Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Sci Rep ; 7(1): 2303, 2017 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-28536436

RESUMO

In the present study, two elongases, Elovl4 and Elovl5, were functionally characterized and their transcriptional regulation in response to n-3 LC-PUFA administration were investigated in vivo and in vitro. We previously described the molecular characterization of croaker elovl5. Here, we report the full-length cDNA sequence of croaker elovl4, which contained 1794 bp (excluding the polyA tail), including 909 bp of coding region that encoded a polypeptide of 302 amino acids possessing all the characteristic features of Elovl proteins. Functional studies showed that croaker Elovl5, displayed high elongation activity towards C18 and C20 PUFA, with only low activity towards C22 PUFA. In contrast, croaker Elovl4 could effectively convert both C20 and C22 PUFA to longer polyenoic products up to C34. n-3 LC-PUFA suppressed transcription of the two elongase genes, as well as srebp-1 and lxrα, major regulators of hepatic lipid metabolism. The results of dual-luciferase reporter assays and in vitro studies both indicated that the transcriptions of elovl5 and elovl4 elongases could be regulated by Lxrα. Moreover, Lxrα could mediate the transcription of elovl4 directly or indirectly through regulating the transcription of srebp-1. The above findings contribute further insight and understanding of the mechanisms regulating LC-PUFA biosynthesis in marine fish species.


Assuntos
Acetiltransferases/genética , Proteínas de Peixes/genética , Regulação Enzimológica da Expressão Gênica , Perciformes/genética , Acetiltransferases/classificação , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Animais , Células Cultivadas , Clonagem Molecular , DNA Complementar/química , DNA Complementar/genética , Elongases de Ácidos Graxos , Ácidos Graxos Insaturados/metabolismo , Proteínas de Peixes/metabolismo , Células HEK293 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Perciformes/metabolismo , Filogenia , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
2.
Mol Phylogenet Evol ; 114: 175-188, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28533082

RESUMO

Leymus Hochst. (Triticeae: Poaceae), a group of allopolyploid species with the NsXm genomes, is a perennial genus with diversity in morphology, cytology, ecology, and distribution in the Triticeae. To investigate the genome origin and evolutionary history of Leymus, three unlinked low-copy nuclear genes (Acc1, Pgk1, and GBSSI) and three chloroplast regions (trnL-F, matK, and rbcL) of 32 Leymus species were analyzed with those of 36 diploid species representing 18 basic genomes in the Triticeae. The phylogenetic relationships were reconstructed using Bayesian inference, Maximum parsimony, and NeighborNet methods. A time-calibrated phylogeny was generated to estimate the evolutionary history of Leymus. The results suggest that reticulate evolution has occurred in Leymus species, with several distinct progenitors contributing to the Leymus. The molecular data in resolution of the Xm-genome lineage resulted in two apparently contradictory results, with one placing the Xm-genome lineage as closely related to the P/F genome and the other splitting the Xm-genome lineage as sister to the Ns-genome donor. Our results suggested that (1) the Ns genome of Leymus was donated by Psathyrostachys, and additional Ns-containing alleles may be introgressed into some Leymus polyploids by recurrent hybridization; (2) The phylogenetic incongruence regarding the resolution of the Xm-genome lineage suggested that the Xm genome of Leymus was closely related to the P genome of Agropyron; (3) Both Ns- and Xm-genome lineages served as the maternal donor during the speciation of Leymus species; (4) The Pseudoroegneria, Lophopyrum and Australopyrum genomes contributed to some Leymus species.


Assuntos
Evolução Biológica , Genoma de Planta , Poaceae/genética , Acetiltransferases/classificação , Acetiltransferases/genética , Teorema de Bayes , Cloroplastos/genética , DNA de Plantas/química , DNA de Plantas/isolamento & purificação , DNA de Plantas/metabolismo , Loci Gênicos , Fosfoglicerato Quinase/classificação , Fosfoglicerato Quinase/genética , Filogenia , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Poaceae/classificação , Análise de Sequência de DNA , Sintase do Amido/classificação , Sintase do Amido/genética
3.
Biochem J ; 459(2): 417-25, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24475974

RESUMO

Defects in CFTR (cystic fibrosis transmembrane conductance regulator) maturation are central to the pathogenesis of CF (cystic fibrosis). Palmitoylation serves as a key regulator of maturational processing in other integral membrane proteins, but has not been tested previously for functional effects on CFTR. In the present study, we used metabolic labelling to confirm that wild-type and F508del CFTR are palmitoylated, and show that blocking palmitoylation with the pharmacologic inhibitor 2-BP (2-bromopalmitate) decreases steady-state levels of both wild-type and low temperature-corrected F508del CFTR, disrupts post-ER (endoplasmic reticulum) maturation and reduces ion channel function at the cell surface. PATs (protein acyl transferases) comprise a family of 23 gene products that contain a DHHC motif and mediate palmitoylation. Recombinant expression of specific PATs led to increased levels of CFTR protein and enhanced palmitoylation as judged by Western blot and metabolic labelling. Specifically, we show that DHHC-7 (i) increases steady-state levels of wild-type and F508del CFTR band B, (ii) interacts preferentially with the band B glycoform, and (iii) augments radiolabelling by [3H]palmitic acid. Interestingly, immunofluorescence revealed that DHHC-7 also sequesters the F508del protein to a post-ER (Golgi) compartment. Our findings point to the importance of palmitoylation during wild-type and F508del CFTR trafficking.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica/fisiologia , Acetiltransferases/classificação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipoilação , Mutação , Processamento de Proteína Pós-Traducional , Transporte Proteico/fisiologia , Proteínas Recombinantes
5.
Mol Biol Cell ; 23(23): 4543-51, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23034182

RESUMO

Palmitoylation plays important roles in the regulation of protein localization, stability, and activity. The protein acyltransferases (PATs) have a common DHHC Cys-rich domain. Twenty-three DHHC proteins have been identified in humans. However, it is unclear whether all of these DHHC proteins function as PATs. In addition, their substrate specificities remain largely unknown. Here we develop a useful method to examine substrate specificities of PATs using a yeast expression system with six distinct model substrates. We identify 17 human DHHC proteins as PATs. Moreover, we classify 11 human and 5 yeast DHHC proteins into three classes (I, II, and III), based on the cellular localization of their respective substrates (class I, soluble proteins; class II, integral membrane proteins; class III, lipidated proteins). Our results may provide an important clue for understanding the function of individual DHHC proteins.


Assuntos
Acetiltransferases/classificação , Acetiltransferases/metabolismo , Cisteína , Proteínas de Membrana , Acetiltransferases/genética , Cisteína/química , Cisteína/genética , Regulação Fúngica da Expressão Gênica , Humanos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
6.
BMC Plant Biol ; 10: 233, 2010 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-20977772

RESUMO

BACKGROUND: Camelina sativa, an oilseed crop in the Brassicaceae family, has inspired renewed interest due to its potential for biofuels applications. Little is understood of the nature of the C. sativa genome, however. A study was undertaken to characterize two genes in the fatty acid biosynthesis pathway, fatty acid desaturase (FAD) 2 and fatty acid elongase (FAE) 1, which revealed unexpected complexity in the C. sativa genome. RESULTS: In C. sativa, Southern analysis indicates the presence of three copies of both FAD2 and FAE1 as well as LFY, a known single copy gene in other species. All three copies of both CsFAD2 and CsFAE1 are expressed in developing seeds, and sequence alignments show that previously described conserved sites are present, suggesting that all three copies of both genes could be functional. The regions downstream of CsFAD2 and upstream of CsFAE1 demonstrate co-linearity with the Arabidopsis genome. In addition, three expressed haplotypes were observed for six predicted single-copy genes in 454 sequencing analysis and results from flow cytometry indicate that the DNA content of C. sativa is approximately three-fold that of diploid Camelina relatives. Phylogenetic analyses further support a history of duplication and indicate that C. sativa and C. microcarpa might share a parental genome. CONCLUSIONS: There is compelling evidence for triplication of the C. sativa genome, including a larger chromosome number and three-fold larger measured genome size than other Camelina relatives, three isolated copies of FAD2, FAE1, and the KCS17-FAE1 intergenic region, and three expressed haplotypes observed for six predicted single-copy genes. Based on these results, we propose that C. sativa be considered an allohexaploid. The characterization of fatty acid synthesis pathway genes will allow for the future manipulation of oil composition of this emerging biofuel crop; however, targeted manipulations of oil composition and general development of C. sativa should consider and, when possible take advantage of, the implications of polyploidy.


Assuntos
Acetiltransferases/genética , Brassicaceae/genética , Ácidos Graxos Dessaturases/genética , Proteínas de Plantas/genética , Poliploidia , Acetiltransferases/classificação , Acetiltransferases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Brassicaceae/enzimologia , Brassicaceae/metabolismo , Ácidos Graxos Dessaturases/classificação , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos , Ácidos Graxos/biossíntese , Dosagem de Genes , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta/genética , Dados de Sequência Molecular , Filogenia , Proteínas de Plantas/metabolismo , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos , Homologia de Sequência do Ácido Nucleico
7.
Cell ; 125(3): 497-508, 2006 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-16678094

RESUMO

The molecular machinery that governs circadian rhythmicity comprises proteins whose interplay generates time-specific transcription of clock genes. The role of chromatin remodeling in a physiological setting such as the circadian clock is yet unclear. We show that the protein CLOCK, a central component of the circadian pacemaker, has histone acetyltransferase (HAT) activity. CLOCK shares homology with acetyl-coenzyme A binding motifs within the MYST family of HATs. CLOCK displays high sequence similarity to ACTR, a member of SRC family of HATs, with which it shares also enzymatic specificity for histones H3 and H4. BMAL1, the heterodimerization partner of CLOCK, enhances HAT function. The HAT activity of CLOCK is essential to rescue circadian rhythmicity and activation of clock genes in Clock mutant cells. Identification of CLOCK as a novel type of DNA binding HAT reveals that chromatin remodeling is crucial for the core clock mechanism and identifies unforeseen links between histone acetylation and cellular physiology.


Assuntos
Montagem e Desmontagem da Cromatina/genética , Ritmo Circadiano/genética , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Transativadores/classificação , Transativadores/metabolismo , Fatores de Transcrição ARNTL , Acetilação , Acetiltransferases/classificação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Motivos de Aminoácidos/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Sítios de Ligação/fisiologia , Proteínas CLOCK , Linhagem Celular , Linhagem Celular Tumoral , Histona Acetiltransferases/genética , Humanos , Camundongos , Camundongos Mutantes , Camundongos Transgênicos , Coativador 1 de Receptor Nuclear , Coativador 3 de Receptor Nuclear , Proteínas Oncogênicas/classificação , Proteínas Oncogênicas/genética , Proteínas Oncogênicas/metabolismo , Homologia de Sequência de Aminoácidos , Transativadores/genética , Fatores de Transcrição/classificação , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
8.
Protein Eng Des Sel ; 17(6): 545-52, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15292518

RESUMO

We cloned and expressed in Escherichia coli the Archaeglobus fulgidus gene that encodes pyruvate formate lyase 2 (PFL2). PFL2, despite its homology to the other glycyl radical enzymes, differs from them by exhibiting a completely different oligomerization. The most abundant form of PFL2 when expressed in E.coli is a trimer. The closest homologue of PFL2 with a known structure is E. coli PFL, which is a dimer. Sequence comparisons allowed us to reclassify PFL-like enzymes and the consensus sequences allowed us to propose an activation route for PFL-like glycyl radical enzymes. Surprisingly, most of the conserved residues in PFL-like enzymes appear to be involved in preserving the structure, rather than forming the active site.


Assuntos
Acetiltransferases/genética , Archaeoglobus fulgidus/enzimologia , Acetiltransferases/química , Acetiltransferases/classificação , Sequência de Aminoácidos , Archaeoglobus fulgidus/genética , Domínio Catalítico/genética , Cromatografia em Gel , Clonagem Molecular , Sequência Consenso/genética , Sequência Conservada/genética , Cisteína/genética , DNA Arqueal/química , DNA Arqueal/genética , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Escherichia coli/genética , Luz , Modelos Moleculares , Dados de Sequência Molecular , Peso Molecular , Filogenia , Estrutura Terciária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Espalhamento de Radiação , Análise de Sequência de DNA , Homologia de Sequência de Aminoácidos
9.
Nucleic Acids Res ; 32(3): 959-76, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-14960713

RESUMO

Acetylation of the epsilon-amino group of lysine residues, or N(epsilon)-lysine acetylation, is an important post-translational modification known to occur in histones, transcription factors and other proteins. Since 1995, dozens of proteins have been discovered to possess intrinsic lysine acetyltransferase activity. Although most of these enzymes were first identified as histone acetyltransferases and then tested for activities towards other proteins, acetyltransferases only modifying non-histone proteins have also been identified. Lysine acetyltransferases form different groups, three of which are Gcn5/PCAF, p300/CBP and MYST proteins. While members of the former two groups mainly function as transcriptional co-activators, emerging evidence suggests that MYST proteins, such as Esa1, Sas2, MOF, TIP60, MOZ and MORF, have diverse roles in various nuclear processes. Aberrant lysine acetylation has been implicated in oncogenesis. The genes for p300, CBP, MOZ and MORF are rearranged in recurrent leukemia-associated chromosomal abnormalities. Consistent with their roles in leukemogenesis, these acetyltransferases interact with Runx1 (or AML1), one of the most frequent targets of chromosomal translocations in leukemia. Therefore, the diverse superfamily of lysine acetyltransferases executes an acetylation program that is important for different cellular processes and perturbation of such a program may cause the development of cancer and other diseases.


Assuntos
Acetiltransferases/classificação , Acetiltransferases/fisiologia , Leucemia/etiologia , Lisina/metabolismo , Acetilação , Acetiltransferases/química , Humanos , Neoplasias/etiologia , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/metabolismo , Especificidade por Substrato
10.
Methods ; 26(3): 245-53, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12054880

RESUMO

There is presently enormous interest in the function and regulatory roles of histone acetyltransferase enzymes. Along with deacetylases it is now evident that these enzymes play a key role in many cellular processes including chromatin remodeling and gene transcription. As such, effective small molecule enzyme inhibitors would be useful tools for molecular pharmacology and may also be suitable for further development into agents for the treatment of diseases such as cancer. A high-throughput assay based on the use of scintillating microplates (FlashPlates) suitable for screening libraries of compounds for inhibitors of acetylase activity is described here. Confirmation of activity of selected compounds is achieved with a conventional filter assay, the details of which are also described. In addition, an assay suitable for confirming that cellular protein acetylation has been altered by inhibition of acetylases or deacetylases is also presented. On the same plate, cells are grown, exposed to compound, fixed, and permeabilized, and protein acetylation is determined using standard ELISA methodology and a europium-labeled second antibody. This latter method provides a medium-throughput alternative to the use of immunoblotting for mechanistic studies.


Assuntos
Acetiltransferases/antagonistas & inibidores , Avaliação Pré-Clínica de Medicamentos/métodos , Inibidores Enzimáticos/isolamento & purificação , Inibidores Enzimáticos/farmacologia , Biologia Molecular/métodos , Proteínas de Saccharomyces cerevisiae/antagonistas & inibidores , Acetiltransferases/classificação , Acetiltransferases/metabolismo , Antineoplásicos/isolamento & purificação , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Inibidores Enzimáticos/metabolismo , Ensaio de Imunoadsorção Enzimática , Histona Acetiltransferases , Inibidores de Histona Desacetilases , Histonas/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/classificação , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Células Tumorais Cultivadas
11.
Mol Cell ; 6(5): 1195-205, 2000 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-11106757

RESUMO

Esa1 is the catalytic subunit of the NuA4 histone acetylase (HAT) complex that acetylates histone H4, and it is a member of the MYST family of HAT proteins that includes the MOZ oncoprotein and the HIV-1 Tat interacting protein Tip60. Here we report the X-ray crystal structure of the HAT domain of Esa1 bound to coenzyme A and investigate the protein's catalytic mechanism. Our data reveal that Esa1 contains a central core domain harboring a putative catalytic base, and flanking domains that are implicated in histone binding. Comparisons with the Gcn5/PCAF and Hat1 proteins suggest a unified mechanism of catalysis and histone binding by HAT proteins, whereby a structurally conserved core domain mediates catalysis, and sequence variability within a structurally related N- and C-terminal scaffold determines substrate specificity.


Assuntos
Acetiltransferases/química , Acetiltransferases/metabolismo , Coenzima A/metabolismo , Proteínas de Saccharomyces cerevisiae , Leveduras/enzimologia , Acetiltransferases/classificação , Acetiltransferases/genética , Sequência de Aminoácidos , Sítios de Ligação , Catálise , Domínio Catalítico , Coenzima A/química , Sequência Conservada , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Histona Acetiltransferases , Histonas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Alinhamento de Sequência , Relação Estrutura-Atividade , Especificidade por Substrato , Leveduras/genética
12.
Dev Dyn ; 218(2): 300-15, 2000 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-10842358

RESUMO

We have used an embryonic endothelial cell line (IEM cells) as an experimental system for identifying and characterizing new molecules which are regulated during blood vessel development. A novel gene isolated from IEM cells, tubedown-1 (tbdn-1), is expressed at high levels in unstimulated IEM cells and is downregulated during formation of capillary tube structures by the IEM cells induced by basic fibroblast growth factor (bFGF) and leukemia inhibitory factor (LIF) in vitro. Tbdn-1 is also downregulated in M1 myeloid leukemia cells after differentiation in response to LIF in vitro. Tbdn-1 is homologous to the yeast NAT-1 N-terminal acetyltransferases and encodes a novel protein of approximately 69 kDa associated with an acetyltransferase activity. Levels and distribution of tbdn-1 expression are regulated in both endothelial and hematopoietic cells during development in tissues such as the yolk sac blood islands, heart, and liver blood vessels. In the adult, tbdn-1 expression is low or undetected in most organs examined with the exception of the atrial endocardium, the endothelial and myeloid compartments of bone marrow, and the remodeling vascular bed of atretic ovarian follicles. The distribution and regulation of expression of tbdn-1 suggest that this novel acetyltransferase may be involved in regulating vascular and hematopoietic development and physiologic angiogenesis.


Assuntos
Acetiltransferases/fisiologia , Vasos Sanguíneos/crescimento & desenvolvimento , Acetiltransferases/classificação , Acetiltransferases/genética , Sequência de Aminoácidos , Animais , Vasos Sanguíneos/embriologia , Células Cultivadas , Galinhas , DNA Complementar , Endotélio Vascular/citologia , Regulação Enzimológica da Expressão Gênica , Camundongos , Dados de Sequência Molecular
13.
Am J Epidemiol ; 151(9): 846-61, 2000 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-10791558

RESUMO

The two expressed genes coding for N-acetyltransferase (NAT) activity, NAT1 and NAT2, are located on chromosome 8 at 8p21.3-23.1 and are polymorphic. Both enzymes are capable of N-acetylation, O-acetylation, and N,O-acetylation and are implicated in the activation and detoxification of known carcinogens. Single base-pair substitutions in NAT2 tend to occur in combination with other substitutions within the gene. As yet, less work has been done to characterize NAT1 allelic variants. Various methods for the detection of the reported polymorphisms exist. It is important to select a method that is appropriate to the population being studied. The functional significance of many NAT allelic variants has not been determined. Geographic and ethnic variation in the frequency of NAT2 genotypes associated with fast or intermediate acetylation has been observed. Insufficient data for NAT1 genotypes are available to reveal a clear geographic pattern. No consistent association has been found between acetylator phenotype or genotype and colorectal cancer. The lack of consistency can in part be accounted for by methodological factors, including limited statistical power. Possible interactions between the NAT genes and either environmental exposures or other polymorphic genes encoding xenobiotic metabolizing enzymes have been investigated in only a minority of these studies, and these studies have lacked statistical power to detect interactions.


Assuntos
Acetiltransferases/genética , Arilamina N-Acetiltransferase/genética , Neoplasias Colorretais/epidemiologia , Neoplasias Colorretais/genética , Polimorfismo Genético/genética , Acetiltransferases/classificação , Arilamina N-Acetiltransferase/classificação , Ásia/epidemiologia , Austrália/epidemiologia , Comorbidade , Dieta , Europa (Continente)/epidemiologia , Feminino , Frequência do Gene , Ligação Genética , Genótipo , Saúde Global , Humanos , Incidência , Isoenzimas , Masculino , Mutação , Fenótipo , Medição de Risco , Distribuição por Sexo , Fumar/epidemiologia , Estados Unidos/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA