groups showed control level inter-trial interval crossings by day 14. Our findings suggest that ENBA, alone and as an adjunct to medical treatments, can improve behavioral and cognitive outcomes when given at delayed time points after GD intoxication.


Assuntos
Acetilcolinesterase , Agonistas do Receptor A1 de Adenosina , Soman , Animais , Soman/toxicidade , Masculino , Agonistas do Receptor A1 de Adenosina/farmacologia , Ratos , Acetilcolinesterase/metabolismo , Humanos , Camundongos , Camundongos Knockout , Modelos Animais de Doenças , Ratos Sprague-Dawley , Memória/efeitos dos fármacos , Aprendizagem da Esquiva/efeitos dos fármacos , Adenosina/análogos & derivados , Adenosina/farmacologia
5.
J Environ Sci Health B ; 59(5): 277-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600794

RESUMO

The organophosphate insecticide chlorpyrifos (CPF), an acetylcholinesterase inhibitor, has raised serious concerns about human safety. Apart from inducing synaptic acetylcholine accumulation, CPF could also act at nicotinic acetylcholine receptors, like the α7-isoform (α7-nAChR), which could potentially be harmful to developing brains. Our aims were to use molecular docking to assess the binding interactions between CPF and α7-nAChR through, to test the neurocytotoxic and oxidative effects of very low concentrations of CPF on SH-SY5Y cells, and to hypothesize about the potential mediation of α7-nAChR. Docking analysis showed a significant binding affinity of CPH for the E fragment of the α7-nAChR (ΔGibbs: -5.63 to -6.85 Kcal/mol). According to the MTT- and Trypan Blue-based viability assays, commercial CPF showed concentration- and time-dependent neurotoxic effects at a concentration range (2.5-20 µM), ten-folds lower than those reported to have crucial effects for sheer CPF. A rise of the production of radical oxygen species (ROS) was seen at even lower concentrations (1-2.5 µM) of CPF after 24h. Notably, our docking analysis supports the antagonistic actions of CPF on α7-nAChR that were recently published. In conclusion, while α7-nAChR is responsible for neuronal survival and neurodevelopmental processes, its activity may also mediate the neurotoxicity of CPF.


Assuntos
Clorpirifos , Neuroblastoma , Receptores Nicotínicos , Humanos , Clorpirifos/toxicidade , Simulação de Acoplamento Molecular , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolinesterase/metabolismo , Receptores Nicotínicos/metabolismo
6.
Eur J Med Chem ; 270: 116353, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38579622

RESUMO

Due to the putative role of butyrylcholinesterase (BChE) in regulation of acetylcholine levels and functions in the late stages of the Alzheimer's disease (AD), the potential of selective inhibitors (BChEIs) has been envisaged as an alternative to administration of acetylcholinesterase inhibitors (AChEIs). Starting from our recent findings, herein the synthesis and in vitro evaluation of cholinesterase (ChE) inhibition of a novel series of some twenty 3,4,5,6-tetrahydroazepino[4,3-b]indol-1(2H)-one derivatives, bearing at the indole nitrogen diverse alkyl-bridged 4-arylalkylpiperazin-1-yl chains, are reported. The length of the spacers, as well as the type of arylalkyl group affected the enzyme inhibition potency and BChE/AChE selectivity. Two compounds, namely 14c (IC50 = 163 nM) and 14d (IC50 = 65 nM), bearing at the nitrogen atom in position 6 a n-pentyl- or n-heptyl-bridged 4-phenethylpiperazin-1-yl chains, respectively, proved to be highly potent mixed-type inhibitors of both equine and human BChE isoforms, showing more than two order magnitude of selectivity over AChE. The study of binding kinetics through surface plasmon resonance (SPR) highlighted differences in their BChE residence times (8 and 47 s for 14c and 14d, respectively). Moreover, 14c and 14d proved to hit other mechanisms known to trigger neurodegeneration underlying AD and other CNS disorders. Unlike 14c, compound 14d proved also capable of inhibiting by more than 60% the in vitro self-induced aggregation of neurotoxic amyloid-ß (Aß) peptide at 100 µM concentration. On the other hand, 14c was slightly better than 14d in counteracting, at 1 and 10 µM concentration, glutamate excitotoxicity, due to over-excitation of NMDA receptors, and hydrogen peroxide-induced oxidative stress assessed in neuroblastoma cell line SH-SY5Y. This paper is dedicated to Prof. Marcello Ferappi, former dean of the Faculty of Pharmacy of the University of Bari, in the occasion of his 90th birthday.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Animais , Cavalos , Inibidores da Colinesterase/química , Butirilcolinesterase/metabolismo , Acetilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Linhagem Celular Tumoral , Nitrogênio , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular
7.
Chem Biol Interact ; 395: 111012, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38648920

RESUMO

Acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) are associated with amyloid-ß (Aß) plaques and exhibit altered biochemical properties in human Alzheimer's disease (AD), as well as in the transgenic 5XFAD mouse model of AD amyloidosis. In the brains of the 5XFAD mouse model devoid of BChE enzyme (5XFAD/BChE-KO), incubation of tissue sections with exogenous BChE purified from human plasma (pl-BChE) leads to its association with Aß plaques and its biochemical properties are comparable to those reported for endogenous BChE associated with plaques in both human AD and in 5XFAD mouse brain tissue. We sought to determine whether these observations in 5XFAD/BChE-KO mice also apply to human brain tissues. To do so, endogenous ChE activity in human AD brain tissue sections was quenched with 50 % aqueous acetonitrile (MeCNaq) leaving the tissue suitable for further studies. Quenched sections were then incubated with recombinant AChE (r-AChE) or pl-BChE and stained for each enzymes' activity. Exogenous r-AChE or pl-BChE became associated with Aß plaques, and when bound, had properties that were comparable to the endogenous ChE enzymes associated with plaques in AD brain tissues without acetonitrile treatment. These findings in human AD brain tissue extend previous observations in the 5XFAD/BChE-KO mouse model and demonstrate that exogenously applied r-AChE and pl-BChE have high affinity for Aß plaques in human brain tissues. This association alters the biochemical properties of these enzymes, most likely due a conformational change. If incorporation of AChE and BChE in Aß plaques facilitates AD pathogenesis, blocking this association could lead to disease-modifying approaches to AD. This work provides a method to study the mechanism of AChE and BChE interaction with Aß plaque pathology in post-mortem human brain tissue.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Encéfalo , Butirilcolinesterase , Placa Amiloide , Humanos , Butirilcolinesterase/metabolismo , Butirilcolinesterase/química , Encéfalo/metabolismo , Encéfalo/patologia , Acetilcolinesterase/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Animais , Camundongos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Camundongos Knockout , Idoso , Proteínas Recombinantes/metabolismo , Masculino
8.
Bioresour Technol ; 400: 130690, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38614150

RESUMO

Microbial enhanced oil recovery (EOR) has become the focus of oilfield research due to its low cost, environmental friendliness and sustainability. The degradation and EOR capacity of A. borkumensis through the production of bio-enzyme and bio-surfactant were first investigated in this study. The total protein concentration, acetylcholinesterase, esterase, lipase, alkane hydroxylase activity, surface tension, and emulsification index (EI) were determined at different culture times. The bio-surfactant was identified as glycolipid compound, and the yield was 2.6 ± 0.2 g/L. The nC12 and nC13 of crude oil were completely degraded, and more than 40.0 % of nC14-nC24 was degraded by by A. borkumensis. The results of the microscopic etching model displacement and core flooding experiments showed that emulsification was the main mechanism of EOR. A. borkumensis enhanced the recovery rate by 20.2 %. This study offers novel insights for the development of environmentally friendly and efficient oil fields.


Assuntos
Alcanivoraceae , Biodegradação Ambiental , Petróleo , Tensoativos , Tensoativos/farmacologia , Tensoativos/química , Alcanivoraceae/metabolismo , Petróleo/metabolismo , Acetilcolinesterase/metabolismo , Lipase/metabolismo , Tensão Superficial , Emulsões
9.
Brain Behav ; 14(5): e3507, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38688895

RESUMO

INTRODUCTION: Alzheimer's disease (AD) is a neurodegenerative condition characterized by gradual loss of cognitive abilities (dementia) and is a major public health problem. Here, we aimed at investigating the effects of Rosa damascena essential oil (RDEO) on learning and memory functions in a rat model of amnesia induced by scopolamine, as well as on changes in acetylcholinesterase (AChE) activity, M1 muscarinic acetylcholine receptor (mAChR) expression, and brain-derived neurotrophic factor (BDNF) levels in the extracted brain tissues. METHODS: The control, amnesia (scopolamine, 1 mg/kg/i.p.) and treatment (RDEO, 100 µL/kg/p.o. or galantamine, 1.5 mg/kg/i.p.) groups were subjected to Morris water maze and new object recognition tests. AChE activity was assayed by ELISA, and M1 mAChR and BDNF concentration changes were determined by western blotting. Also, using computational tools, human M1 mAChR was modeled in an active conformation, and the major components of RDEO were docked onto this receptor. RESULTS: According to our behavioral tests, RDEO was able to mitigate the learning and memory impairments caused by scopolamine in vivo. Our in vitro assays showed that the observed positive effects correlated well with a decrease in AChE activity and an increase in M1 mAChR and BDNF levels in amnestic rat brains. We also demonstrated in an in silico setting that the major components of RDEO, specifically -citronellol, geraniol, and nerol, could be accommodated favorably within the allosteric binding pocket of active-state human M1 mAChR and anchored here chiefly by hydrogen-bonding and alkyl-π interactions. CONCLUSION: Our findings offer a solid experimental foundation for future RDEO-based medicinal product development for patients suffering from AD.


Assuntos
Acetilcolinesterase , Amnésia , Fator Neurotrófico Derivado do Encéfalo , Óleos Voláteis , Rosa , Escopolamina , Animais , Ratos , Amnésia/induzido quimicamente , Amnésia/tratamento farmacológico , Amnésia/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/administração & dosagem , Masculino , Rosa/química , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Acetilcolinesterase/metabolismo , Receptor Muscarínico M1/metabolismo , Ratos Wistar , Nootrópicos/farmacologia , Modelos Animais de Doenças , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Cognição/efeitos dos fármacos , Aprendizagem em Labirinto/efeitos dos fármacos
10.
Molecules ; 29(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38675602

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disease that can lead to the loss of cognitive function. The progression of AD is regulated by multiple signaling pathways and their associated targets. Therefore, multitarget strategies theoretically have greater potential for treating AD. In this work, a series of new hybrids were designed and synthesized by the hybridization of tacrine (4, AChE: IC50 = 0.223 µM) with pyrimidone compound 5 (GSK-3ß: IC50 = 3 µM) using the cysteamine or cystamine group as the connector. The biological evaluation results demonstrated that most of the compounds exhibited moderate to good inhibitory activities against acetylcholinesterase (AChE) and glycogen synthase kinase 3ß (GSK-3ß). The optimal compound 18a possessed potent dual AChE/GSK-3ß inhibition (AChE: IC50 = 0.047 ± 0.002 µM, GSK-3ß: IC50 = 0.930 ± 0.080 µM). Further molecular docking and enzymatic kinetic studies revealed that this compound could occupy both the catalytic anionic site and the peripheral anionic site of AChE. The results also showed a lack of toxicity to SH-SY5Y neuroblastoma cells at concentrations of up to 25 µM. Collectively, this work explored the structure-activity relationships of novel tetrahydroacridin hybrids with sulfur-inserted linkers, providing a reference for the further research and development of new multitarget anti-AD drugs.


Assuntos
Acetilcolinesterase , Doença de Alzheimer , Inibidores da Colinesterase , Desenho de Fármacos , Glicogênio Sintase Quinase 3 beta , Simulação de Acoplamento Molecular , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Humanos , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Acetilcolinesterase/metabolismo , Acetilcolinesterase/química , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Linhagem Celular Tumoral , Enxofre/química , Relação Estrutura-Atividade , Acridinas/química , Acridinas/farmacologia , Acridinas/síntese química , Tacrina/química , Tacrina/farmacologia , Tacrina/síntese química , Estrutura Molecular
11.
Chemosphere ; 356: 141901, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583538

RESUMO

Following restrictions on polybrominated flame retardants, trimethyl phosphate (TMP), triethyl phosphate (TEP), and tris(2-butoxyethyl) phosphate (TBEP) have been frequently used as plasticizers for fire-resistant plastics. This study investigated the neurodevelopmental effects, inflammatory response, and oxidative stress induction of three alkyl organophosphate flame retardants using a zebrafish embryo/larvae model. After exposure of zebrafish embryos to TMP, TEP, and TBEP (0, 0.02, 0.2, 2, 20, and 200 µg L-1) for 96 h, survival, development, swimming behavior, changes in acetylcholinesterase (AChE) activity, dopamine, tumor necrosis factor-alpha (TNF-α), interleukin (IL), reactive oxygen species (ROS), and antioxidant enzyme activities were observed. Concentrations of TMP, TEP, and TBEP were also measured in the whole body of exposed larvae. Our results showed that exposure to 200 µg L-1 TEP and ≥20 µg L-1 TBEP significantly reduced larval body length; however, TMP had no significant effects on developmental parameters up to 200 µg L-1. After 96 h of exposure to TBEP, total distance moved, mean velocity, AChE, and dopamine concentrations were significantly decreased. Exposure to TEP and TBEP decreased the expression of genes that regulate central nervous system development (e.g. gap43 and mbpa), whereas ROS, antioxidant enzymes, TNF-α, and IL-1ß concentrations were significantly increased. Notably, pretreatment with an antioxidant N-acetylcysteine reduced neurotoxicity and oxidative stress caused by TEP and TBEP. The results of this study demonstrated that exposure to TEP and TBEP causes oxidative stress and has adverse effects on the neurobehavioral and immune system of zebrafish, leading to hypoactivity and ultimately impairing development.


Assuntos
Retardadores de Chama , Larva , Organofosfatos , Estresse Oxidativo , Espécies Reativas de Oxigênio , Peixe-Zebra , Animais , Retardadores de Chama/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Organofosfatos/toxicidade , Larva/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Inflamação/induzido quimicamente , Acetilcolinesterase/metabolismo , Compostos Organofosforados/toxicidade , Fator de Necrose Tumoral alfa/metabolismo , Fator de Necrose Tumoral alfa/genética , Embrião não Mamífero/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
12.
Pestic Biochem Physiol ; 201: 105889, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685220

RESUMO

Amprolium (AMP) is an organic compound used as a poultry anticoccidiostat. The aim of this work is to repurpose AMP to control the land snail, Eobania vermiculata in the laboratory and in the field. When snails treated with ½ LC50 of AMP, the levels of alkaline phosphatase (ALP), total lipids (TL), urea, creatinine, malondialdehyde (MDA), catalase (CAT), and nitric oxide (NO) were significantly increased, whereas the levels of acetylcholinesterase (AChE), total protein (TP), and glutathione (GSH) decreased. It also induced histopathological and ultrastructural changes in the digestive gland, hermaphrodite gland, kidney, mucus gland, and cerebral ganglion. Furthermore, scanning electron micrographs revealed various damages in the tegumental structures of the mantle-foot region of E. vermiculata snails. The field application demonstrated that the AMP spray caused reduced percentages in snail population of 75 and 84% after 7 and 14 days of treatment. In conclusion, because AMP disrupts the biology and physiology of the land snail, E. vermiculata, it can be used as an effective molluscicide.


Assuntos
Moluscocidas , Caramujos , Animais , Moluscocidas/farmacologia , Caramujos/efeitos dos fármacos , Acetilcolinesterase/metabolismo , Malondialdeído/metabolismo , Reposicionamento de Medicamentos , Óxido Nítrico/metabolismo , Catalase/metabolismo , Fosfatase Alcalina/metabolismo , Glutationa/metabolismo
13.
Pestic Biochem Physiol ; 201: 105907, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38685228

RESUMO

The use of essential oils (EOs) in the development of alternative management methods for bruchid control under storage conditions aroused great interest because they have proven to be effective, less toxic, and less persistent in the ecosystem than synthetic pesticides. In this sense, leaves of Lippia turbinata (Griseb.) Moldenke EO were studied in the present work. The monoterpene limonene and the monoterpenoid eucalyptol were its main constituents. EO showed a potent insecticidal activity, both in contact and fumigant conditions, against Rhipibruchus picturatus (F.) which is one of the main pests of Prosopis alba pods in stored conditions. Moreover, the EO produces repellency in these insects. Additionally, the toxicity mechanism of action was studied. In this regard, the EO inhibits the acetylcholinesterase enzyme in in vitro assays, alters the activity of the antioxidant enzymes superoxide dismutase and catalase, and produces an increase in the lipid peroxidation reactions. This is the first report of the use of the L. turbinata EO against R. picturatus insect pest. The data obtained demonstrate its potential for developing more efficient and natural storage pest control strategies.


Assuntos
Repelentes de Insetos , Inseticidas , Lippia , Óleos Voláteis , Animais , Óleos Voláteis/farmacologia , Óleos Voláteis/química , Lippia/química , Inseticidas/farmacologia , Inseticidas/química , Inseticidas/toxicidade , Repelentes de Insetos/farmacologia , Repelentes de Insetos/química , Besouros/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Superóxido Dismutase/metabolismo , Acetilcolinesterase/metabolismo , Catalase/metabolismo , Folhas de Planta/química
14.
PLoS One ; 19(3): e0298986, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38551975

RESUMO

Syzygium heyneanum is a valuable source of flavonoids and phenols, known for their antioxidant and neuroprotective properties. This research aimed to explore the potential of Syzygium heyneanum ethanol extract (SHE) in countering Parkinson's disease. The presence of phenols and flavonoids results in SHE displaying an IC50 value of 42.13 when assessed in the DPPH scavenging assay. Rats' vital organs (lungs, heart, spleen, liver, and kidney) histopathology reveals little or almost no harmful effect. The study hypothesized that SHE possesses antioxidants that could mitigate Parkinson's symptoms by influencing α-synuclein, acetylcholinesterase (AChE), TNF-α, and IL-1ß. Both in silico and in vivo investigations were conducted. The Parkinson's rat model was established using paraquat (1 mg/kg, i.p.), with rats divided into control, disease control, standard, and SHE-treated groups (150, 300, and 600 mg/kg) for 21 days. According to the ELISA statistics, the SHE treated group had lowers levels of IL-6 and TNF-α than the disease control group, which is a sign of neuroprotection. Behavioral and biochemical assessments were performed, alongside mRNA expression analyses using RT-PCR to assess SHE's impact on α-synuclein, AChE, TNF-α, and interleukins in brain homogenates. Behavioral observations demonstrated dose-dependent improvements in rats treated with SHE (600 > 300 > 150 mg/kg). Antioxidant enzyme levels (catalase, superoxide dismutase, glutathione) were significantly restored, particularly at a high dose, with notable reduction in malondialdehyde. The high dose of SHE notably lowered acetylcholinesterase levels. qRT-PCR results indicated reduced mRNA expression of IL-1ß, α-synuclein, TNF-α, and AChE in SHE-treated groups compared to disease controls, suggesting neuroprotection. In conclusion, this study highlights Syzygium heyneanum potential to alleviate Parkinson's disease symptoms through its antioxidant and modulatory effects on relevant biomarkers.


Assuntos
Doença de Parkinson , Syzygium , Humanos , Ratos , Animais , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Antioxidantes/metabolismo , Paraquat/toxicidade , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Syzygium/química , Acetilcolinesterase/metabolismo , China , Fator de Necrose Tumoral alfa/metabolismo , Roedores , Etnicidade , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Fenóis/farmacologia , Flavonoides/farmacologia , RNA Mensageiro/metabolismo , Estresse Oxidativo
15.
Food Funct ; 15(8): 4323-4337, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38530276

RESUMO

Microbial transformation is extensively utilized to generate new metabolites in bulk amounts with more specificity and improved activity. As cinnamic acid was reported to exhibit several important pharmacological properties, microbial transformation was used to obtain its new derivatives with enhanced biological activities. By manipulating the 2-stage fermentation protocol of biotransformation, five metabolites were produced from cinnamic acid. Two of them were new derivatives; N-propyl cinnamamide 2̲ and 2-methyl heptyl benzoate 3̲ produced by Alternaria alternata. The other 3 metabolites, p-hydroxy benzoic acid 4̲, cinnamyl alcohol 5̲ and methyl cinnamate 6̲, were produced by Rhodotorula rubra, Rhizopus species and Penicillium chrysogeneum, respectively. Cinnamic acid and its metabolites were evaluated for their cyclooxygenase (COX) and acetylcholinesterase (AChE) inhibitory activities. Protection against H2O2 and Aß1-42 induced-neurotoxicity in human neuroblastoma (SH-SY5Y) cells was also monitored. Metabolite 4̲ was more potent as a COX-2 inhibitor than the parent compound with an IC50 value of 1.85 ± 0.07 µM. Out of the tested compounds, only metabolite 2̲ showed AChE inhibitory activity with an IC50 value of 8.27 µM. These results were further correlated with an in silico study of the binding interactions of the active metabolites with the active sites of the studied enzymes. Metabolite 3̲ was more potent as a neuroprotective agent against H2O2 and Aß1-42 induced-neurotoxicity than catechin and epigallocatechin-3-gallate as positive controls. This study suggested the two new metabolites 2̲ and 3̲ along with metabolite 4̲ as potential leads for neurodegenerative diseases associated with cholinergic deficiency, neurotoxicity or neuroinflammation.


Assuntos
Biotransformação , Inibidores da Colinesterase , Cinamatos , Fármacos Neuroprotetores , Propanóis , Humanos , Cinamatos/farmacologia , Cinamatos/metabolismo , Cinamatos/química , Fármacos Neuroprotetores/farmacologia , Inibidores da Colinesterase/farmacologia , Linhagem Celular Tumoral , Acetilcolinesterase/metabolismo , Simulação de Acoplamento Molecular , Rhodotorula/metabolismo , Alternaria/metabolismo , Inibidores de Ciclo-Oxigenase 2/farmacologia , Inibidores de Ciclo-Oxigenase 2/metabolismo
16.
Neurosci Lett ; 826: 137730, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38485080

RESUMO

PURPOSE: Considering that the combination of dasatinib and quercetin (D + Q) demonstrated a neuroprotective action, as well as that females experience a decline in hormonal levels during aging and this is linked to increased susceptibility to Alzheimer's disease, in this study we evaluated the effect of D + Q on inflammatory and oxidative stress markers and on acetylcholinesterase and Na+, K+-ATPase activities in brain of female mice. METHODS: Female C57BL/6 mice were divided in Control and D (5 mg/kg) + Q (50 mg/kg) treated. Treatment was administered via gavage for three consecutive days every two weeks starting at 30 days of age. The animals were euthanized at 6 months of age and at 14 months of age. RESULTS: Results indicate an increase in reactive species (RS), thiol content and lipid peroxidation followed by a reduction in nitrite levels and superoxide dismutase, catalase and glutathione S-transferase activity in the brain of control animals with age. D+Q protected against age-associated increase in RS and catalase activity reduction. Acetylcholinesterase activity was increased, while Na+, K+-ATPase activity was reduced at 14 months of age and D+Q prevented this reduction. CONCLUSION: These data demonstrate that D+Q can protect against age-associated neurochemical alterations in the female brain.


Assuntos
Acetilcolinesterase , Senoterapia , Ratos , Feminino , Camundongos , Animais , Catalase/metabolismo , Acetilcolinesterase/metabolismo , Ratos Wistar , Camundongos Endogâmicos C57BL , Antioxidantes/farmacologia , Estresse Oxidativo , Quercetina/farmacologia , Encéfalo/metabolismo , Superóxido Dismutase/metabolismo , Adenosina Trifosfatases
17.
ACS Chem Neurosci ; 15(6): 1135-1156, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38453668

RESUMO

For the potential therapy of Alzheimer's disease (AD), butyrylcholinesterase (BChE) has gradually gained worldwide interest in the progression of AD. This study used a pharmacophore-based virtual screening (VS) approach to identify Z32439948 as a new BChE inhibitor. Aiding by molecular docking and molecular dynamics, essential binding information was disclosed. Specifically, a subpocket was found and structure-guided design of a series of novel compounds was conducted. Derivatives were evaluated in vitro for cholinesterase inhibition and physicochemical properties (BBB, log P, and solubility). The investigation involved docking, molecular dynamics, enzyme kinetics, and surface plasmon resonance as well. The study highlighted compounds 27a (hBChE IC50 = 0.078 ± 0.03 µM) and (R)-37a (hBChE IC50 = 0.005 ± 0.001 µM) as the top-ranked BChE inhibitors. These compounds showed anti-inflammatory activity and no apparent cytotoxicity against the human neuroblastoma (SH-SY5Y) and mouse microglia (BV2) cell lines. The most active compounds exhibited the ability to improve cognition in both scopolamine- and Aß1-42 peptide-induced cognitive deficit models. They can be promising lead compounds with potential implications for treating the late stage of AD.


Assuntos
Doença de Alzheimer , Neuroblastoma , Humanos , Camundongos , Animais , Butirilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Estrutura Molecular , Simulação de Acoplamento Molecular , Inibidores da Colinesterase/química , Linhagem Celular Tumoral , Acetilcolinesterase/metabolismo , Relação Estrutura-Atividade
18.
Int J Mol Sci ; 25(5)2024 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-38473876

RESUMO

This study was investigated to examine the neuroprotective effect of fermented Protaetia brevitarsis larvae (FPB) in ethanol-induced-dementia mice. Consumption of FPB by mice resulted in improved memory dysfunction in the Y-maze, passive avoidance, and Morris water maze tests. FPB significantly decreased oxidative stress by regulating levels of malondialdehyde (MDA), superoxide dismutase (SOD), and reduced glutathione (GSH) in brain tissues. In addition, FPB restored cerebral mitochondrial dysfunction by modulating levels of reactive oxygen species (ROS), mitochondrial membrane potential (MMP), and ATP. In addition, FPB enhanced the cholinergic system via the regulation of acetylcholine (ACh) content, acetylcholinesterase (AChE) activity, and expressions of AChE and choline acetyltransferase (ChAT) in brain tissues. FPB ameliorated neuronal apoptosis through modulation of the protein kinase B (AKT)/B-cell lymphoma (BCL)-2 signaling pathway. Also, FPB improved inflammation response by down-regulating the toll-like receptor (TLR)-4/nuclear factor (NF)-κB pathway. Additionally, FPB ameliorated synaptic plasticity via the increase of the expressions of synaptophysin (SYP), postsynaptic density protein (PSD)-95, and growth-associated protein (GAP)-43. Treatment with FPB also reinforced the blood-brain barrier by increasing tight junctions including zonula occludens (ZO)-1, occludin, and claudin-1. In conclusion, these results show that FPB can improve cognitive impairment via AKT/NF-κB pathways in ethanol-induced-dementia mice.


Assuntos
Demência , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Acetilcolinesterase/metabolismo , Larva/metabolismo , Transdução de Sinais , Estresse Oxidativo
19.
Neurosci Lett ; 825: 137710, 2024 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-38432355

RESUMO

Extensive experimental evidence points to neuroinflammation and oxidative stress as major pathogenic events that initiate and drive the neurodegenerative process. Monosodium glutamate (MSG) is a widely used food additive in processed foods known for its umami taste-enhancing properties. However, concerns about its potential adverse effects on the brain have been raised. Thus, the present study investigated the impact of MSG on lipopolysaccharide (LPS)-induced neurotoxicity in rat brains. Wistar rats weighing between 180 g and 200 g were randomly allocated into four groups: control (received distilled water), MSG (received 1.5 g/kg/day), LPS (received 250 µg/kg/day), and LPS + MSG (received LPS, 250 µg/kg, and MSG, 1.5 g/kg). LPS was administered intraperitoneally for 7 days while MSG was administered orally for 14 days. Our results showed that MSG exacerbated LPS-induced impairment in locomotor and exploratory activities in rats. Similarly, MSG exacerbated LPS-induced oxidative stress as evidenced by increased levels of malondialdehyde (MDA) with a concomitant decrease in levels of superoxide dismutase (SOD), catalase (CAT), glutathione (GSH), and glutathione-s-transferase (GST) in the brain tissue. In addition, MSG potentiated LPS-induced neuroinflammation, as indicated by increased levels of pro-inflammatory cytokines such as interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α) as well as myeloperoxidase (MPO) and nitric oxide (NO) in the brain. Moreover, MSG aggravated LPS-induced cholinergic dysfunction, as demonstrated by increased activity of acetylcholinesterase (AChE) in the brain. Further, we found a large number of degenerative neurons widespread in hippocampal CA1, CA3 regions, cerebellum, and cortex according to H&E staining. Taken together, our findings suggest that MSG aggravates LPS-induced neurobehavioral deficits, oxidative stress, neuroinflammation, cholinergic dysfunction, and neurodegeneration in rat brains.


Assuntos
Lipopolissacarídeos , Glutamato de Sódio , Ratos , Animais , Glutamato de Sódio/toxicidade , Lipopolissacarídeos/toxicidade , Ratos Wistar , Acetilcolinesterase/metabolismo , Doenças Neuroinflamatórias , Estresse Oxidativo , Glutationa/metabolismo , Encéfalo/metabolismo , Colinérgicos/farmacologia
20.
ACS Chem Neurosci ; 15(7): 1388-1414, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38525886

RESUMO

Alzheimer's disease (AD) is the most common cause of dementia, which arises due to low levels of acetyl and butyrylcholines, an increase in oxidative stress, inflammation, metal dyshomeostasis, Aß and tau aggregations. The currently available drugs for AD treatment can provide only symptomatic relief without interfering with pathological hallmarks of the disease. In our ongoing efforts to develop naturally inspired novel multifunctional molecules for AD, systematic SAR studies on EJMC-4e were caried out to improve its multifunctional properties. The rigorous medicinal efforts led to the development of 12o, which displayed a 15-fold enhancement in antioxidant properties and a 2-fold increase in the activity against AChE and BChE over EJMC-4e. Molecular docking and dynamics studies revealed the binding sites and stability of the complex of 12o with AChE and BChE. The PAMPA-BBB assay clearly demonstrated that 12o can easily cross the blood-brain barrier. Interestingly, 12o also expresses promising metal chelation activity, while EJMC-4e was found to be devoid of this property. Further, 12o inhibited metal-induced or self Aß1-42 aggregation. Observing the neuroprotection ability of 12o against H2O2-induced oxidative stress in the PC-12 cell line is noteworthy. Furthermore, 12o also inhibited NLRP3 inflammasome activation and attenuated mitochondrial-induced ROS and MMP damage caused by LPS and ATP in HMC-3 cells. In addition, 12o is able to effectively reduce mitochondrial and cellular oxidative stress in the AD Drosophila model. Finally, 12o could reverse memory impairment in the scopolamine-induced AD mice model, as evident through in vivo and ex vivo studies. These findings suggest that this compound may act as a promising candidate for further improvement in the management of AD.


Assuntos
Doença de Alzheimer , Ácidos Cumáricos , Camundongos , Ratos , Animais , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inflamassomos , Peptídeos beta-Amiloides/metabolismo , Inibidores da Colinesterase/química , Simulação de Acoplamento Molecular , Proteína 3 que Contém Domínio de Pirina da Família NLR , Peróxido de Hidrogênio , Metais , Células PC12 , Acetilcolinesterase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA