Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 68, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630330

RESUMO

In this research, two novel Fe(III)-reducing bacteria, SG10T and SG198T of genus Geothrix, were isolated from the rice field of Fujian Agriculture and Forestry University in Fuzhou, Fujian Province, China. Strains SG10T and SG198T were strictly anaerobic, rod-shaped and Gram-stain-negative. The two novel strains exhibited iron reduction ability, utilizing various single organic acid as the elector donor and Fe(III) as a terminal electron acceptor. Strains SG10T and SG198T showed the highest 16S rRNA sequences similarities to the type strains of Geothrix oryzisoli SG189T (99.0-99.5%) and Geothrix paludis SG195T (99.0-99.7%), respectively. The phylogenetic trees based on the 16S rRNA gene and genome 120 conserved core genes showed that strains SG10T and SG198T belong to the genus Geothrix. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between the phylogenetic neighbors and the two isolated strains were 86.1-94.3% and 30.7-59.5%, respectively. The major fatty acids were iso-C15:0, anteiso-C15:0, C16:0 and iso-C13:0 3OH, and MK-8 was the main respiratory quinone. According to above results, the two strains were assigned to the genus Geothrix with the names Geothrix campi sp. nov. and Geothrix mesophila sp. nov. Type strains are SG10T (= GDMCC 1.3406 T = JCM 39331 T) and SG198T (= GDMCC 62910 T = KCTC 25635 T), respectively.


Assuntos
Compostos Férricos , Solo , Humanos , Filogenia , RNA Ribossômico 16S/genética , Acidobacteria , Bactérias , DNA
2.
Environ Sci Pollut Res Int ; 31(7): 10766-10784, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38200199

RESUMO

Currently, there is limited understanding of the structures and variabilities of bacterial communities in oil-contaminated soil within shale gas development. The Changning shale gas well site in Sichuan province was focused, and high-throughput sequencing was used to investigate the structures of bacterial communities and functions of bacteria in soil with different degrees of oil pollution. Furthermore, the influences of the environmental factors including pH, moisture content, organic matter, total nitrogen, total phosphorus, oil, and the biological toxicity of the soil on the structures of bacterial communities were analyzed. The results revealed that Proteobacteria and Firmicutes predominated in the oil-contaminated soil. α-Proteobacteria and γ-Proteobacteria were the main classes under the Proteobacteria phylum. Bacilli was the main class in the Firmicutes phylum. Notably, more bacteria were only found in CN-5 which was the soil near the storage pond for abandoned drilling mud, including Marinobacter, Balneola, Novispirillum, Castellaniella, and Alishewanella. These bacteria exhibited resilience to higher toxicity and demonstrated proficiency in oil degradation. The functions including carbohydrate transport and metabolism, energy metabolism, replication, recombination and repair replication, signal transduction mechanisms, and amino acid transport and metabolism responded differently to varying concentrations of oil. The disparities in bacterial genus composition across samples stemmed from a complex play of pH, moisture content, organic matter, total nitrogen, total phosphorus, oil concentration, and biological toxicity. Notably, bacterial richness correlated positively with moisture content, while bacterial diversity showed a significant positive correlation with pH. Acidobacteria exhibited a significant positive correlation with moisture content. Litorivivens and Luteimonas displayed a significant negative correlation with pH, while Rhizobium exhibited a significant negative correlation with moisture content. Pseudomonas, Proteiniphilum, and Halomonas exhibited positive correlations not only with organic matter but also with oil concentration. Total nitrogen exhibited a significant positive correlation with Taonella and Sideroxydans. On the other hand, total phosphorus showed a significant negative correlation with Sphingomonas. Furthermore, Sphingomonas, Gp6, and Ramlibacter displayed significant negative correlations with biological toxicity. The differential functions exhibited no significant correlation with environmental factors but displayed a significant positive correlation with the Proteobacteria phylum. Aridibacter demonstrated a significant positive correlation with cell motility and cellular processes and signaling. Conversely, Pseudomonas, Proteiniphilum, and Halomonas were negatively correlated with differential functions, particularly in amino acid metabolism, carbohydrate metabolism, and membrane transport. Compared with previous research, more factors were considered in this research when studying structural changes in bacterial communities, such as physicochemical properties and biological toxicity of soil. In addition, the correlations of differential functions of communities with environmental factors, bacterial phyla, and genera were investigated.


Assuntos
Gás Natural , Campos de Petróleo e Gás , Bactérias/metabolismo , Proteobactérias , Firmicutes , Solo/química , Acidobacteria , Minerais/metabolismo , Fósforo/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Nitrogênio/análise , Aminoácidos/metabolismo , Microbiologia do Solo
3.
Bioresour Technol ; 394: 130194, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086466

RESUMO

Levels of cadmium (Cd) and lead (Pb) correspond to common composition in acid mine wastewater of Hunan Province of China. The removal path of Cd and Pb and the structure of microbial community were investigated by developing constructed wetlands (CWs) with different layer positions of biochar. The biochar as a layer at the bottom of CW (BCW) system exhibited maximum Cd and Pb removal efficiencies of 96.6-98.6% and 97.2-98.9%, respectively. Compared with original soil, BCW increased the relative proportions of Proteobacteria, Firmicutes, Acidobacteriota, Verrucomicrobiota, Desulfobacterota, Armatimonadota, Bacteroidota, Patescibacteria, Basidiomycota (phylum level) and Burkholderia-Caballeronia-Paraburkholderia, Citrifermentans, Chthonomonadales, Cellulomonas, Geothrix, Terracidiphilus, Gallionellaceae, Microbacterium, Vanrija, Apiotrichum, Saitozyma, Fusarium (genus level). The concentrations of Cd and Pb were positively correlated with the abundance of Verrucomicrobiota, Basidiomycota (phylum level), and Methylacidiphilaceae, Meyerozyma, Vanrija (genus level). This study demonstrates that BCW system can improve removal performance toward Cd and Pb, as well as alter microbial community.


Assuntos
Burkholderiaceae , Microbiota , Cádmio , Chumbo , Áreas Alagadas , Carvão Vegetal/química , Bactérias , Acidobacteria , Eliminação de Resíduos Líquidos
4.
Appl Microbiol Biotechnol ; 107(18): 5789-5801, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37458766

RESUMO

Metabolic enzyme activity and microbial composition of the air-curing and fermentation processes determine the quality of cigar tobacco leaves (CTLs). In this study, we reveal the evolution of the dominant microorganisms and microbial community structure at different stages of the air-curing and fermentation processes of CTLs. The results showed that the changes in metabolic enzymes occurred mainly during the air-curing phase, with polyphenol oxidase (PPO) being the most active at the browning phase. Pseudomonas, Bacteroides, Vibrio, Monographella, Bipolaris, and Aspergillus were the key microorganisms in the air-curing and fermentation processes. Principal coordinate analysis revealed significant separation of microbial communities between the air-curing and fermentation phases. Redundancy analysis showed that bacteria such as Proteobacteria, Firmicutes, Bacteroidota, and Acidobacteriota and fungi such as Ascomycota and Basidiomycota were correlated with enzyme activity and temperature and humidity. Bacteria mainly act in sugar metabolism, lipid metabolism, and amino acid metabolism, while fungi mainly degrade lignin, cellulose, and pectin through saprophytic action. Spearman correlation network analysis showed that Firmicutes, Proteobacteria, and Actinobacteria were the key bacterial taxa, while Dothideomycetes, Sordariomycetes, and Eurotiomycetes were the key fungal taxa. This research provides the basis for improving the quality of cigars by improving the air-curing and fermentation processes. KEY POINTS: • Changes in POD and PPO activity control the color change of CTLs at the air-curing stage. • Monographella, Aspergillus, Pseudomonas, and Vibrio play an important role in air-curing and fermentation. • Environmental temperature and humidity mainly affect the fermentation process, whereas bacteria such as Proteobacteria, Firmicutes, Bacteroidota, and Acidobacteriota and fungi such as Ascomycota and Basidiomycota are associated with enzyme activity and temperature and humidity.


Assuntos
Ascomicetos , Produtos do Tabaco , Nicotiana/microbiologia , Fermentação , Bactérias , Proteobactérias , Firmicutes , Acidobacteria , Bacteroidetes , Folhas de Planta/microbiologia
5.
Ecotoxicol Environ Saf ; 255: 114832, 2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-36989947

RESUMO

Although research into how spiders respond to cadmium (Cd)-induced toxicity is ongoing, little is known about the effects of Cd contamination on the exogenous microorganisms of spiders. The current study used 16 S rRNA gene sequencing to evaluate the richness and structure of external bacterial communities in the wolf spider Pardosa pseudoannulata under long- and short-term Cd stress. Our results showed that Proteobacteria and Acidibacter were the dominating bacterial phylum and genus. The alpha diversity analysis showed that the high background of Cd concentration (Cd) reduced bacterial alpha diversity, and short-term Cd (SCd) stress elevated bacterial richness and diversity. Hub bacterial genera, including Stenotrophobacter, Hymenobacter, Chitinophaga, and Bryobacter, were identified by co-occurrence network analysis and showed high connectance with other bacterial genera. Further investigation revealed 15 and 14 bacterial taxa that were classified distinctively under SCd and Cd stresses. Interestingly, functional prediction analysis showed that Cd stress enhanced some crucial pathways involved in specialized functions, including manganese oxidation and aromatic compound degradation. Random forest and correlation analyses found that the spider's molting time was the dominant driver affecting bacterial phyla (i.e., Proteobacteria and Planctomycetes) and genera (e.g., Acidibacter, Reyranella, and Haliangium). Collectively, this comprehensive analysis creates new perspectives to investigate the divergent responses of microbial communities in the spiders' external habitat under Cd stress, and provides valuable viewpoints for Cd pollution evaluation and control.


Assuntos
Cádmio , Aranhas , Animais , Cádmio/toxicidade , Oxirredução , Bactérias/genética , Poluição Ambiental , Acidobacteria , Proteobactérias
6.
Microb Ecol ; 85(1): 197-208, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35034142

RESUMO

The 2,3,7,8-tetrachlorodibenzodioxin (TCDD), a contaminant in Agent Orange released during the US-Vietnam War, led to a severe environmental crisis. Approximately, 50 years have passed since the end of this war, and vegetation has gradually recovered from the pollution. Soil bacterial communities were investigated by 16S metagenomics in habitats with different vegetation physiognomies in Central Vietnam, namely, forests (S0), barren land (S1), grassland (S2), and developing woods (S3). Vegetation complexity was negatively associated with TCDD concentrations, revealing the reasoning behind the utilization of vegetation physiognomy as an indicator for ecological succession along the gradient of pollutants. Stark changes in bacterial composition were detected between S0 and S1, with an increase in Firmicutes and a decrease in Acidobacteria and Bacteroidetes. Notably, dioxin digesters Arthrobacter, Rhodococcus, Comamonadaceae, and Bacialles were detected in highly contaminated soil (S1). Along the TCDD gradients, following the dioxin decay from S1 to S2, the abundance of Firmicutes and Actinobacteria decreased, while that of Acidobacteria increased; slight changes occurred at the phylum level from S2 to S3. Although metagenomics analyses disclosed a trend toward bacterial communities before contamination with vegetation recovery, non-metric multidimensional scaling analysis unveiled a new trajectory deviating from the native state. Recovery of the bacterial community may have been hindered, as indicated by lower bacterial diversity in S3 compared to S0 due to a significant loss of bacterial taxa and recruitment of fewer colonizers. The results indicate that dioxins significantly altered the soil microbiomes into a state of disorder with a deviating trajectory in restoration.


Assuntos
Dioxinas , Microbiota , Dibenzodioxinas Policloradas , Agente Laranja , Solo , Dibenzodioxinas Policloradas/análise , Bactérias/genética , Acidobacteria/genética , Firmicutes , Microbiologia do Solo , RNA Ribossômico 16S/genética
7.
Curr Microbiol ; 79(11): 320, 2022 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-36121540

RESUMO

In this study, to evaluate the effect of different biocontrol agents (BCAs) on the soil bacterial community, we investigated the effects of Bacillus amyloliquefaciens, synthetic bacterial community (Aspergillus niger:Bacillus subtilis:Bacillus licheniformis:Streptomyces microflavus = 3:3:3:1, SynCom), and BCAs combined with lime-nitrogen on soil bacterial community by utilizing 16S rRNA sequencing technology. The sequencing shows that BCAs application can improve the value of Shannon and Sobs index of bacterial community during tobacco rosette and vigorous growing period. With the growth of tobacco, the effect of BCAs on the composition and difference of soil bacterial community structure becomes more and more obvious. In terms of average relative richness, the top six phyla of soil bacterial community are Proteobacteria, Actinobacteria, Chloroflexi, Acidobacteria, Gemmatimonadetes, and Bacteroidetes. Bacillus amyloliquefaciens application can increase the relative richness of Proteobacteria and Bacteroidetes. And the combination between BCAs and lime-nitrogen can increase the relative richness of Gemmatimonadetes and Bacteroidetes. The SynCom also can increase the relative richness of Bacteroidetes, whereas it decreases the relative richness of Acidobacteria. Proteobacteria, Acidobacteria, Gemmatimonadetes, and Bacteroidetes showing an extremely significant correlation with pH and exchangeable magnesium (EMg). BCAs application can improve the tobacco yield, effective leaves, and reducing sugar content that also has extremely significant positive correlation with pH and EMg. In conclusion, the results of our field experiments clearly show that BCAs application can significantly affect the soil pH and EMg by changing most of the dominant soil bacterial species. The richness of Bacteroidetes can serve as an indicator of the changes in soil pH and EMg caused by BCAs application.


Assuntos
Nicotiana , Solo , Acidobacteria , Bactérias/genética , Bacteroidetes/genética , Compostos de Cálcio , Magnésio , Nitrogênio/análise , Óxidos , Proteobactérias/genética , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Açúcares , Nicotiana/microbiologia
8.
Ecotoxicol Environ Saf ; 242: 113860, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35810669

RESUMO

This study investigated the structure of fungal and bacterial communities in different types of Cd-contaminated soils. The results showed that obvious variations in microbial structure between contaminated alkaline soils and acidic soils. Proteobacteria, Gemmatimonadetes, Bacteroidetes and Basidiomycota dominated the studied communities in the alkaline soils, whereas Actinobacteria, Chloroflexi, Firmicutes, Acidobacteria, Saccharibacteria and Ascomycota were more abundant in the acidic soils. Additionally, Cd tolerant (Proteobacteria, Bacteroidetes, Ascomycota) and sensitive (Actinobacteria, Acidobacteria, Basidiomycota) in alkaline soils and JL-soils, Cd tolerant (Actinobacteria, Acidobacteria, Basidiomycota) and sensitive (Saccharibacteria, Proteobacteria, Bacteroidetes, Ascomycota, Mucoromycota) in the acidic soils were identified. Redundancy analysis and correlation analysis demonstrated that it was significantly affected by different environment parameters in alkaline soils and acidic soils. Varied bacterial community structures in all soils were dominantly influenced by pH and SOM. The similarities among different groups indicated the effect of soil type on microbial community structure was greater than that of Cd level. The above conclusions may provide a new perspective for the bio-remediation of Cd in different types of soils.


Assuntos
Actinobacteria , Ascomicetos , Poluentes do Solo , Acidobacteria , Bactérias , Bacteroidetes , Cádmio/análise , Proteobactérias , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise
9.
Environ Sci Pollut Res Int ; 29(30): 45435-45448, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35147885

RESUMO

The decline disease of Myrica rubra tree is commonly induced by soil acidification, which affects the yield and the quality of fruits. It is hypothesized that aluminum toxicity and microbial community changes caused by soil acidification were the main causes of decline of Myrica rubra tree. In order to explore the decline mechanism of Myrica rubra tree, soils around healthy and decline trees of Myrica rubra were collected to compare the concentrations of different aluminum forms, enzyme activities, and bacterial community structure. In this study, soil samples were collected from the five main production areas of Myrica rubra, Eastern China. The results showed that diseased soils had higher exchangeable aluminum, lower enzyme activities, and lower microbial diversity than healthy soils at various sites. The toxic Al significantly decreased bacterial diversity and altered the bacterial community structure. The diseased soils had significantly lower α-diversity indices (ACE, Chao1, and Shannon) of bacterial community. The Al toxicity deceased the relative abundance of Acidobacteria and Planctomycetes, while enhanced the relative abundance of Cyanobacteria, Bacteroidetes, and Firmicutes in soils. Co-occurrence network analysis indicated that the Al toxicity simplified the bacterial network. The soil ExAl content was significantly and negatively correlated with the nodes (r = -0.69, p < 0.05) and edges (r = -0.77, p < 0.01) of the bacterial network. These results revealed that the Al toxicity altered soil bacterial community structure, resulting in the decline disease of Myrica rubra tree, while highlighted the role of Al forms in the plant growth. This finding is of considerable significance to the better management of acidification-induced soil degradation and the quality of fruits.


Assuntos
Myrica , Solo , Acidobacteria , Alumínio/toxicidade , Bactérias , Concentração de Íons de Hidrogênio , Solo/química , Microbiologia do Solo
10.
Environ Microbiol ; 23(7): 3957-3969, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33200556

RESUMO

Earth's microbial biosphere extends down through the crust and much of the subsurface, including those microbial ecosystems located within cave systems. Here, we elucidate the microbial ecosystems within anthropogenic 'caves'; the Iron-Age, subterranean tombs of central Italy. The interior walls of the rock (calcium-rich macco) were painted ~2500 years ago and are covered with CaCO3 needles (known as moonmilk). The aims of the current study were to: identify biological/geochemical/biophysical determinants of and characterize bacterial communities involved in CaCO3 precipitation; challenge the maxim that biogenic activity necessarily degrades surfaces; locate the bacterial cells that are the source of the CaCO3 precipitate; and gain insight into the kinetics of moonmilk formation. We reveal that this environment hosts communities that consist primarily of bacteria that are mesophilic for temperature and xerotolerance (including Actinobacteria, Bacteroidetes and Proteobacteria); is populated by photosynthetic Cyanobacteria exhibiting heterotrophic nutrition (Calothrix and Chroococcidiopsis); and has CaCO3 precipitating on the rock surfaces (confirmation that this process is biogenic) that acts to preserve rather than damage the painted surface. We also identified that some community members are psychrotolerant (Polaromonas), acidotolerant or acidophilic (members of the Acidobacteria), or resistant to ionizing radiation (Brevundimonas and Truepera); elucidate the ways in which microbiology impacts mineralogy and vice versa; and reveal that biogenic formation of moonmilk can occur rapidly, that is, over a period of 10 to 56 years. We discuss the paradox that these ecosystems, that are for the most part in the dark and lack primary production, are apparently highly active, biodiverse and biomass-rich.


Assuntos
Cianobactérias , Ecossistema , Acidobacteria , Cavernas , Civilização
11.
Chemosphere ; 238: 124700, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31524602

RESUMO

An eight-year field trial was conducted to investigate the effects of four different N fertilization treatments of urea (CO(NH2)2, the control), ammonium sulfate ((NH4)2SO4), ammonium chloride (NH4Cl), and ammonium hydrogen phosphate [(NH4)2HPO4]) on cadmium (Cd) phytotoxicity in rice and soil microbial communities in a Cd-contaminated paddy of southern China. The results demonstrate that the different N treatments exerted different effects: the application of (NH4)2HPO4 and (NH4)2SO4 significantly increased rice grain yield and decreased soil-extractable Cd content when compared with those of the control, while NH4Cl had a converse effect. Expression of genes related to Cd uptake (IRT and NRAPM genes) and transport (HMA genes) by roots may be responsible for Cd phytotoxicity in rice grown in the different N fertilization treatments. Our results further demonstrate that N fertilization had stronger effects on soil bacterial communities than fungal communities. The bacterial and fungal keystone species were identified by phylogenetic molecular ecological network (pMEN) analysis and mainly fell into the categories of Gammaproteobacteria, Acidobacteria and Actinobacteria for the bacterial species and Ascomycota for the fungal species; all of these keystone species were highly enriched in the (NH4)2HPO4 treatment. Soil pH and soil available-Cd content emerged as the major determinants of microbial network connectors. These results could provide effective fertilizing strategies for alleviating Cd phytotoxicity in rice and enhance the understanding of its underlying microbial mechanisms.


Assuntos
Ascomicetos/isolamento & purificação , Bactérias/isolamento & purificação , Cádmio/análise , Cádmio/toxicidade , Oryza/química , Poluentes do Solo/toxicidade , Acidobacteria/isolamento & purificação , Actinobacteria/isolamento & purificação , Cloreto de Amônio/química , Sulfato de Amônio/química , Ascomicetos/metabolismo , Bactérias/metabolismo , China , Grão Comestível/química , Poluição Ambiental/análise , Fertilizantes/análise , Gammaproteobacteria/isolamento & purificação , Microbiota , Oryza/microbiologia , Fosfatos/química , Filogenia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Poluentes do Solo/análise , Ureia/química
12.
Ecotoxicol Environ Saf ; 188: 109887, 2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-31706237

RESUMO

To investigate the removal mechanisms of cadmium (Cd) by Zn-layer double hydroxides-modified zeolites substrates in constructed rapid infiltration systems (CRIS), the ZnAl-LDHs and ZnFe-LDHs were synthesized and in-situ coated on the original zeolites through co-precipitation method. The prepared Zn-LDHs-modified and original zeolites were characterized by scanning electron microscope (SEM) and energy dispersive spectroscopy (EDS) methods, whose results provided the evidences that the Zn-LDHs were successfully coated on the original zeolites. From the results of purification experiments, the average Cd removal rates of ZnAl-LDHs-modified, ZnFe-LDHs-modified and original zeolites were 88.40, 86.00 and 32.52%, respectively; demonstrating that the removal rates of zeolites could significantly improve. Additionally, the modification of Zn-LDHS could enhance the theoretical adsorption ability. According to the results of isothermal adsorption and desorption tests, the desorption rates of Zn-LDHs-modified zeolites were higher than that of original zeolites. Cd adsorption capacity of ZnFe-LDHs-modified zeolites was 1428.57 mg kg-1 and original zeolites was 434.783 mg kg-1. In the adsorption kinetic studies, the pseudo-second-order models were used to well describe the experimental results of Zn-LDHs-modified zeolites, indicating that their adsorption types were attributed to be more stable chemisorption. Besides, the relevant microbial tests also confirmed that microbial enzymatic activity and extracellular polymeric substances (EPS) were significantly promoted on surface of Zn-LDHs-modified zeolites. The contents of EPS on the surface of zeolites were as following: ZnAl-LDHs-modified zeolites (78.58128 µg/g) > ZnFe-LDHs-modified zeolites (71.85445 µg/g) > original zeolites (68.69904 µg/g). Meanwhile, the results of high-throughput sequencing showed that modification by Zn-LDHs improved microbial diversity and relative abundance. The Proteobacteria was the dominant phylum and the Acidobacteria was conducive to Cd removal. Overall, it could be concluded that ZnAl-LDHs-modified zeolites might be applied as an efficient substrate for Cd removal in CRIS.


Assuntos
Cádmio/isolamento & purificação , Hidróxidos/química , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Zeolitas/química , Zinco/química , Acidobacteria/química , Acidobacteria/metabolismo , Adsorção , Proteínas de Bactérias/metabolismo , Cádmio/química , Cinética , Poluentes Químicos da Água/química , Purificação da Água/instrumentação , Purificação da Água/normas
13.
Biochem J ; 477(1): 213-226, 2020 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-31868878

RESUMO

PilB is the assembly ATPase for the bacterial type IV pilus (T4P), and as a consequence, it is essential for T4P-mediated bacterial motility. In some cases, PilB has been demonstrated to regulate the production of exopolysaccharide (EPS) during bacterial biofilm development independently of or in addition to its function in pilus assembly. While the ATPase activity of PilB resides at its C-terminal region, the N terminus of a subset of PilBs forms a novel cyclic-di-GMP (cdG)-binding domain. This multi-domain structure suggests that PilB binds cdG and adenine nucleotides through separate domains which may influence the functionality of PilB in both motility and biofilm development. Here, Chloracidobacterium thermophilum PilB is used to investigate ligand binding by its separate domains and by the full-length protein. Our results confirm the specificity of these individual domains for their respective ligands and demonstrate communications between these domains in the full-length protein. It is clear that when the N- and the C-terminal domains of PilB bind to cdG and ADP, respectively, they mutually influence each other in conformation and in their binding to ligands. We propose that the interactions between these domains in response to their ligands play critical roles in modulating or controlling the functions of PilB as a regulator of EPS production and as the T4P assembly ATPase.


Assuntos
Acidobacteria/enzimologia , Difosfato de Adenosina/química , Proteínas de Bactérias/química , GMP Cíclico/análogos & derivados , Oxirredutases/química , Difosfato de Adenosina/metabolismo , Regulação Alostérica , Proteínas de Bactérias/metabolismo , GMP Cíclico/química , GMP Cíclico/metabolismo , Modelos Moleculares , Oxirredutases/metabolismo , Ligação Proteica , Domínios Proteicos
14.
Chemistry ; 26(6): 1328-1334, 2020 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-31545545

RESUMO

Sulfoxide synthases are non-heme iron enzymes that participate in the biosynthesis of thiohistidines, such as ergothioneine and ovothiol A. The sulfoxide synthase EgtB from Chloracidobacterium thermophilum (CthEgtB) catalyzes oxidative coupling between the side chains of N-α-trimethyl histidine (TMH) and cysteine (Cys) in a reaction that entails complete reduction of molecular oxygen, carbon-sulfur (C-S) and sulfur-oxygen (S-O) bond formation as well as carbon-hydrogen (C-H) bond cleavage. In this report, we show that CthEgtB and other bacterial sulfoxide synthases cannot efficiently accept selenocysteine (SeCys) as a substrate in place of cysteine. In contrast, the sulfoxide synthase from the filamentous fungus Chaetomium thermophilum (CthEgt1) catalyzes C-S and C-Se bond formation at almost equal efficiency. We discuss evidence suggesting that this functional difference between bacterial and fungal sulfoxide synthases emerges from different modes of oxygen activation.


Assuntos
Acidobacteria/enzimologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas Fúngicas/antagonistas & inibidores , Selenocisteína/química , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ligação Competitiva , Biocatálise , Domínio Catalítico , Cisteína Dioxigenase/antagonistas & inibidores , Cisteína Dioxigenase/metabolismo , Ergotioneína/química , Ergotioneína/metabolismo , Proteínas Fúngicas/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mycobacteriaceae/enzimologia , Selenocisteína/metabolismo
15.
Int J Mol Sci ; 21(24)2020 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-33419357

RESUMO

Gastric cancer (GC) is the fifth most prevalent cancer worldwide and the third leading cause of global cancer mortality. With the advances of the omic studies, a heterogeneous GC landscape has been revealed, with significant molecular diversity. Given the multifaceted nature of GC, identification of different patient subsets with prognostic and/or predictive outcomes is a key aspect to allow tailoring of specific treatments. Recently, the involvement of the microbiota in gastric carcinogenesis has been described. To deepen this aspect, we compared microbiota composition in signet-ring cell carcinoma (SRCC) and adenocarcinoma (ADC), two distinct GC subtypes. To this purpose, 10 ADC and 10 SRCC and their paired non-tumor (PNT) counterparts were evaluated for microbiota composition through 16S rRNA analysis. Weighted and unweighted UniFrac and Bray-Curtis dissimilarity showed significant community-level separation between ADC and SRCC. Through the LEfSe (linear discriminant analysis coupled with effect size) tool, we identified potential microbial biomarkers associated with GC subtypes. In particular, SRCCs were significantly enriched in the phyla Fusobacteria, Bacteroidetes, Patescibacteria, whereas in the ADC type, Proteobacteria and Acidobacteria phyla were found. Overall, our data add new insights into GC heterogeneity and may contribute to deepening the GC classification.


Assuntos
Adenocarcinoma/microbiologia , Carcinoma de Células em Anel de Sinete/microbiologia , Microbiota/genética , Neoplasias Gástricas/microbiologia , Acidobacteria/genética , Acidobacteria/isolamento & purificação , Adenocarcinoma/genética , Adenocarcinoma/patologia , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Carcinoma de Células em Anel de Sinete/genética , Carcinoma de Células em Anel de Sinete/patologia , Feminino , Fusobactérias/genética , Heterogeneidade Genética , Humanos , Masculino , Medicina de Precisão , Prognóstico , Proteobactérias/genética , Proteobactérias/isolamento & purificação , RNA Ribossômico 16S/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia
16.
Environ Microbiol ; 21(10): 3711-3727, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31206918

RESUMO

Microbial metabolism of the thawing organic carbon stores in permafrost results in a positive feedback loop of greenhouse gas emissions. CO2 and CH4 fluxes and the associated microbial communities in Arctic cryosols are important in predicting future warming potential of the Arctic. We demonstrate that topography had an impact on CH4 and CO2 flux at a high Arctic ice-wedge polygon terrain site, with higher CO2 emissions and lower CH4 uptake at troughs compared to polygon interior soils. The pmoA sequencing suggested that USCα cluster of uncultured methanotrophs is likely responsible for observed methane sink. Community profiling revealed distinct assemblages across the terrain at different depths. Deeper soils contained higher abundances of Verrucomicrobia and Gemmatimonadetes, whereas the polygon interior had higher Acidobacteria and lower Betaproteobacteria and Deltaproteobacteria abundances. Genome sequencing of isolates from the terrain revealed presence of carbon cycling genes including ones involved in serine and ribulose monophosphate pathways. A novel hybrid network analysis identified key members that had positive and negative impacts on other species. Operational Taxonomic Units (OTUs) with numerous positive interactions corresponded to Proteobacteria, Candidatus Rokubacteria and Actinobacteria phyla, while Verrucomicrobia and Acidobacteria members had negative impacts on other species. Results indicate that topography and microbial interactions impact community composition.


Assuntos
Bactérias/metabolismo , Dióxido de Carbono/metabolismo , Metano/metabolismo , Microbiota , Pergelissolo/microbiologia , Microbiologia do Solo , Acidobacteria/isolamento & purificação , Acidobacteria/metabolismo , Regiões Árticas , Bactérias/genética , Bactérias/isolamento & purificação , Ciclo do Carbono , Gases de Efeito Estufa , Proteobactérias/isolamento & purificação , Proteobactérias/metabolismo , Solo
17.
J Am Chem Soc ; 141(13): 5275-5285, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30883103

RESUMO

Sulfoxide synthases are nonheme iron enzymes that catalyze oxidative carbon-sulfur bond formation between cysteine derivatives and N-α-trimethylhistidine as a key step in the biosynthesis of thiohistidines. The complex catalytic mechanism of this enzyme reaction has emerged as the controversial subject of several biochemical and computational studies. These studies all used the structure of the γ-glutamyl cysteine utilizing sulfoxide synthase, MthEgtB from Mycobacterium thermophilum (EC 1.14.99.50), as a structural basis. To provide an alternative model system, we have solved the crystal structure of CthEgtB from Chloracidobacterium thermophilum (EC 1.14.99.51) that utilizes cysteine as a sulfur donor. This structure reveals a completely different configuration of active site residues that are involved in oxygen binding and activation. Furthermore, comparison of the two EgtB structures enables a classification of all ergothioneine biosynthetic EgtBs into five subtypes, each characterized by unique active-site features. This active site diversity provides an excellent platform to examine the catalytic mechanism of sulfoxide synthases by comparative enzymology, but also raises the question as to why so many different solutions to the same biosynthetic problem have emerged.


Assuntos
Acidobacteria/enzimologia , Ergotioneína/biossíntese , Oxirredutases atuantes sobre Doadores de Grupo Enxofre/metabolismo , Oxigênio/metabolismo , Sítios de Ligação , Biocatálise , Ergotioneína/química , Estrutura Molecular , Oxirredução , Oxigênio/química
18.
Ecotoxicol Environ Saf ; 171: 425-434, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30639868

RESUMO

The effects of the continuous amendments with lime (L), lime mixed with organic manure (LO), or phosphate fertilizer (LP) on the soil bacterial community, soil available cadmium (Cd) content, and Cd accumulation in rice planted in a Cd contaminated paddy soil were determined through a four-season field experiment. The results showed that with continuous application of amendments during the four seasons, the soil pH increased significantly compared with the control, while the soil available Cd content significantly decreased by 12.9-18.2%, 13.1-17.3% and 0.09-23.2% under the L, LO, or LP treatments, and the Cd content of rice was significantly reduced by 28.5-56.2%, 37.6-53.4%, and 31.2-44.6%, respectively. The rice Cd content in each season at amendment treatments was lower than the National Food Safety Standard of China (maximum level of Cd in grains is 0.2 mg/kg). The diversity and richness of soil bacteria significantly increased after the continuous amendments in soil for four-season cropping. Soil pH and available Cd content were important factors for soil bacterial community. Lime mixed with phosphate fertilizer or organic manure had been characterized by a significant increase of Proteobacteria, Nitrospirae, and Chloroflexi and a decrease of Acidobacteria based on an Illumina Miseq sequencing analysis. The results indicate that the continuous application of lime mixed with organic manure or phosphate fertilizer is a very important measure to ensure the quality safety of rice and improve soil quality in a Cd-contaminated paddy.


Assuntos
Bactérias/classificação , Biomassa , Cádmio/análise , Fertilizantes/análise , Microbiologia do Solo , Poluentes do Solo/análise , Acidobacteria/isolamento & purificação , Bactérias/isolamento & purificação , Compostos de Cálcio/química , Fenômenos Químicos , Chloroflexi/isolamento & purificação , DNA Bacteriano/isolamento & purificação , Concentração de Íons de Hidrogênio , Esterco/análise , Oryza/química , Óxidos/química , Proteobactérias/isolamento & purificação , Estações do Ano , Análise de Sequência de DNA , Solo/química
19.
IEEE/ACM Trans Comput Biol Bioinform ; 16(4): 1313-1315, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-28186905

RESUMO

The CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immune systems are discovered in many bacteria and most archaea. These systems are encoded by cas (CRISPR-associated) operons that have an extremely diverse architecture. The most crucial step in the depiction of cas operons composition is the identification of cas genes or Cas proteins. With the continuous increase of the newly sequenced archaeal and bacterial genomes, the recognition of new Cas proteins is becoming possible, which not only provides candidates for novel genome editing tools but also helps to understand the prokaryotic immune system better. Here, we describe HMMCAS, a web service for the detection of CRISPR-associated structural and functional domains in protein sequences. HMMCAS uses hmmscan similarity search algorithm in HMMER3.1 to provide a fast, interactive service based on a comprehensive collection of hidden Markov models of Cas protein family. It can accurately identify the Cas proteins including those fusion proteins, for example the Cas1-Cas4 fusion protein in Candidatus Chloracidobacterium thermophilum B (Cab. thermophilum B). HMMCAS can also find putative cas operon and determine which type it belongs to. HMMCAS is freely available at http://i.uestc.edu.cn/hmmcas.


Assuntos
Sistemas CRISPR-Cas , Biologia Computacional/métodos , Software , Acidobacteria/genética , Algoritmos , Archaea/genética , Proteínas Arqueais/química , Bactérias/genética , Proteínas de Bactérias/química , Genoma Arqueal , Genoma Bacteriano , Internet , Cadeias de Markov , Methanocaldococcus/genética , Mimiviridae/genética , Óperon , Filogenia , Domínios Proteicos , Proteoma , Proteômica
20.
Environ Sci Pollut Res Int ; 25(36): 36278-36286, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30368700

RESUMO

Continuous exposure of chemicals could cause various environmental impacts. Decabromodiphenyl ether (BDE209) and lead (Pb) can co-exist and are discharged simultaneously at e-waste recycling sites (EWRSs). Extensive concerns have been attracted by their toxic effects on soil microorganisms. Thus, by using high-throughput sequencing, this study explored bacterial community responses in a soil system after repeated Pb exposure in the presence of BDE209 in the laboratory during 90-day indoor incubation period. Gene sequencing of 16S rDNA performed on an Illumina MiSeq platform proved that one-off Pb exposure caused higher microbial abundance and community diversity. Additionally, both repetitive Pb treatment and exogenous BDE209 input could change bacterial community composition. Twenty-three different bacterial phyla were detected in the soil samples, while more than 90% of the sequences in each treatment belonged to a narrow variety. The sequence analyses elucidated that Proteobacteria, Acidobacteria, and Bacteroidetes were the top three dominant phyla. Our observations could provide a few insights into the ecological risks of Pb and BDE209 co-existed contamination in soils at EWRSs.


Assuntos
Biomarcadores Ambientais/efeitos dos fármacos , Éteres Difenil Halogenados/toxicidade , Chumbo/toxicidade , Consórcios Microbianos/efeitos dos fármacos , Poluentes do Solo/toxicidade , Acidobacteria/efeitos dos fármacos , Acidobacteria/genética , Bactérias/efeitos dos fármacos , Bactérias/genética , Ecotoxicologia/métodos , Resíduo Eletrônico , Sequenciamento de Nucleotídeos em Larga Escala , Consórcios Microbianos/genética , RNA Ribossômico 16S , Reciclagem , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA