Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
Int J Pharm ; 654: 123971, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38452832

RESUMO

Lymphoma and leukemia are both hematological system tumors with complex etiology, and mainly treated with chemotherapeutic drugs. However, therapeutic drugs can interrupt curative effect due to different side effects. Therefore, it is worthwhile to develop a novel therapeutic for providing insights for clinical tumor treatment. In this study, we developed a fisetin nanoparticles (Fisetin NPs) through a self-assembled method, and investigated the activity and potential mechanism of Fisetin NPs against lymphoma and leukemia. The spherical and uniformly distributed Fisetin NPs effectively inhibited both tumor cells proliferation, arrested EL4 cells G0/G1 phase and K562 cells G2/M phase, and induced apoptosis in vitro. In vivo, Fisetin NPs exhibited excellent tumor growth inhibition, effective inhibition of cell proliferation and angiogenesis, significant induction of apoptosis and ideal safety. Mechanically, fisetin upregulated genes (Fas, Pidd, Puma, Apaf1, and p21) in the p53 signaling pathway and bound to N-acetyltransferase 10 (NAT10), ribosomal protein L34 (RPL34) and GTP binding protein 4 (GTPBP4). Collectively, Fisetin NPs have promising therapeutic effects on lymphoma and leukemia, which are of great significant for clinical implications.


Assuntos
Leucemia , Linfoma , Humanos , Flavonoides/farmacologia , Flavonóis/farmacologia , Apoptose , Proliferação de Células , Leucemia/tratamento farmacológico , Linfoma/tratamento farmacológico , Linhagem Celular Tumoral , Proteínas Nucleares/farmacologia , Proteínas de Ligação ao GTP/farmacologia , Acetiltransferases N-Terminal
2.
Oncogene ; 43(15): 1077-1086, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409550

RESUMO

Chemical modifications of ribonucleotides significantly alter the physicochemical properties and functions of RNA. Initially perceived as static and essential marks in ribosomal RNA (rRNA) and transfer RNA (tRNA), recent discoveries unveiled a dynamic landscape of RNA modifications in messenger RNA (mRNA) and other regulatory RNAs. These findings spurred extensive efforts to map the distribution and function of RNA modifications, aiming to elucidate their distribution and functional significance in normal cellular homeostasis and pathological states. Significant dysregulation of RNA modifications is extensively documented in cancers, accentuating the potential of RNA-modifying enzymes as therapeutic targets. However, the essential role of several RNA-modifying enzymes in normal physiological functions raises concerns about potential side effects. A notable example is N-acetyltransferase 10 (NAT10), which is responsible for acetylating cytidines in RNA. While emerging evidence positions NAT10 as an oncogenic factor and a potential target in various cancer types, its essential role in normal cellular processes complicates the development of targeted therapies. This review aims to comprehensively analyze the essential and oncogenic properties of NAT10. We discuss its crucial role in normal cell biology and aging alongside its contribution to cancer development and progression. We advocate for agnostic approaches to disentangling the intertwined essential and oncogenic functions of RNA-modifying enzymes. Such approaches are crucial for understanding the full spectrum of RNA-modifying enzymes and imperative for designing effective and safe therapeutic strategies.


Assuntos
Acetiltransferases N-Terminal , Neoplasias , RNA , Humanos , Acetiltransferases N-Terminal/genética , Neoplasias/genética , RNA/genética , RNA Mensageiro , RNA Ribossômico , RNA de Transferência/genética
3.
Cancer Commun (Lond) ; 44(3): 361-383, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38407929

RESUMO

BACKGROUND: Lymphatic metastasis is one of the most common metastatic routes and indicates a poor prognosis in clear-cell renal cell carcinoma (ccRCC). N-acetyltransferase 10 (NAT10) is known to catalyze N4-acetylcytidine (ac4C) modification of mRNA and participate in many cellular processes. However, its role in the lymphangiogenic process of ccRCC has not been reported. This study aimed to elucidate the role of NAT10 in ccRCC lymphangiogenesis, providing valuable insights into potential therapeutic targets for intervention. METHODS: ac4C modification and NAT10 expression levels in ccRCC were assessed using public databases and clinical samples. Functional investigations involved manipulating NAT10 expression in cellular and mouse models to study its role in ccRCC. Mechanistic insights were gained through a combination of RNA sequencing, mass spectrometry, co-immunoprecipitation, RNA immunoprecipitation, immunofluorescence, and site-specific mutation analyses. RESULTS: We found that ac4C modification and NAT10 expression levels increased in ccRCC. NAT10 promoted tumor progression and lymphangiogenesis of ccRCC by enhancing the nuclear import of Yes1-associated transcriptional regulator (YAP1). Subsequently, we identified ankyrin repeat and zinc finger peptidyl tRNA hydrolase 1 (ANKZF1) as the functional target of NAT10, and its upregulation in ccRCC was caused by NAT10-mediated ac4C modification. Mechanistic analyses demonstrated that ANKZF1 interacted with tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein epsilon (YWHAE) to competitively inhibit cytoplasmic retention of YAP1, leading to transcriptional activation of pro-lymphangiogenic factors. CONCLUSIONS: These results suggested a pro-cancer role of NAT10-mediated acetylation in ccRCC and identified the NAT10/ANKZF1/YAP1 axis as an under-reported pathway involving tumor progression and lymphangiogenesis in ccRCC.


Assuntos
Proteínas 14-3-3 , Carcinoma de Células Renais , Proteínas de Transporte , Neoplasias Renais , Acetiltransferases N-Terminal , Proteínas de Sinalização YAP , Animais , Camundongos , Carcinoma de Células Renais/metabolismo , Carcinoma de Células Renais/patologia , Linhagem Celular Tumoral , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Linfangiogênese/genética , Processos Neoplásicos , Proteínas de Transporte/metabolismo , Acetiltransferases N-Terminal/metabolismo , Proteínas 14-3-3/metabolismo , Proteínas de Sinalização YAP/metabolismo
4.
Thorac Cancer ; 15(10): 820-829, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409918

RESUMO

BACKGROUND: N-acetyltransferase 10 (NAT10) serves as a critical enzyme in mediating the N4-acetylcytidine (ac4C) that ensures RNA stability and effective translation processes. The role of NAT10 in driving the advancement of breast cancer remains uninvestigated. METHODS: We observed an increase in NAT10 expression, both at mRNA level through the analysis of the Cancer Genome Atlas (TCGA) database and at the protein level of tumor tissues from breast cancer patients. We determined that a heightened expression of NAT10 served as a predictor of an unfavorable clinical outcome. By screening the Cancer Cell Line Encyclopedia (CCLE) cell bank, this expression pattern of NAT10 was consistency found across almost all the classic breast cancer cell lines. RESULTS: Functionally, interference of NAT10 expression exerts an inhibitory effect on proliferation and invasion of breast cancer cells. By using ac4C RNA immunoprecipitation (ac4c-RIP) and acRIP-qPCR assays, we identified a reduction of ac4C enrichment within the ATP binding cassette (ABC) transporters, multidrug resistance protein 1 (MDR1) and breast cancer resistance protein (BCRP), consequent to NAT10 suppression. Expressions of MDR1 and BCRP exhibited a positive correlation with NAT10 expression in tumor tissues, and the inhibition of NAT10 in breast cancer cells resulted in a decrease of MDR1 and BCRP expression. Therefore, the overexpressing of MDR1 and BCRP could partially rescue the adverse consequences of NAT10 depletion. In addition, we found that, remodelin, a NAT10 inhibitor, reinstated the susceptibility of capecitabine-resistant breast cancer cells to the chemotherapy, both in vitro and in vivo. CONCLUSION: The results of our study demonstrated the essential role of NAT10-mediated ac4c-modification in breast cancer progression and provide a novel strategy for overcoming chemoresistance challenges.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP , Neoplasias da Mama , Citidina , Feminino , Humanos , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Neoplasias da Mama/patologia , Citidina/análogos & derivados , Acetiltransferases N-Terminal/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/genética
5.
Cell Death Dis ; 15(1): 9, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38182571

RESUMO

Chromatin accessibility plays important roles in revealing the regulatory networks of gene expression, while its application in bladder cancer is yet to be fully elucidated. Chloride intracellular channel 3 (CLIC3) protein has been reported to be associated with the progression of some tumors, whereas the specific mechanism of CLIC3 in tumor remains unclear. Here, we screened for key genes in bladder cancer through the identification of transcription factor binding site clustered region (TFCR) on the basis of chromatin accessibility and TF motif. CLIC3 was identified by joint profiling of chromatin accessibility data with TCGA database. Clinically, CLIC3 expression was significantly elevated in bladder cancer and was negatively correlated with patient survival. CLIC3 promoted the proliferation of bladder cancer cells by reducing p21 expression in vitro and in vivo. Mechanistically, CLIC3 interacted with NAT10 and inhibited the function of NAT10, resulting in the downregulation of ac4C modification and stability of p21 mRNA. Overall, these findings uncover an novel mechanism of mRNA ac4C modification and CLIC3 may act as a potential therapeutic target for bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Canais de Cloreto/genética , Cromatina , Acetiltransferases N-Terminal , RNA Mensageiro/genética , Bexiga Urinária , Neoplasias da Bexiga Urinária/genética
6.
Int J Oral Sci ; 16(1): 6, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38246918

RESUMO

Existing studies have underscored the pivotal role of N-acetyltransferase 10 (NAT10) in various cancers. However, the outcomes of protein-protein interactions between NAT10 and its protein partners in head and neck squamous cell carcinoma (HNSCC) remain unexplored. In this study, we identified a significant upregulation of RNA-binding protein with serine-rich domain 1 (RNPS1) in HNSCC, where RNPS1 inhibits the ubiquitination degradation of NAT10 by E3 ubiquitin ligase, zinc finger SWIM domain-containing protein 6 (ZSWIM6), through direct protein interaction, thereby promoting high NAT10 expression in HNSCC. This upregulated NAT10 stability mediates the enhancement of specific tRNA ac4C modifications, subsequently boosting the translation process of genes involved in pathways such as IL-6 signaling, IL-8 signaling, and PTEN signaling that play roles in regulating HNSCC malignant progression, ultimately influencing the survival and prognosis of HNSCC patients. Additionally, we pioneered the development of TRMC-seq, leading to the discovery of novel tRNA-ac4C modification sites, thereby providing a potent sequencing tool for tRNA-ac4C research. Our findings expand the repertoire of tRNA ac4C modifications and identify a role of tRNA ac4C in the regulation of mRNA translation in HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , RNA de Transferência , Humanos , Proteínas de Ligação a DNA , Neoplasias de Cabeça e Pescoço/genética , Acetiltransferases N-Terminal , Serina , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço
7.
Mol Med ; 30(1): 13, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38243170

RESUMO

BACKGROUND: PD-1/PD-L1 play a crucial role as immune checkpoint inhibitors in various types of cancer. Although our previous study revealed that NPM1 was a novel transcriptional regulator of PD-L1 and stimulated the transcription of PD-L1, the underlying regulatory mechanism remains incompletely characterized. METHODS: Various human cancer cell lines were used to validate the role of NPM1 in regulating the transcription of PD-L1. The acetyltransferase NAT10 was identified as a facilitator of NPM1 acetylation by coimmunoprecipitation and mass spectrometry. The potential application of combined NAT10 inhibitor and anti-CTLA4 treatment was evaluated by an animal model. RESULTS: We demonstrated that NPM1 enhanced the transcription of PD-L1 in various types of cancer, and the acetylation of NPM1 played a vital role in this process. In particular, NAT10 facilitated the acetylation of NPM1, leading to enhanced transcription and increased expression of PD-L1. Moreover, our findings demonstrated that Remodelin, a compound that inhibits NAT10, effectively reduced NPM1 acetylation, leading to a subsequent decrease in PD-L1 expression. In vivo experiments indicated that Remodelin combined with anti-CTLA-4 therapy had a superior therapeutic effect compared with either treatment alone. Ultimately, we verified that the expression of NAT10 exhibited a positive correlation with the expression of PD-L1 in various types of tumors, serving as an indicator of unfavorable prognosis. CONCLUSION: This study suggests that the NAT10/NPM1 axis is a promising therapeutic target in malignant tumors.


Assuntos
Antígeno B7-H1 , Inibidores de Checkpoint Imunológico , Tiazóis , Animais , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Hidrazonas , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Acetiltransferases N-Terminal
8.
Cell Commun Signal ; 22(1): 51, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233839

RESUMO

The dynamic changes of RNA N6-methyladenosine (m6A) during cancer progression participate in various cellular processes. However, less is known about a possible direct connection between upstream regulator and m6A modification, and therefore affects oncogenic progression. Here, we have identified that a key enzyme in N4-acetylcytidine (ac4C) acetylation NAT10 is highly expressed in human osteosarcoma tissues, and its knockdown enhanced m6A contents and significantly suppressed osteosarcoma cell growth, migration and invasion. Further results revealed that NAT10 silence inhibits mRNA stability and translation of m6A reader protein YTHDC1, and displayed an increase in glucose uptake, a decrease in lactate production and pyruvate content. YTHDC1 recognizes differential m6A sites on key enzymes of glycolysis phosphofructokinase (PFKM) and lactate dehydrogenase A (LDHA) mRNAs, which suppress glycolysis pathway by increasing mRNA stability of them in an m6A methylation-dependent manner. YTHDC1 partially abrogated the inhibitory effect caused by NAT10 knockdown in tumor models in vivo, lentiviral overexpression of YTHDC1 partially restored the reduced stability of YTHDC1 caused by lentiviral depleting NAT10 at the cellular level. Altogether, we found ac4C driven RNA m6A modification can positively regulate the glycolysis of cancer cells and reveals a previously unrecognized signaling axis of NAT10/ac4C-YTHDC1/m6A-LDHA/PFKM in osteosarcoma. Video Abstract.


Assuntos
Citidina/análogos & derivados , Osteossarcoma , Fosfofrutoquinases , Humanos , Lactato Desidrogenase 5/metabolismo , Fosfofrutoquinases/metabolismo , Acetilação , RNA/metabolismo , Glicólise/genética , Osteossarcoma/patologia , Fosfofrutoquinase-1 Muscular/metabolismo , Fatores de Processamento de RNA/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Acetiltransferases N-Terminal/metabolismo
9.
Pharmacol Ther ; 253: 108576, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38065232

RESUMO

RNA ac4C modification is a novel and rare chemical modification observed in mRNA. Traditional biochemical studies had primarily associated ac4C modification with tRNA and rRNA until in 2018, Arango D et al. first reported the presence of ac4C modification on mRNA and demonstrated its critical role in mRNA stability and translation regulation. Furthermore, they established that the ac4C modification on mRNA is mediated by the classical N-acetyltransferase NAT10. Subsequent studies have underscored the essential implications of NAT10 and mRNA ac4C modification across both physiological and pathological regulatory processes. In this review, we aimed to explore the discovery history of RNA ac4C modification, its detection methods, and its regulatory mechanisms in disease and physiological development. We offer a forward-looking examination and discourse concerning the employment of RNA ac4C modification as a prospective therapeutic strategy across diverse diseases. Furthermore, we comprehensively summarize the functions and mechanisms of NAT10 in gene expression regulation and pathogenesis independent of RNA ac4C modification.


Assuntos
Mamíferos , Acetiltransferases N-Terminal , Animais , Humanos , RNA Mensageiro , Mamíferos/genética
10.
Pathol Res Pract ; 253: 154990, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056132

RESUMO

N-acetyltransferase 10 (NAT10), a versatile enzyme, has gained considerable attention as a significant player in the complex realm of cancer biology. Its enigmatic role in tumorigenesis extends across a wide array of cellular processes, impacting cell growth, differentiation, survival, and genomic stability. Within the intricate network of oncogenic signaling, NAT10 emerges as a crucial agent in multiple cancer types, such as breast, lung, colorectal, and leukemia. This compelling research addresses the intricate complexity of the mechanistic role of NAT10 in cancer development. By elucidating its active participation in essential physiological processes, we investigate the regulatory role of NAT10 in cell cycle checkpoints, coordination of chromatin remodeling, and detailed modulation of the delicate balance between apoptosis and cell survival. Perturbations in NAT10 expression and function have been linked to oncogenesis, metastasis, and drug resistance in a variety of cancer types. Furthermore, the bewildering interactions between NAT10 and key oncogenic factors, such as p53 and c-Myc, are deciphered, providing profound insights into the molecular underpinnings of cancer pathogenesis. Equally intriguing, the paradoxical role of NAT10 as a potential tumor suppressor or oncogene is influenced by context-dependent factors and the cellular microenvironment. This study explores the fascinating interplay of genetic changes, epigenetic changes, and post-translational modifications that shape the dual character of NAT10, revealing the delicate balance between cancer initiation and suppression. Taken together, this overview delves deeply into the enigmatic role of NAT10 in cancer, elucidating its multifaceted roles and its complex interplay with oncogenic networks.


Assuntos
Acetiltransferases N-Terminal , Neoplasias , Humanos , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Acetiltransferase N-Terminal E/genética , Acetiltransferase N-Terminal E/metabolismo , Neoplasias/genética , Processamento de Proteína Pós-Traducional , Microambiente Tumoral
11.
Int J Biol Macromol ; 254(Pt 2): 127789, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37926318

RESUMO

The quick progress of epigenetic study has kindled new hope for treating many cancers. When it comes to RNA epigenetics, the ac4C acetylation modification is showing promise, whereas N-acetyltransferase 10 plays a wide range of biological functions, has a significant impact on cellular life events, and is frequently highly expressed in many malignant tumors. N-acetyltransferase 10 is an acetyltransferase with important biological involvement in cellular processes and lifespan. Because it is highly expressed in many malignant tumors, it is considered a pro-carcinogenic gene. The review aims to introduce NAT10, summarize the effects of ac4C acetylation on tumor growth from multiple angles, and discuss the possible therapeutic targeting of NAT10 and the future directions of ac4C acetylation investigations.


Assuntos
Neoplasias , RNA , Humanos , Acetilação , Acetiltransferases , Carcinogênese/genética , Transformação Celular Neoplásica , Neoplasias/genética , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo
13.
Cell Signal ; 116: 111014, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38110168

RESUMO

It has been reported that the formation of neutrophil extracellular traps (NETs) is associated with cancer metastasis. The current study aimed to explore the effects of NETs on gastric cancer (GC) cell metastasis and uncover their underlying mechanism. NETs were measured in the plasma of patients with GC. Then, GC cells were treated with NETs to assess cell viability, migration, and invasion using cell counting kit 8 and Transwell assay, The liver metastasis and xenograft tumor mouse models were established to assess tumor growth and metastasis. The N4-acetylcytidine (ac4C) modification of SET and MYND domain containing 2 (SMYD2) mediated by NAT10 was evaluated using acetylated RNA immunoprecipitation. The results showed that the level of NETs was increased in the plasma of patients with GC, particularly in those with metastatic GC. In addition, GC cell co-treatment with NETs promoted cell viability, migration and invasion, while NAT10 or SMYD2 knockdown abrogated this effect. NAT10 also promoted the ac4C modification of SMYD2, thus increasing SMYD2 stability. Furthermore, NETs promoted the metastasis of GC cells in the liver in vivo. Overall, the results of the present study demonstrated that NETs promoted GC cell metastasis via the NAT10-mediated ac4C modification of SMYD2. These findings suggested that inhibiting the formation of NETs could be an effective approach for attenuating GC progression.


Assuntos
Citidina/análogos & derivados , Armadilhas Extracelulares , Neoplasias Hepáticas , Neoplasias Gástricas , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Histona-Lisina N-Metiltransferase , Acetiltransferases N-Terminal
14.
Discov Med ; 35(179): 936-945, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38058058

RESUMO

BACKGROUND: NAT10 (N-acetyltransferase 10) is a newly identified novel acetyltransferase. Abnormal expression of NAT10 is associated with several human disorders, including cancer, autoimmune diseases, and cardiovascular disease. This study aimed to investigate the role of NAT10 in promoting lung cancer malignant progression through the NF-κB (nuclear factor κB) signaling pathway. METHODS: Cells lines BEAS-2B, NCI-H524, A549, PC-9, NCI-H23, and NCI-H258 were cultured for identification. Western blotting and PCR assays determined gene expression within the sample cells. Cellular functionality was assayed using CCK8 (Cell Counting Kit-8), Dual-Luciferase Reporter, and Colony formating. RESULTS: The PCR assay and Western blotting showed a significant elevation of NAT10 levels within tumor tissues compared to paraneoplastic tissues (p < 0.05). Specifically, NAT10 only affected the expression and content of RelA/p65 in lung cancer. Analysis from the TCGA (The Cancer Genome Atlas) database indicated that elevated expression levels of NAT10 in tumors can be a good prognostic indicator for lung cancer patients. The CCK8 assay showed that the knockdown of NAT10 significantly suppressed the A549 cells' progression rate (p < 0.05). The colony formation assays further confirmed that the overexpression of NAT10 significantly increased the generation of clones in the NCI-H524 cells (p < 0.05). The proliferation rate influenced by the overexpression of NAT10 was inhibited by blocking the NF-κB signaling pathway (p < 0.05). Dual-luciferase reporter gene assay results revealed NAT10's potential in promoting the NF-κB signaling pathway's activity in lung cancer. Immunohistochemical staining underscored a strong link between NAT10 protein expression and the NF-κB signaling pathway in lung cancer tissues. CONCLUSIONS: NAT10's expression is significantly upregulated in tumor tissues, supported by PCR results. NAT10 plays a role in the development and proliferation of lung cancer cells and can activate the NF-κB signaling pathway in lung cancer. Hence, NAT10's regulation of the NF-κB signaling pathway is critical in the malignant proliferation of lung cancer.


Assuntos
Neoplasias Pulmonares , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Transdução de Sinais/genética , Luciferases/metabolismo , Acetiltransferases/metabolismo , Proliferação de Células/genética , Linhagem Celular Tumoral , Acetiltransferases N-Terminal/metabolismo
15.
Cancer Biol Ther ; 24(1): 2274143, 2023 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-37948132

RESUMO

Laryngeal squamous cell carcinoma (LSCC), is a prevalent malignant tumor, belongs to the category of head and neck tumors. N-acetyltransferase 10 (NAT10) can alter mRNA stability through N4- acetylcytidine (ac4C) modification. This study aimed to make an investigation into the role of NAT10-mediated ac4C modification in the malignant processes of LSCC cells. The NAT10 expression in LSCC tissues and cells was detected RT-qPCR and western blot. The ac4C dot blot was performed to detect ac4C level. Besides, the cell viability, migration, and invasion abilities were detected by CCK-8 and transwell assays. AcRIP-qPCR was performed to measure the abundance of ac4C on FOXM1 mRNA. RIP and Luciferase reporter assays were performed to demonstrate the interaction between NAT10 and FOXM1. Finally, the xenograft model was established to explore the role of NAT10 in vivo. NAT1 levels were significantly increased in the LSCC tissues and cells. Knockdown of NAT10 could significantly suppress the proliferation, migration, and invasion of LSCC cells. Additionally, NAT10 recognized the ac4C-modified sites in the 3'-untranslated regions (3' UTR) of forkhead box M1 (FOXM1) to enhance the ability of FOXM1 mRNA. Furthermore, FOXM1 overexpression reversed the suppressing effects of NAT10 knockdown on the proliferation, migration, and invasion of LSCC cells, according to the results of rescue assays. Finally, results of animal experiments showed that NAT10 promoted in vivo tumorigenesis of LSCC cells through upregulating FOXM1. Our current study demonstrated that NAT10-mediated ac4C modification of FOXM1 mRNA promoted the malignant processes of LSCC cells.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Laríngeas , MicroRNAs , Animais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , MicroRNAs/genética , RNA Mensageiro/genética , Neoplasias Laríngeas/metabolismo , Linhagem Celular Tumoral , Carcinogênese/genética , Transformação Celular Neoplásica , Proteína Forkhead Box M1/genética , Acetiltransferases N-Terminal
16.
Cell Death Dis ; 14(11): 712, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37914704

RESUMO

N4-acetylcytidine (ac4C) is a post-transcriptional RNA modification that regulates in various important biological processes. However, its role in human cancer, especially lymph node metastasis, remains largely unknown. Here, we demonstrated N-Acetyltransferase 10 (NAT10), as the only known "writer" of ac4C mRNA modification, was highly expressed in head and neck squamous cell carcinoma (HNSCC) patients with lymph node metastasis. High NAT10 levels in the lymph nodes of patients with HNSCC patients are a predictor of poor overall survival. Moreover, we found that high expression of NAT10 was positively upregulated by Nuclear Respiratory Factor 1 (NRF1) transcription factor. Gain- and loss-of-function experiments displayed that NAT10 promoted cell metastasis in mice. Mechanistically, NAT10 induced ac4C modification of Glycosylated Lysosomal Membrane Protein (GLMP) and stabilized its mRNA, which triggered the activation of the MAPK/ERK signaling pathway. Finally, the NAT10-specific inhibitor, remodelin, could inhibit HNSCC tumorigenesis in a 4-Nitroquinoline 1-oxide (4NQO)-induced murine tumor model and remodel the tumor microenvironment, including angiogenesis, CD8+ T cells and Treg recruitment. These results demonstrate that NAT10 promotes lymph node metastasis in HNSCC via ac4C-dependent stabilization of the GLMP transcript, providing a potential epitranscriptomic-targeted therapeutic strategy for HNSCC.


Assuntos
Neoplasias de Cabeça e Pescoço , Microambiente Tumoral , Animais , Humanos , Camundongos , Linfócitos T CD8-Positivos , Neoplasias de Cabeça e Pescoço/genética , Metástase Linfática , Acetiltransferases N-Terminal , RNA Mensageiro/genética , Transdução de Sinais , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética
17.
Adv Sci (Weinh) ; 10(32): e2302705, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818745

RESUMO

Immunotherapy has recently emerged as the predominant therapeutic approach for cervical cancer (CCa), driven by the groundbreaking clinical achievements of immune checkpoint inhibitors (ICIs), such as anti-PD-1/PD-L1 antibodies. N4-acetylcytidine (ac4C) modification, catalyzed by NAT10, is an important posttranscriptional modification of mRNA in cancers. However, its impact on immunological dysregulation and the tumor immunotherapy response in CCa remains enigmatic. Here, a significant increase in NAT10 expression in CCa tissues is initially observed that is clinically associated with poor prognosis. Subsequently, it is found that HOXC8 activated NAT10 by binding to its promoter, thereby stimulating ac4C modification of FOXP1 mRNA and enhancing its translation efficiency, eventually leading to induction of GLUT4 and KHK expression. Moreover, NAT10/ac4C/FOXP1 axis activity resulted in increased glycolysis and a continuous increase in lactic acid secretion by CCa cells. The lactic acid-enriched tumor microenvironment (TME) further contributed to amplifying the immunosuppressive properties of tumor-infiltrating regulatory T cells (Tregs). Impressively, NAT10 knockdown enhanced the efficacy of PD-L1 blockade-mediated tumor regression in vivo. Taken together, the findings revealed the oncogenic role of NAT10 in initiating crosstalk between cancer cell glycolysis and immunosuppression, which can be a target for synergistic PD-1/PD-L1 blockade immunotherapy in CCa.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Neoplasias do Colo do Útero/genética , Antígeno B7-H1/metabolismo , Terapia de Imunossupressão , Glicólise , RNA Mensageiro/metabolismo , Ácido Láctico , Microambiente Tumoral , Proteínas Repressoras/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Acetiltransferases N-Terminal/metabolismo
18.
Methods Enzymol ; 686: 29-43, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37532404

RESUMO

The vast majority of eukaryotic proteins are subjected to N-terminal (Nt) acetylation. This reaction is catalyzed by a group of N-terminal acetyltransferases (NATs), which co- or post-translationally transfer an acetyl group from Acetyl coenzyme A to the protein N-terminus. Nt-acetylation plays an important role in many cellular processes, but the functional consequences of this widespread protein modification are still undefined for most proteins. Several in vitro acetylation assays have been developed to study the catalytic activity and substrate specificity of NATs or other acetyltransferases. These assays are valuable tools that can be used to define substrate specificities of yet uncharacterized NAT candidates, assess catalytic impairment of pathogenic NAT variants, and determine the potency of chemical inhibitors. The enzyme input in acetylation assays is typically acetyltransferases that have been recombinantly expressed and purified or immunoprecipitated proteins. In this chapter, we highlight how cell lysates can also be used to assess NAT catalytic activity and impairment when used as input in a previously described isotope-based in vitro Nt-acetylation assay. This is a fast and highly sensitive method that utilizes isotope labeled 14C-Ac-CoA and scintillation to detect the formation of Nt-acetylated peptide products.


Assuntos
Acetiltransferases , Acetiltransferases N-Terminal , Acetiltransferases N-Terminal/metabolismo , Acetiltransferases/química , Acetiltransferases/genética , Acetiltransferases/metabolismo , Proteínas/metabolismo , Processamento de Proteína Pós-Traducional , Peptídeos/metabolismo , Acetilação
19.
Int J Med Sci ; 20(8): 1079-1090, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37484809

RESUMO

N4-acetylcytidine (ac4C) is a lately discovered nucleotide modification that has been shown to be closely implicated in cancer. N-acetyltransferase10(NAT10) acts as an enzyme that regulates mRNA acetylation modifications. Currently, the role of NAT10-mediated RNA acetylation modification in cervical cancer remains to be elucidated. On the basis of transcriptome analysis of TCGA and GEO open datasets (GSE52904, GSE29570, GSE122697), NAT10 is upregulated in cervical cancer tissues and correlated with poor prognosis. Knockdown of NAT10 suppressed the cell proliferation, invasion, and migration of cervical cancer cells. The in vivo oncogenic function of NAT10 was also confirmed in xenograft models. Combined RNA-seq and acRIP-seq analysis revealed HNRNPUL1 as the target of NAT10 in cervical cancer. NAT10 positively regulate HNRNPUL1 expression by promoting ac4C modification and stability of HNRNPUL1 mRNA. Furthermore, depletion of HNRNPUL1 suppressed the cell division, invasion, and migration of cervical cancer. HNRNPUL1 overexpression partially restored cellular function in cervical cancer cells with NAT10 knockdown. Thus, this study demonstrates that NAT10 contributes to cervical cancer progression by enhancing HNRNPUL1 mRNA stability via ac4C modification, and NAT10-ac4C-HNRNPUL1 axis might be a potential target for cervical cancer therapy.


Assuntos
Neoplasias do Colo do Útero , Humanos , Feminino , Neoplasias do Colo do Útero/genética , Acetilação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estabilidade de RNA/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo
20.
J Cell Sci ; 136(14)2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37462250

RESUMO

Most proteins receive an acetyl group at the N terminus while in their nascency as the result of modification by co-translationally acting N-terminal acetyltransferases (NATs). The N-terminal acetyl group can influence several aspects of protein functionality. From studies of NAT-lacking cells, it is evident that several cellular processes are affected by this modification. More recently, an increasing number of genetic cases have demonstrated that N-terminal acetylation has crucial roles in human physiology and pathology. In this Cell Science at a Glance and the accompanying poster, we provide an overview of the human NAT enzymes and their properties, substrate coverage, cellular roles and connections to human disease.


Assuntos
Acetiltransferases , Acetiltransferases N-Terminal , Humanos , Acetilação , Acetiltransferases/genética , Acetiltransferases/metabolismo , Acetiltransferases N-Terminal/química , Acetiltransferases N-Terminal/genética , Acetiltransferases N-Terminal/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA