Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
1.
Antonie Van Leeuwenhoek ; 117(1): 89, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38861000

RESUMO

Strain MP-1014T, an obligate halophilic actinobacterium, was isolated from the mangrove soil of Thandavarayancholanganpettai, Tamil Nadu, India. A polyphasic approach was utilized to explore its phylogenetic position completely. The isolate was Gram-positive, filamentous, non-motile, and coccoid in older cultures. Ideal growth conditions were seen at 30 °C and pH 7.0, with 5% NaCl (W/V), and the DNA G + C content was 73.3%. The phylogenic analysis of this strain based upon 16S rRNA gene sequence revealed 97-99.8% similarity to the recognized species of the genus Isoptericola. Strain MP-1014T exhibits the highest similarity to I. sediminis JC619T (99.7%), I. chiayiensis KCTC19740T (98.9%), and subsequently to I. halotolerans KCTC19646T (98.6%), when compared with other members within the Isoptericola genus (< 98%). ANI scores of strain MP-1014T are 86.4%, 84.2%, and 81.5% and dDDH values are 59.7%, 53.6%, and 34.8% with I. sediminis JC619T, I. chiayiensis KCTC19740T and I. halotolerans KCTC19646T respectively. The major polar lipids of the strain MP-1014T were phosphatidylinositol, phosphatidylglycerol, diphosphotidylglycerol, two unknown phospholipids, and glycolipids. The predominant respiratory menaquinones were MK9 (H4) and MK9 (H2). The major fatty acids were anteiso-C15:0, anteiso-C17:0, iso-C14:0, C15:0, and C16:0. Also, initial genome analysis of the organism suggests it as a biostimulant for enhancing agriculture in saline environments. Based on phenotypic and genetic distinctiveness, the strain MP-1014 T represents the novel species of the genus Isoptericola assigned Isoptericola haloaureus sp. nov., is addressed by the strain MP-1014 T, given its phenotypic, phylogenetic, and hereditary uniqueness. The type strain is MP-1014T [(NCBI = OP672482.1 = GCA_036689775.1) ATCC = BAA 2646T; DSMZ = 29325T; MTCC = 13246T].


Assuntos
Composição de Bases , DNA Bacteriano , Fixação de Nitrogênio , Filogenia , RNA Ribossômico 16S , Tolerância ao Sal , Índia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Áreas Alagadas , Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Sedimentos Geológicos/microbiologia , Técnicas de Tipagem Bacteriana , Microbiologia do Solo , Fosfolipídeos/análise , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Actinobacteria/genética , Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Actinobacteria/metabolismo , Actinobacteria/fisiologia
2.
Cell Host Microbe ; 29(11): 1649-1662.e7, 2021 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637779

RESUMO

Saccharibacteria (TM7) are obligate epibionts living on the surface of their host bacteria and are strongly correlated with dysbiotic microbiomes during periodontitis and other inflammatory diseases, suggesting they are putative pathogens. However, due to the recalcitrance of TM7 cultivation, causal research to investigate their role in inflammatory diseases is lacking. Here, we isolated multiple TM7 species on their host bacteria from periodontitis patients. These TM7 species reduce inflammation and consequential bone loss by modulating host bacterial pathogenicity in a mouse ligature-induced periodontitis model. Two host bacterial functions involved in collagen binding and utilization of eukaryotic sialic acid are required for inducing bone loss and are altered by TM7 association. This TM7-mediated downregulation of host bacterial pathogenicity is shown for multiple TM7/host bacteria pairs, suggesting that, in contrast to their suspected pathogenic role, TM7 could protect mammalian hosts from inflammatory damage induced by their host bacteria.


Assuntos
Actinobacteria/patogenicidade , Perda do Osso Alveolar/microbiologia , Fenômenos Fisiológicos Bacterianos , Gengivite/microbiologia , Periodontite/microbiologia , Simbiose , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Actinobacteria/fisiologia , Actinomyces/genética , Actinomyces/isolamento & purificação , Actinomyces/patogenicidade , Actinomyces/fisiologia , Perda do Osso Alveolar/prevenção & controle , Animais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Colágeno/metabolismo , Placa Dentária/microbiologia , Regulação para Baixo , Genes Bacterianos , Gengivite/prevenção & controle , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Microbiota , Ácido N-Acetilneuramínico/metabolismo , Periodontite/prevenção & controle , Propionibacteriaceae/genética , Propionibacteriaceae/isolamento & purificação , Propionibacteriaceae/patogenicidade , Propionibacteriaceae/fisiologia , Virulência
3.
J Microbiol ; 59(4): 360-368, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33496938

RESUMO

Three novel bacterial strains, HDW9AT, HDW9BT, and HDW9CT, isolated from the intestine of the diving beetles Cybister lewisianus and Cybister brevis, were characterized as three novel species using a polyphasic approach. The isolates were Gram-staining-positive, strictly aerobic, non-motile, and rod-shaped. They grew optimally at 30°C (pH 7) in the presence of 0.5% (wt/vol) NaCl. Phylogenetic analysis based on the 16S rRNA gene sequences revealed that they belong to the genus Leucobacter and are closely related to L. denitrificans M1T8B10T (98.4-98.7% sequence similarity). Average nucleotide identity (ANI) values among the isolates were 76.4-84.1%. ANI values for the isolates and the closest taxonomic species, L. denitrificans KACC 14055T, were 72.3-73.1%. The isolates showed ANI values of < 76.5% with all analyzable Leucobacter strains in the EzBioCloud database. The genomic DNA G + C content of the isolates was 60.3-62.5%. The polar lipid components were phosphatidylglycerol, diphosphatidylglycerol, and other unidentified glycolipids, phospholipids, and lipids. The major cellular fatty acids were anteiso-C15:0, iso-C16:0, and anteiso-C17:0. MK-10 was the major respiratory quinone, and MK-7 and MK-11 were the minor respiratory quinones. The whole-cell sugar components of the isolates were ribose, glucose, galactose, and mannose. The isolates harbored L-2,4-diaminobutyric acid, L-serine, L-lysine, L-aspartic acid, glycine, and D-glutamic acid within the cell wall peptidoglycan. Based on phylogenetic, phenotypic, chemotaxonomic, and genotypic analyses, strains HDW9AT, HDW9BT, and HDW9CT represent three novel species within the genus Leucobacter. We propose the name Leucobacter coleopterorum sp. nov. for strain HDW9AT (= KACC 21331T = KCTC 49317T = JCM 33667T), the name Leucobacter insecticola sp. nov. for strain HDW9BT (= KACC 21332T = KCTC 49318T = JCM 33668T), and the name Leucobacter viscericola sp. nov. for strain HDW9CT (= KACC 21333T = KCTC 49319T = JCM 33669T).


Assuntos
Actinobacteria/classificação , Besouros/microbiologia , Filogenia , Actinobacteria/isolamento & purificação , Actinobacteria/fisiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , DNA Bacteriano/genética , Ácidos Graxos/química , Intestinos/microbiologia , Peptidoglicano/química , RNA Ribossômico 16S/genética , Vitamina K 2/química
4.
Arch Microbiol ; 203(4): 1367-1374, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33386868

RESUMO

An alkaliphilic actinomycete, designated HAJB-30 T, was isolated from a soda alkali-saline soil in Heilongjiang, Northeast China. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain HAJB-30 T was most closely related to type strains of the genus Phytoactinopolyspora with sequence similarities ranging between 93.5 and 98.9%. Strain HAJB-30 T grew at pH 8.0-11.0 (optimum pH 9.5-10.0) and in the presence of 0-7.0% NaCl (optimum 1.0-3.0%). Whole-cell hydrolysates of the isolate contained LL-diaminopimelic acid as the diagnostic diamino acid and mannose and rhamnose as diagnostic sugars. The major fatty acids identified were iso-C14:0, iso-C15:0, anteiso-C15:0, iso-C16:0 and anteiso-C17:0, while the menaquinone was MK-9(H4). The genome (6,589,901 bp), composed of 50 contigs, had a G + C content of 66.8%. Out of the 6074 predicted genes, 6020 were protein-coding genes, and 54 were ncRNAs. Digital DNA-DNA hybridization (dDDH) estimation and average nucleotide identity (ANI) of strain HAJB-30 T against genomes of the type strains of related species in the same family ranged between 19.7 and 22.0% and between 71.5 and 76.8%, respectively. From these results, it was concluded that strain HAJB-30 T possesses sufficient characteristics differentiated from all recognized Phytoactinopolyspora species, it is considered to be a novel species for which the name Phytoactinopolyspora limicola sp. nov. is proposed. The type strain is HAJB-30 T (= CGMCC 4.7591 T, = JCM 33694 T).


Assuntos
Actinobacteria/classificação , Actinobacteria/fisiologia , Microbiologia do Solo , Actinobacteria/química , Actinobacteria/genética , Composição de Bases , DNA Bacteriano/genética , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Genoma Fúngico/genética , Hibridização de Ácido Nucleico , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química , Açúcares/análise , Vitamina K 2/análise
5.
PLoS One ; 15(12): e0234893, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33382695

RESUMO

Breast cancer is the second leading cause of cancer-related mortality in women. Various nutritional compounds possess anti-carcinogenic properties which may be mediated through their effects on the gut microbiota and its production of short-chain fatty acids (SCFAs) for the prevention of breast cancer. We evaluated the impact of broccoli sprouts (BSp), green tea polyphenols (GTPs) and their combination on the gut microbiota and SCFAs metabolism from the microbiota in Her2/neu transgenic mice that spontaneously develop estrogen receptor-negative [ER(-)] mammary tumors. The mice were grouped based on the dietary treatment: control, BSp, GTPs or their combination from beginning in early life (BE) or life-long from conception (LC). We found that the combination group showed the strongest inhibiting effect on tumor growth volume and a significant increase in tumor latency. BSp treatment was integrally more efficacious than the GTPs group when compared to the control group. There was similar clustering of microbiota of BSp-fed mice with combination-fed mice, and GTPs-fed mice with control-fed mice at pre-tumor in the BE group and at pre-tumor and post-tumor in the LC group. The mice on all dietary treatment groups incurred a significant increase of Adlercreutzia, Lactobacillus genus and Lachnospiraceae, S24-7 family in the both BE and LC groups. We found no change in SCFAs levels in the plasma of BSp-fed, GTPs-fed and combination-fed mice of the BE group. Marked changes were observed in the mice of the LC group consisting of significant increases in propionate and isobutyrate in GTPs-fed and combination-fed mice. These studies indicate that nutrients such as BSp and GTPs differentially affect the gut microbial composition in both the BE and LC groups and the key metabolites (SCFAs) levels in the LC group. The findings also suggest that temporal factors related to different time windows of consumption during the life-span can have a promising influence on the gut microbial composition, SCFAs profiles and ER(-) breast cancer prevention.


Assuntos
Dieta/métodos , Ácidos Graxos Voláteis/sangue , Microbioma Gastrointestinal/efeitos dos fármacos , Neoplasias Mamárias Experimentais/prevenção & controle , Polifenóis/farmacologia , Plântula/química , Actinobacteria/efeitos dos fármacos , Actinobacteria/isolamento & purificação , Actinobacteria/fisiologia , Animais , Brassica/química , Clostridiales/efeitos dos fármacos , Clostridiales/isolamento & purificação , Clostridiales/fisiologia , Feminino , Microbioma Gastrointestinal/fisiologia , Expressão Gênica , Lactobacillus/efeitos dos fármacos , Lactobacillus/isolamento & purificação , Lactobacillus/fisiologia , Glândulas Mamárias Animais/efeitos dos fármacos , Glândulas Mamárias Animais/metabolismo , Glândulas Mamárias Animais/patologia , Neoplasias Mamárias Experimentais/sangue , Neoplasias Mamárias Experimentais/genética , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Polifenóis/química , Receptor ErbB-2/deficiência , Receptor ErbB-2/genética , Receptores de Estrogênio/deficiência , Receptores de Estrogênio/genética , Chá/química
6.
Syst Appl Microbiol ; 43(1): 126051, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31892483

RESUMO

A polyphasic study was undertaken to establish the taxonomic status of three Modestobacter strains isolated from a high altitude Atacama Desert soil. The isolates, strains 1G6T, 1G14 and 1G50, showed chemotaxonomic and morphological properties characteristic of members of the genus Modestobacter. The peptidoglycan contained meso-diaminopimelic acid, the whole cell sugars were glucose and ribose (diagnostic sugars) and arabinose, the predominant menaquinone was MK-9(H4), polar lipid patterns contained diphosphatidylglycerol, glycophosphatidylinositol, phosphatidylethanolamine (diagnostic component), phosphatidylglycerol and phosphatidylinositol while whole cellular fatty acid profiles consisted of complex mixtures of saturated, unsaturated iso- and anteiso-components. The isolates were shown to have different BOX-PCR fingerprint and physiological profiles. They formed a distinct phyletic line in Modestobacter 16S rRNA gene trees, were most closely related to the type strain of Modestobacter italicus (99.9 % similarity) but were distinguished from this and other closely related Modestobacter type strains using a combination of phenotypic properties. Average nucleotide identity and digital DNA:DNA hybridization similarities between the draft genome sequences of isolate 1G6T and M. italicus BC 501T were 90.9 % and 42.3 %, respectively, indicating that they belong to different species. Based on these phenotypic and genotypic data it is proposed that the isolates be assigned to a novel species in the genus Modestobacter, namely as Modestobacter excelsi with isolate 1G6T (=DSM 107535T =PCM 3004T) as the type strain. Analysis of the whole genome sequence of M. excelsi 1G6T (genome size of 5.26 Mb) showed the presence of genes and gene clusters that encode for properties that are in tune with its adaptation to extreme environmental conditions that prevail in the Atacama Desert biome.


Assuntos
Actinobacteria/classificação , Actinobacteria/fisiologia , Clima Desértico , Microbiologia do Solo , Actinobacteria/química , Actinobacteria/citologia , Altitude , DNA Bacteriano/genética , Ácidos Graxos/análise , Genoma Bacteriano/genética , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Estresse Fisiológico/genética , Vitamina K 2/química
7.
Ecotoxicol Environ Saf ; 183: 109573, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31442809

RESUMO

Aluminum (Al) bioaccumulation by a novel Al and drought tolerant Curtobacterium herbarum strain CAH5 isolated from rhizosphere soil of Beta vulgaris grown in acidic Andisols were examined. The rhizobacterial strain also presented important plant growth promoting traits even with Al and drought stresses under in-vitro conditions in broth. In experiments with a 2-6 mM as initial Al concentrations, the percentages of Al removal by bacteria were 89-93% and 78-91% within 72 h incubation under the normal and drought conditions, respectively. Cytogenotoxicity assay revealed that the toxicity of Al was reduced after bioaccumulation process. In the greenhouse study, formulated bio-inoculant CAH5 significantly improves the Lactuca sativa growth under Al and drought stress by reducing oxidative stress, lipid peroxidation and Al accumulation in plant parts. Our results highlighted that strain CAH5 could be used as a promising bioresource for restoration of agricultural soil with presence of phytotoxic Al improving crop production even under drought conditions.


Assuntos
Actinobacteria/fisiologia , Alumínio/metabolismo , Secas , Lactuca/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/fisiologia , Actinobacteria/metabolismo , Alumínio/toxicidade , Biodegradação Ambiental , Caryophyllales/crescimento & desenvolvimento , Caryophyllales/microbiologia , Lactuca/efeitos dos fármacos , Lactuca/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Rizosfera , Microbiologia do Solo , Estresse Fisiológico/efeitos dos fármacos
8.
Pest Manag Sci ; 75(12): 3381-3391, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31282045

RESUMO

BACKGROUND: The soybean cyst nematode Heterodera glycines (Ichinohe) is the most devastating pathogen affecting soybean production worldwide. Biocontrol agents have become eco-friendly candidates to control pathogens. The aim of this study was to discover novel biocontrol agents against H. glycines. RESULTS: Microbacterium maritypicum Sneb159, screened from 804 strains, effectively reduced the number of females in field experiments conducted in 2014 and 2015. The stability and efficiency of H. glycines control by Sneb159 was further assessed in growth chamber and field experiments. Sneb159 decreased H. glycines population densities, especially the number of females by 43.9%-67.7%. To confirm Sneb159 induced plant resistance, a split-root assay was conducted. Sneb159 induced local and systemic resistance to suppress the penetration and development of H. glycines, and enhanced the gene expression of PR2, PR3b, and JAZ1, involved in the salicylic acid and jasmonic acid pathways. CONCLUSION: This is the first report of M. maritypicum Sneb159 suppressing H. glycines infection. This effect may be the result of Sneb159-induced resistance. Our study indicates that M. maritypicum Sneb159 is a promising biocontrol agent against H. glycines. © 2019 Society of Chemical Industry.


Assuntos
Actinobacteria/fisiologia , Agentes de Controle Biológico/farmacologia , Glycine max/crescimento & desenvolvimento , Controle Biológico de Vetores , Doenças das Plantas/prevenção & controle , Tylenchoidea/microbiologia , Animais , Expressão Gênica , Redes e Vias Metabólicas , Microbacterium , Doenças das Plantas/parasitologia , Glycine max/parasitologia
9.
BMC Microbiol ; 19(1): 49, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30795744

RESUMO

BACKGROUND: Actinobacteria are famous for the production of unique secondary metabolites that help in controlling the continuously emerging drug resistance all over the globe. This study aimed at the investigation of an extreme environment the Cholistan desert, located in southern Punjab, Pakistan, for actinobacterial diversity and their activity against methicillin resistant Staphylococcus aureus (MRSA). The Cholistan desert is a sub-tropical and arid ecosystem with harsh environment, limited rainfall and low humidity. The 20 soil and sand samples were collected from different locations in the desert and the actinobacterial strains were selectively isolated. The isolated strains were identified using a polyphasic taxonomic approach including morphological, biochemical, physiological characterization, scanning electron microscopy (SEM) and by 16S rRNA gene sequencing. RESULTS: A total of 110 desert actinobacterial strains were recovered, which were found to be belonging to 3 different families of the order Actinomycetales, including the family Streptomycetaceae, family Pseudonocardiaceae and the family Micrococcaceae. The most frequently isolated genus was Streptomyces along with the genera Pseudonocardia and Arthrobacter. The isolated strains exhibited promising antimicrobial activity against methicillin resistant Staphylococcus aureus (MRSA) with zone of inhibition in the range of 9-32 mm in antimicrobial screening assays. The chemical profiling by thin layer chromatography, HPLC-UV/Vis and LC-MS analysis depicted the presence of different structural classes of antibiotics. CONCLUSION: The study revealed that Cholistan desert harbors immense actinobacterial diversity and most of the strains produce structurally diverse bioactive secondary metabolites, which are a promising source of novel antimicrobial drug candidates.


Assuntos
Actinobacteria/química , Actinobacteria/classificação , Antibacterianos/farmacologia , Actinobacteria/fisiologia , Antibacterianos/isolamento & purificação , DNA Bacteriano/genética , Clima Desértico , Ecossistema , Variação Genética , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Paquistão , Filogenia , Análise de Sequência de DNA , Microbiologia do Solo , Esporos Bacterianos/classificação
10.
Antonie Van Leeuwenhoek ; 112(8): 1137-1145, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30739286

RESUMO

A novel actinomycete, designated strain NEAU-HRGS1-13T, was isolated from a root of wheat (Triticum aestivum L.) and characterised using a polyphasic approach. Morphological and chemotaxonomic characteristics were consistent with those of members of the genus Microbispora. The major menaquinones were identified as MK-9(H2) and MK-9(H4) and the whole cell hydrolysates found to contain meso-diaminopimelic acid and madurose. The phospholipid profile was found to consist of diphosphatidylglycerol, a ninhydrin-positive glycophospholipid, phosphatidylinositol mannosides, phosphatidylmonomethylethanolamine, an unidentified glycolipid and an unidentified lipid. The major fatty acids were identified as iso-C16:0, C16:0, 10-methyl C17:0, C18:0 and C17:0. The 16S rRNA gene sequence analysis showed that the isolate is closely related to Microbispora triticiradicis NEAU-HRDPA2-9T (99.4%), Microbispora bryophytorum NEAU-TX2-2T (99.0%), Microbispora camponoti 2C-HV3T (98.8%), Microbispora hainanensis DSM 45428T (98.8%), Microbispora amethystogenes JCM 3021T (98.6%), Microbispora siamensis NBRC 104113T (98.5%), Microbispora corallina JCM 10267T (98.3%) and Microbispora rosea subsp. rosea JCM 3006T (98.2%). However, DNA-DNA relatedness and cultural, physiological and biochemical data showed that strain NEAU-HRGS1-13T can be distinguished from its close relatives. Therefore, it is concluded that strain NEAU-HRGS1-13T represents a novel species of the genus Microbispora, for which the name Microbispora tritici sp. nov. is proposed. The type stain is NEAU-HRGS1-13T (= CGMCC 4.7402T = DSM 104650T).


Assuntos
Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Raízes de Plantas/microbiologia , Triticum/microbiologia , Actinobacteria/genética , Actinobacteria/fisiologia , Técnicas de Tipagem Bacteriana , Parede Celular/química , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácido Diaminopimélico/análise , Ácidos Graxos/análise , Glicolipídeos/análise , Hibridização de Ácido Nucleico , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análise
11.
Sci Total Environ ; 665: 690-697, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30780014

RESUMO

Actinobacteria have received much attention due to their capacity for plant growth promotion, a promising approach in sustainable development of agriculture. Date palm (Phoenix dactylifera L.) is an important crop, particularly in semi-arid regions of the world, due to the high nutritional and health-promoting values of its fruits. The present study was conducted to investigate the utilization of actinobacteria as an approach to support soil fertility and enhance production and functional food value of date palm fruits in a semi-arid environment. To achieve this purpose, actinobacterial strains were isolated from palm rhizosphere, characterized and screened for bioactivity. Then the potent isolates, based on plant growth promoting assays, were inoculated into the soil rhizosphere of five-target palms (Ajwa, Sokary, Khodry, Rashodia and Saffawy) before flowering and during fruiting stages in two successive seasons. Interestingly, the actinobacterial inoculants increased soil fertility and improved fruit yield of the tested palms. The treated date fruits accumulated higher levels of valuable phytochemicals such as sugars, organic acids, essential amino acids, unsaturated fatty acids, phenolic acids, flavonoids, vitamins and minerals, as compared with the untreated ones. Moreover, actinobacterial treatment induced the biological activities (antioxidant, antibacterial, antifungal and anticancer) of the produce dates. Conclusively, results presented herein suggest the promising application of actinobacteria for supporting the production and functional food value of date palms in semi-arid regions.


Assuntos
Actinobacteria/fisiologia , Anti-Infecciosos/análise , Antineoplásicos/análise , Antioxidantes/análise , Produção Agrícola/métodos , Frutas/química , Phoeniceae/química , Arábia Saudita , Microbiologia do Solo
12.
Environ Pollut ; 247: 248-255, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30685665

RESUMO

The degradation of trichloroethylene (TCE) and tetrachloroethylene (PCE), in incubations where ammonium was oxidized while iron was being reduced indicates that these compounds can be degraded during the Feammox process by Acidimicrobiaceae sp. A6 (ATCC, PTA-122488). None of these compounds were degraded in incubations to which no ammonium was added, indicating that they were degraded during the oxidation of ammonium. Degradation of TCE and PCE (ranging between 32% and 55%) was observed in incubations with a pure Acidimicrobiaceae sp. A6 culture as well as an Acidimicrobiaceae sp. A6 enrichment culture over a 2-week period. In addition to these batch studies, a column study, with a 5-h hydraulic residence time, was conducted contrasting the degradation of TCE in iron-rich soil columns that were either seeded with a pure or an enrichment culture of Acidimicrobiaceae sp. A6 to achieve ammonium oxidation under iron reduction, and a control column that was initially not seeded and later seeded with Geobacter metallireducens. While there was ∼22% TCE removal in the columns seeded with Acidimicrobiaceae sp. A6, there was no removal in the unseeded column or the column seeded with G. metallireducens which was being operated under iron reducing conditions. Feammox is an anoxic process that requires acidic conditions. Hence, these results indicate that this process might be harnessed where other bioremediation strategies are difficult, since many require neutral or alkaline conditions, and supplying ammonium to an anoxic aquifer is relatively easy, since there are not many processes that will oxidize ammonium in the absence of dissolved oxygen.


Assuntos
Actinobacteria/fisiologia , Tetracloroetileno/metabolismo , Tricloroetileno/metabolismo , Compostos de Amônio/metabolismo , Biodegradação Ambiental , Ferro/metabolismo , Oxirredução , Solo , Tetracloroetileno/análise , Tricloroetileno/análise
13.
Antonie Van Leeuwenhoek ; 112(3): 331-337, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30225543

RESUMO

An endophytic actinobacterium, strain CAP 335T, was isolated from a root sample of a native pine tree growing on the Bedford Park campus of Flinders University, Adelaide, South Australia. The result of a polyphasic study showed that this strain was identified as a new member of the genus Actinomycetospora. This strain was observed to be a Gram stain-positive, aerobic actinobacterium with well-developed substrate mycelia and to form short chains of spores. Actinomycetospora chibensis TT04-21T and Actinomycetospora straminea IY07-55T were found to be close phylogenetic neighbours, each sharing 99.1% 16S rRNA gene similarity. Chemotaxonomic data including major fatty acids, cell wall components and major menaquinones confirmed the affiliation of strain CAP 335T to the genus Actinomycetospora. The phylogenetic analysis, physiological and biochemical studies and DNA-DNA hybridization, allowed the genotypic and phenotypic differentiation of strain CAP 335T and the closely related species with valid names. The name proposed for the new species is Actinomycetospora callitridis sp. nov. The type strain is CAP 335T (= DSM 101857T = NRRL B-65350T).


Assuntos
Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Endófitos/classificação , Endófitos/isolamento & purificação , Filogenia , Pinus/microbiologia , Actinobacteria/genética , Actinobacteria/fisiologia , Aerobiose , Citosol/química , DNA Ribossômico/química , DNA Ribossômico/genética , Endófitos/genética , Endófitos/fisiologia , Ácidos Graxos/análise , Genótipo , Humanos , Hibridização de Ácido Nucleico , Raízes de Plantas/microbiologia , RNA Ribossômico 16S/genética , Homologia de Sequência do Ácido Nucleico , Austrália do Sul , Esporos Bacterianos/citologia , Vitamina K 2/análise
14.
Braz. j. microbiol ; 49(4): 685-694, Oct.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-974282

RESUMO

ABSTRACT To mitigate the deleterious effects of abiotic stress, the use of plant growth-promoting bacteria along with diazotrophic bacteria has been increasing. The objectives of this study were to investigate the key enzymes related to nitrogen and carbon metabolism in the biological nitrogen fixation process and to elucidate the activities of these enzymes by the synergistic interaction between Bradyrhizobium and plant growth-promoting bacteria in the absence and presence of salt stress. Cowpea plants were cultivated under axenic conditions, inoculated with Bradyrhizobium and co-inoculated with Bradyrhizobium sp. and Actinomadura sp., Bradyrhizobium sp. and Bacillus sp., Bradyrhizobium sp. and Paenibacillus graminis, and Bradyrhizobium sp. and Streptomycessp.; the plants were also maintained in the absence (control) and presence of salt stress (50 mmolL-1 NaCl). Salinity reduced the amino acids, free ammonia, ureides, proteins and total nitrogen content in nodules and increased the levels of sucrose and soluble sugars. The co-inoculations responded differently to the activity of glutamine synthetase enzymes under salt stress, as well as glutamate synthase, glutamate dehydrogenase aminating, and acid invertase in the control and salt stress. Considering the development conditions of this experiment, co-inoculation with Bradyrhizobium sp. and Bacillus sp. in cowpea provided better symbiotic performance, mitigating the deleterious effects of salt stress.


Assuntos
Carbono/metabolismo , Cloreto de Sódio/metabolismo , Vigna/metabolismo , Nitrogênio/metabolismo , Microbiologia do Solo , Cloreto de Sódio/análise , Actinobacteria/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Bradyrhizobium/fisiologia , Inoculantes Agrícolas/fisiologia , Vigna/crescimento & desenvolvimento , Vigna/microbiologia , Aminoácidos/metabolismo , Fixação de Nitrogênio
15.
J Microbiol ; 56(8): 549-555, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30047083

RESUMO

SYP-B2174T is a yellow-pigmented, Gram-positive, non-motile, and rod-shaped actinobacterium isolated from the rhizospheric soil of Aquilegia viridiflora Pall. collected from the Xinjiang uygur autonomous region of China. The strain's growth temperature ranges from 1 to 35°C, with an optimal growth being observed at 28°C. Growth occurs from 0 to 5% NaCl and at pH 6-8, with optimal growth being observed in 1% NaCl at pH 7. Comparative 16S rRNA gene sequence-based phylogenetic analysis placed the strain in a clade with the species Leifsonia kafniensis JCM 17021T and Leifsonia psychrotolerans DSM 22824T with similarities of 97.8 and 97.6%, respectively. The DNA-DNA hybridization values of the strain SYP-B2174T to its closest phylogenetic neighbors were significantly lower than 35.7%. The strain was identified as a novel species of the genus Leifsonia judging by the coryneform morphology, peptidoglycans based upon 2,4-diaminobutyric acid, principal phospholipids phosphatidylglycerol and diphosphatidylglycerol, major menaquinone MK-11, predominant fatty acids of anteiso-C15:0, anteiso-C17:0, and iso-C16:0, and a DNA G + C base composition of 68.7 mol%, for which the name Leifsonia flava sp. nov. is proposed. The type strain is SYP-B2174T (= CGMCC 1.15856T = DSM 105144T = KCTC 39963T).


Assuntos
Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Aquilegia/crescimento & desenvolvimento , Rizosfera , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/fisiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Parede Celular/química , China , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Concentração de Íons de Hidrogênio , Hibridização de Ácido Nucleico , Peptidoglicano/análise , Fosfolipídeos/análise , Filogenia , Pigmentos Biológicos/análise , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Cloreto de Sódio/metabolismo , Temperatura , Vitamina K 2/análise
16.
Syst Appl Microbiol ; 41(5): 427-436, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29789182

RESUMO

A polyphasic study was undertaken to establish the taxonomic status of three representative Geodermatophilus strains isolated from an extreme hyper-arid Atacama Desert soil. The strains, isolates B12T, B20 and B25, were found to have chemotaxonomic and morphological properties characteristic of the genus Geodermatophilus. The isolates shared a broad range of chemotaxonomic, cultural and physiological features, formed a well-supported branch in the Geodermatophilus 16S rRNA gene tree in which they were most closely associated with the type strain of Geodermatophilus obscurus. They were distinguished from the latter by BOX-PCR fingerprint patterns and by chemotaxonomic and other phenotypic properties. Average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between the whole genome sequences of isolate B12T and G. obscurus DSM 43160T were 89.28%, 87.27% and 37.4%, respectively, metrics consistent with its classification as a separate species. On the basis of these data, it is proposed that the isolates be assigned to the genus Geodermatophilus as Geodermatophilus chilensis sp. nov. with isolate B12T (CECT 9483T=NCIMB 15089T) as the type strain. Analysis of the whole genome sequence of G. chilensis B12T with 5341 open reading frames and a genome size of 5.5Mb highlighted genes and gene clusters that encode for properties relevant to its adaptation to extreme environmental conditions prevalent in extreme hyper-arid Atacama Desert soils.


Assuntos
Actinobacteria/classificação , Actinobacteria/genética , Clima Desértico , Filogenia , Microbiologia do Solo , Actinobacteria/química , Actinobacteria/fisiologia , Chile , DNA Bacteriano/genética , Genes Bacterianos , Genoma Bacteriano/genética , Família Multigênica , Fenótipo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie
17.
J Microbiol ; 56(5): 331-336, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29721830

RESUMO

A Gram-positive, strictly aerobic, nonmotile, yellowish, coccus-rod-shaped bacterium (designated Gsoil 653T) isolated from ginseng cultivating soil was characterized using a polyphasic approach to clarify its taxonomic position. The strain Gsoil 653T exhibited optimal growth at pH 7.0 on R2A agar medium at 30°C. Phylogenetic analysis based on 16S rRNA gene sequence similarities, indicated that Gsoil 653T belongs to the genus Terrabacter of the family Humibacillus, and was closely related to Terrabacter tumescens DSM 20308T (98.9%), Terrabacter carboxydivorans PY2T (98.9%), Terrabacter terrigena ON10T (98.8%), Terrabacter terrae PPLBT (98.6%), and Terrabacter lapilli LR-26T (98.6%). The DNA G + C content was 70.5 mol%. The major quinone was MK-8(H4). The primary polar lipids were phosphatidylglycerol, diphosphatidylglycerol, phosphatidyl-ethanolamine. The predominant fatty acids were iso-C15:0, iso-C16:0, iso-C14:0, and anteiso-C15:0, as in the case of genus Terrabacter, thereby supporting the categorization of strain Gsoil 653T. However, the DNA-DNA relatedness between Gsoil 653T and closely related strains of Terrabacter species was low at less than 31%. Moreover, strain Gsoil 653T could be both genotypically and phenotypically distinguished from the recognized species of the genus Terrabacter. This isolate, therefore, represents a novel species, for which the name Terrabacter ginsengisoli sp. nov. is proposed with the type strain Gsoil 653T (= KACC 19444T = LMG 30325T).


Assuntos
Actinobacteria/classificação , Actinobacteria/isolamento & purificação , Panax/microbiologia , Filogenia , Microbiologia do Solo , Actinobacteria/genética , Actinobacteria/fisiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Cardiolipinas/análise , DNA Bacteriano/genética , Ácidos Graxos/análise , Genótipo , Concentração de Íons de Hidrogênio , Hibridização de Ácido Nucleico , Fenótipo , Fosfatidiletanolaminas/análise , Fosfatidilgliceróis/análise , RNA Ribossômico 16S/genética , República da Coreia , Análise de Sequência de DNA , Solo , Especificidade da Espécie
18.
J Environ Sci Health B ; 53(7): 464-468, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29624494

RESUMO

The effect of various pesticides on the biofilm formation by the phytopathogenic bacterium Clavibacter michiganensis ssp. sepedonicus (Cms), the potato ring rot causative agent, was explored for the first time. Systemic herbicides: 2,4-D, diuron, glyphosate, clopyralid, fluorodifen, as well as the commercial preparations "Lazurite," "Ridomil Gold," and the mitochondria inhibiting pesticides analog, sodium monoiodoacetate, were studied. These pesticides' effect on the Cms biofilm formation was shown to be distinct and dependent on the agent under question. Cms biofilm formation was reduced when exposed to sodium monoiodoacetate, as well as "Lazurite" preparation, that could be due to the bactericidal effect of these agents. 2,4-D and "Ridomil Gold" preparation stimulated the biofilm formation. Systemic herbicides diuron, glyphosate, clopyralid, fluorodifen did not exert appreciable influence on the process of bacterial biofilm formation.


Assuntos
Actinobacteria/efeitos dos fármacos , Praguicidas/farmacologia , Actinobacteria/patogenicidade , Actinobacteria/fisiologia , Biofilmes/efeitos dos fármacos , Ácido Iodoacético/farmacologia , Solanum tuberosum/microbiologia
19.
Antonie Van Leeuwenhoek ; 111(5): 727-742, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29511956

RESUMO

Tioman Island is one of many sources for underexplored actinobacterial diversity in Malaysia. Selective isolation, molecular profiling, 16S rRNA gene sequencing and phylogenetic analyses were carried out to highlight the diversity of the marine actinobacterial community in a sediment collected off Tioman Island. A high number of diverse actinobacteria were recovered using skim milk/HEPES pre-treatment on a mannitol-based medium. A total of 123 actinobacterial strains were isolated, including thirty obligate marine actinobacteria putatively identified as Salinispora spp. Molecular fingerprinting profiles obtained with a double digestion approach grouped the remaining non-Salinispora-like strains into 24 different clusters, with Streptomyces and Blastococcus as the major clusters. A total of 17 strains were identified as novel actinobacterial species within the genera Streptomyces (n = 6), Blastococcus (n = 5), Marinactinospora (n = 3), Nocardiopsis (n = 1), Agromyces (n = 1) and Nonomuraea (n = 1) based on 16S rRNA gene sequence analyses. Polyphasic data from three putative Marinactinospora spp. showed that the strains represent a new genus in the Nocardiopsaceae family. Crude extracts from the strains were also found to inhibit the growth of Gram-positive (Staphylococcus aureus, Bacillus subtilis) and Gram-negative (Providencia alcalifaciens) pathogens. Hierarchical clustering of the bioactivities of an active fraction revealed a unique profile, which is closely related that of fosfomycin.


Assuntos
Actinobacteria/classificação , Actinobacteria/fisiologia , Biodiversidade , Sedimentos Geológicos/microbiologia , Filogenia , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Antibacterianos/farmacologia , Análise por Conglomerados , Meios de Cultura , DNA Bacteriano/genética , Ilhas , Malásia , RNA Ribossômico 16S/genética
20.
Anaerobe ; 54: 260-263, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29425733

RESUMO

Atopobium rimae and Parvimonas micra are both Gram-positive anaerobes involved infrequently in human infections. We report a polymicrobial anaerobic bacteremia caused by these microorganisms. A 43-year-old woman receiving coadjuvant chemotherapy due to a retroperitoneal leiomiosarcoma presented with nausea, vomiting, abdominal pain and fever (38 °C). The two blood cultures resulted in isolation of A. rimae and P. micra, being identified at species level by matrix assisted laser desorption time-of-flight mass spectrometry (MALDI-TOF MS) technology with high log scores. The microorganisms were susceptible to penicilllin, amoxicillin-clavulanate, piperacillin-tazobactam, clindamycin, metronidazole, imipenem, and moxifloxacin. Treatment with levofloxacin was started and subsequently it was changed to piperacillin/tazobactam plus metronidazole and completed for 10 days, but the patient died days later due to her underlying disease.


Assuntos
Actinobacteria/isolamento & purificação , Bacteriemia/microbiologia , Firmicutes/isolamento & purificação , Neoplasias/complicações , Actinobacteria/química , Actinobacteria/efeitos dos fármacos , Actinobacteria/fisiologia , Adulto , Antibacterianos/farmacologia , Bacteriemia/etiologia , Feminino , Firmicutes/química , Firmicutes/efeitos dos fármacos , Firmicutes/fisiologia , Humanos , Testes de Sensibilidade Microbiana , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA