Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pediatrics ; 152(4)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37724393

RESUMO

Juvenile idiopathic arthritis is a common chronic childhood disease, with a prevalence of ∼1 per 1000 children. Arthritis can also be a manifestation of other inflammatory conditions, such as inflammatory bowel disease (IBD). Studies suggest a genetic influence in IBD, including mutations in CARD8. CARD8 is a negative regulator of the NLRP3 inflammasome, and mutations in this gene are hypothesized to induce gastrointestinal inflammation. However, few studies have evaluated this association and most have included a limited number of patients. We present a case of a pediatric patient with IBD-associated arthritis and a CARD8 mutation. Our patient is a 7-year-old female who was initially evaluated by rheumatology for right leg pain and an intermittent rash. She had clinically active arthritis on exam and was started on methotrexate with only slight improvement. Additional workup revealed sacroiliitis by imaging, elevated inflammatory markers, no anemia, and a variant of unknown significance in CARD8. Adalimumab was recommended but before medication initiation, our patient's symptoms progressed to worsening joint pain, fatigue, fevers, nausea, vomiting, diarrhea, and hematochezia. Infectious testing was negative. Fecal calprotectin was >8000 µg/g. A colonoscopy revealed IBD most consistent with Crohn's disease. Adalimumab was ultimately added, and she has responded well to combination therapy. This case report highlights the association between CARD8 mutations and IBD, especially in the setting of IBD-associated arthritis.


Assuntos
Artrite Juvenil , Doença de Crohn , Doenças Inflamatórias Intestinais , Feminino , Humanos , Criança , Artrite Juvenil/complicações , Artrite Juvenil/diagnóstico , Artrite Juvenil/tratamento farmacológico , Adalimumab/genética , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/diagnóstico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doença de Crohn/complicações , Doença Crônica , Mutação , Proteínas de Neoplasias/genética , Proteínas Adaptadoras de Sinalização CARD/genética
2.
Pharmacogenet Genomics ; 32(6): 235-241, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35852914

RESUMO

OBJECTIVES: This study explores the potential of gene polymorphisms in the canonical and noncanonical NF-kB signaling pathway as a prediction biomarker of anti-tumor necrosis factor (TNF)α response in Crohn's patients. MATERIALS AND METHODS: A total of 109 Greek patients with Crohn's disease (CD) were recruited, and the genotype of TLR2 rs3804099, LTA rs909253, TLR4 rs5030728, and MAP3K14/NIK rs7222094 single nucleotide polymorphisms was investigated for association with response to anti-TNFα therapy. Patient's response to therapy was based on the Crohn's Disease Activity Index, depicting the maximum response within 24 months after initiation of treatment. RESULTS: Seventy-three patients (66.7%) were classified as responders while 36 as nonresponders (33.3%). Comparing allelic frequencies between responders and nonresponders, the presence of TLR2 rs3804099 T allele was associated with nonresponse (P = 0.003), even after stratification by anti-TNFα drugs (infliximab: P = 0.032, adalimumab: P = 0.026). No other association was identified for the rest of the polymorphisms under study. Haplotype analysis further enhanced the association of rs3804099 T allele with loss of response, even though the results were NS (P = 0.073). CONCLUSION: Our results suggest that polymorphisms in the canonical NF-kB pathway genes could potentially act as a predictive biomarker of anti-TNFα response in CD.


Assuntos
Doença de Crohn , Adalimumab/genética , Adalimumab/uso terapêutico , Biomarcadores , Doença de Crohn/tratamento farmacológico , Doença de Crohn/genética , Doença de Crohn/patologia , Humanos , Infliximab/genética , Infliximab/uso terapêutico , NF-kappa B/genética , NF-kappa B/uso terapêutico , Necrose/tratamento farmacológico , Testes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Receptor 2 Toll-Like/genética , Resultado do Tratamento , Fator de Necrose Tumoral alfa/genética
3.
J Biochem ; 172(1): 49-56, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35476872

RESUMO

The introduction of intermolecular disulfide bonds by amino acid mutations is an effective method for stabilizing dimeric proteins. X-ray crystal structure of Fab of a therapeutic antibody, adalimumab, revealed the first loop of the CH1 domain to be partially unsolved at position 135-141. To find new sites for the introduction of intermolecular disulfide bonds in adalimumab Fab, Fab mutants targeting the unsolved region were predicted using molecular simulation software. Four Fab mutants, H:K137C-L:I117C, H:K137C-L:F209C, H:S138C-L:F116C and H:S140C-L:S114C, were expressed in the methylotrophic yeast Pichia pastoris. SDS-PAGE analysis of these mutants indicated that H:K137C-L:F209C, H:S138C-L:F116C and H:S140C-L:S114C mutants mostly formed intermolecular disulfide bonds, whereas some H:K137C-L:I117C mutants formed intermolecular disulfide bonds and some did not. Differential scanning calorimetry measurements showed increased thermal stability in all Fab mutants with engineered disulfide bonds. The bio-layer interferometry measurements, for binding of the antigen tumor necrotic factor α, indicated that Fab mutants had less antigen-binding activity than wild-type Fab. In particular, the KD value of H:K137C-L:F209C was ~17 times higher than that of wild-type Fab. Thus, we successfully introduced intermolecular disulfide bonds between the first loop region of the CH1 and CL domains and observed that it increases the thermostability of Fab and affects the antigen-binding activity.


Assuntos
Dissulfetos , Fragmentos Fab das Imunoglobulinas , Adalimumab/genética , Dissulfetos/química , Fragmentos Fab das Imunoglobulinas/genética
4.
Mol Biotechnol ; 63(9): 828-839, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34089481

RESUMO

Monoclonal antibodies (mAbs) are one of the most significant molecules in protein therapeutics. They are employed in the field of immunology, oncology and organ transplant. They have been also been employed for alleviating several bacterial and viral infections. Moreover, they have revolutionized the area of targeted therapy and improved the quality of treatments, as compared to other cytotoxic drugs and therapies. mAbs bind to specific molecules on the antigen and exhibit specificity towards that molecule, i.e. epitope. Thus, mAbs have immense opportunity to be explored for personalized therapy. The introduction of targeted mAb-based therapeutics has promoted many important scientific achievements in rheumatology. This has warranted additional investigations for developing newer mAb producing clones, to supplement the limited industrial production of certain mAb therapeutics. In this investigation, an integrative approach comprising optimized expression, selection and expansion was adopted to develop a mammalian cell line expressing mAb against TNF-α.The resulting stable clone is anticipated to serve as an economic alternative to the industrial clones, especially for research purposes. The clone was constructed for development of biosimilar of the highly valued therapeutic antibody, Humira.


Assuntos
Adalimumab/biossíntese , Antirreumáticos/imunologia , Plasmídeos/metabolismo , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adalimumab/genética , Adalimumab/imunologia , Animais , Citotoxicidade Celular Dependente de Anticorpos/genética , Antirreumáticos/metabolismo , Bioensaio , Células CHO , Cricetulus , Expressão Gênica , Humanos , Plasmídeos/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
5.
J Immunol Methods ; 494: 113052, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33838171

RESUMO

Antibody phage display technology plays an important role in the development of monoclonal antibodies, humanization, and affinity evolution of antibodies. Thus far, antibody phage display mainly focuses on the display of antibody variable region or antigen-binding fragments. In this study, we constructed a new phage display system that can display full-length IgG antibodies on M13 phage. The phage display vector contains open reading frames (ORFs) encoding full-length the heavy and light chains of the antibody. NcoI/XhoI restriction enzyme sites were used to clone the variable region of the heavy chain into the heavy chain ORF, and SalI/NotI sites were used to clone the light chain variable region. SnaBI and SbfI restriction enzyme sites were designed between the cloning sites of heavy and light chains, respectively, to increase the cloning efficiency. The full-length antibodies of nivolumab against programmed death factor 1, trastuzumab against human epidermal growth factor 2, diL2K against the cluster of differentiation 3 epsilon, and adalimumab against tumor necrosis factor- alpha were displayed on phage with the vector. Phage-displayed antibodies showed their original antigen-binding activity. An amber codon shifted the vector to express IgG in non-suppressed Escherichia coli. The heavy and light chains of the E. coli-expressed antibodies could be detected through western blotting, and the antigen-binding activity was confirmed using an enzyme-linked immunosorbent assay. Biopanning was carried out with a model phage display antibody library, and the results showed that the novel phage system could be used for antibody library construction and highly efficient antibody screening. The reported system is the first full-length antibody phage display system.


Assuntos
Bacteriófago M13/genética , Escherichia coli/genética , Vetores Genéticos/genética , Imunoglobulina G/genética , Adalimumab/genética , Complexo CD3/antagonistas & inibidores , Técnicas de Visualização da Superfície Celular , Clonagem Molecular , Humanos , Hibridomas , Programas de Rastreamento , Nivolumabe/genética , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Trastuzumab/genética , Fator de Necrose Tumoral alfa/antagonistas & inibidores
6.
Protein Expr Purif ; 155: 59-65, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30468855

RESUMO

Recombinant antibodies have emerged over the last few decades as the fastest growing class of therapeutic proteins for autoimmune diseases. Post-translation modifications of antibodies produced by human cell lines are highly consistent with those existing in natural human proteins and this is a major advantage of utilizing these cell lines. Cinorra is a biosimilar form of the antibody Adalimumab, which is an antagonist of TNF-α used for the treatment of autoimmune diseases. Adalimumab and Cinorra were produced by stable expression from CHO cells. The aim of this study was to select HEK cells as a host for producing Adalimumab to reveal whether the antibody produced by this human-derived cell line has similar characterization to Cinorra. Adalimumab was transiently produced in HEK-293T cells, characterized and analyzed for its properties. Circular dichroism spectroscopy confirmed a strong structural similarity of the expressed antibody with Cinorra. Likewise its binding activity and kinetic affinity to TNF-α (EC50 = 416.5 ng/ml, KD = 3.89 E-10 M,) were highly similar to that of Cinorra (EC50 = 421.2 ng/ml and KD = 3.34 E-10 M,). Additionally there was near identical neutralization of TNF-α-mediated cellular cytotoxicity (IC50 of the expressed = 4.93 nM; IC50 of Cinorra = 4.5 nM). Results indicate that Adalimumab produced by HEK-293T cells possesses a similarly efficient function and biological activity to Cinorra. Consequently, human-derived host cells with human post-translational modifications might potentially provide a basis for the development of Adalimumab with pharmaceutical properties for research and therapeutic use.


Assuntos
Adalimumab/genética , Adalimumab/farmacologia , Medicamentos Biossimilares/farmacologia , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adalimumab/imunologia , Animais , Células CHO , Cricetulus , Expressão Gênica , Vetores Genéticos/genética , Células HEK293 , Humanos , Fator de Necrose Tumoral alfa/imunologia
7.
Immunol Res ; 66(3): 392-405, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29855993

RESUMO

Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine that mediates the homeostasis of immune responses; its exacerbated production is associated with the pathogenesis of autoimmune and chronic inflammatory diseases. Anti-TNFα drugs have revolutionized the treatment of inflammatory conditions such as rheumatoid arthritis and Crohn's disease. Currently, a worldwide race is on stage for the production of biosimilars moved by patent expiration of monoclonal antibodies (mAbs), such as anti-TNFα adalimumab. Our goal was to develop the first stage of an adalimumab biosimilar candidate with potential for national production, through the generation of a productive and stable cell line and assess its functionality. The robotic system ClonePix was used for screening and isolation of colonies from transfected CHO-S stable pools plated in semisolid medium. Selected clones were expanded based on growth and productivity. Purified mAbs from different clones were tested for binding and functional activity. The binding affinity of the denominated adabut clones to TNFα and FcRγ did not differ statistically when compared to reference adalimumab. One functional activity assay demonstrated the antibody neutralization capacity of the cytotoxicity induced by TNFα in L929 murine fibroblasts. A second assay confirmed adabut as an antagonist of the TNFα activity by the inhibition of the cell adhesion molecule expression in HUVEC cultures. The binding and functional activity analyses performed with selected adabut clones in comparison to reference adalimumab represent an important status of "non-inferiority," part of the process required for a biosimilar development. We generated and selected high-quality adabut clones which mAbs may be further developed as the first in-house made Brazilian biosimilar, demonstrating a success case for our incipient biotechnology industry, or also modified as biobetters, thus representing an innovative strategy for the patients' welfare.


Assuntos
Adalimumab/imunologia , Anticorpos Monoclonais/imunologia , Medicamentos Biossimilares , Proteínas Recombinantes de Fusão/imunologia , Fator de Necrose Tumoral alfa/imunologia , Adalimumab/genética , Adalimumab/metabolismo , Animais , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/imunologia , Anticorpos Neutralizantes/farmacologia , Células CHO , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/imunologia , Células Cultivadas , Cricetinae , Cricetulus , Humanos , Camundongos , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Recombinantes de Fusão/farmacologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo
8.
Mol Biotechnol ; 60(6): 387-395, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29616400

RESUMO

Production of monoclonal antibodies and pharmaceutical proteins in transgenic plants has been the focus of many research efforts for close to 30 years. Use of plants as bioreactors reduces large-scale production costs and minimizes risk for human pathogens contamination. Stable nuclear transformation of the plant genome offers a clear advantage in agricultural protein production platforms, limited only by the number of hectares that can be cultivated. We report here, for the first time, successful and stable expression of adalimumab in transgenic Nicotiana tabacum plants. The plant-derived adalimumab proved fully active and was shown to rescue L929 cells from the in vitro lethal effect of rhTNFα just as effectively as commercially available CHO-derived adalimumab (Humira). These results indicate that agricultural biopharming is an efficient alternative to mammalian cell-based expression platforms for the large-scale production of recombinant antibodies.


Assuntos
Adalimumab/genética , Nicotiana/genética , Adalimumab/biossíntese , Adalimumab/isolamento & purificação , Adalimumab/metabolismo , Reatores Biológicos , Engenharia Genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Nicotiana/metabolismo
9.
Biochem Biophys Res Commun ; 495(1): 7-11, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29097200

RESUMO

We constructed a system for expressing the Fab of the therapeutic human monoclonal antibody adalimumab at a yield of 20 mg/L in the methylotrophic yeast Pichia pastoris. To examine the contribution of interchain disulfide bonds to conformational stability, we prepared adalimumab Fab from which the interchain disulfide bond at the C-terminal region at both the CH1 and CL domains was deleted by substitution of Cys with Ala (FabΔSS). DSC measurements showed that the Tm values of FabΔSS were approximately 5 °C lower than those of wild-type Fab, suggesting that the interchain disulfide bond contributes to conformational thermostability. Using computer simulations, we designed a novel interchain disulfide bond outside the C-terminal region to increase the stability of FabΔSS. The resulting Fab (mutSS FabΔSS) had the mutations H:V177C and L:Q160C in FabΔSS, confirming the formation of the disulfide bond between CH1 and CL. The thermostability of mutSS FabΔSS was approximately 5 °C higher than that of FabΔSS. Therefore, the introduction of the designed interchain disulfide bond enhanced the thermostability of FabΔSS and mitigated the destabilization caused by partial reduction of the interchain disulfide bond at the C-terminal region, which occurs in site-specific modification such as PEGylation.


Assuntos
Adalimumab/química , Adalimumab/genética , Adalimumab/metabolismo , Dissulfetos/química , Humanos , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/metabolismo , Modelos Moleculares , Pichia/genética , Conformação Proteica , Engenharia de Proteínas , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Fator de Necrose Tumoral alfa/antagonistas & inibidores
10.
Cytokine ; 101: 56-63, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27567553

RESUMO

Tumor necrosis factor (TNF)-α is a potent pro-inflammatory and pathological cytokines in inflammatory diseases such as rheumatoid arthritis and inflammatory bowel diseases. Anti-TNF-α therapy has been established as an efficacious therapeutic strategy in these diseases. In clinical settings, three monoclonal anti-TNF-α full IgG1 antibodies infliximab, adalimumab, and golimumab, PEGylated Fab' fragment of anti-TNF-α antibody certolizumab pegol, extracellular domain of TNF receptor 2/IgG1-Fc fusion protein etanercept, are almost equally effective for rheumatoid arthritis. Although monoclonal full IgG1 antibodies are able to induce clinical and endoscopic remission in inflammatory bowel diseases, certolizumab pegol without Fc portion has been shown to be less effective for inflammatory bowel diseases compared to full IgG1 antibodies. In addition, there are no evidences that etanercept leads clinical remission in inflammatory bowel diseases. Besides the common effect of anti-TNF-α agents on neutralization of soluble TNF-α, each anti-TNF-α agent has its own distinctive pharmacological properties which cause the difference in clinical efficacies. Here we focus on the distinctions of action of anti-TNF-α agents especially in following points; (1) blocking ability against ligands, transmembrane TNF-α and lymphotoxin, (2) effects toward transmembrane TNF-α-expressing cells, (3) effects toward Fcγ receptor-expressing cells, (4) degradation and distribution in inflamed tissue. Accumulating evidence will give us the idea how to modify anti-TNF-α agents to enhance the clinical efficacy in inflammatory diseases.


Assuntos
Anticorpos Monoclonais Humanizados/efeitos adversos , Anticorpos Monoclonais Humanizados/genética , Artrite Reumatoide/tratamento farmacológico , Imunoglobulina G/uso terapêutico , Doenças Inflamatórias Intestinais/tratamento farmacológico , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Adalimumab/efeitos adversos , Adalimumab/genética , Adalimumab/uso terapêutico , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/efeitos adversos , Anti-Inflamatórios/uso terapêutico , Anticorpos Monoclonais/efeitos adversos , Anticorpos Monoclonais/genética , Anticorpos Monoclonais/uso terapêutico , Anticorpos Monoclonais Humanizados/administração & dosagem , Anticorpos Monoclonais Humanizados/uso terapêutico , Antirreumáticos/administração & dosagem , Antirreumáticos/efeitos adversos , Antirreumáticos/uso terapêutico , Artrite Reumatoide/imunologia , Certolizumab Pegol/efeitos adversos , Certolizumab Pegol/genética , Certolizumab Pegol/uso terapêutico , Modelos Animais de Doenças , Etanercepte/efeitos adversos , Etanercepte/uso terapêutico , Humanos , Fragmentos Fab das Imunoglobulinas/efeitos adversos , Fragmentos Fab das Imunoglobulinas/genética , Fragmentos Fab das Imunoglobulinas/uso terapêutico , Imunoglobulina G/efeitos adversos , Imunoglobulina G/genética , Fatores Imunológicos/efeitos adversos , Fatores Imunológicos/genética , Fatores Imunológicos/uso terapêutico , Imunossupressores/administração & dosagem , Imunossupressores/efeitos adversos , Imunossupressores/uso terapêutico , Doenças Inflamatórias Intestinais/imunologia , Infliximab/efeitos adversos , Infliximab/genética , Infliximab/uso terapêutico , Camundongos , Polietilenoglicóis/uso terapêutico , Fator de Necrose Tumoral alfa/imunologia
11.
Arthritis Res Ther ; 17: 63, 2015 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-25885039

RESUMO

INTRODUCTION: We have hypothesized that incompatibility between the G1m genotype of the patient and the G1m1 and G1m17 allotypes carried by infliximab (INX) and adalimumab (ADM) could decrease the efficacy of these anti-tumor necrosis factor (anti-TNF) antibodies in the treatment of rheumatoid arthritis (RA). METHODS: The G1m genotypes were analyzed in three collections of patients with RA totaling 1037 subjects. The first, used for discovery, comprised 215 Spanish patients. The second and third were successively used for replication. They included 429 British and Greek patients and 393 Spanish and British patients, respectively. Two outcomes were considered: change in the Disease Activity Score in 28 joint (ΔDAS28) and the European League Against Rheumatism (EULAR) response criteria. RESULTS: An association between less response to INX and incompatibility of the G1m1,17 allotype was found in the discovery collection at 6 months of treatment (P = 0.03). This association was confirmed in the replications (P = 0.02 and 0.08, respectively) leading to a global association (P = 0.001) that involved a mean difference in ΔDAS28 of 0.4 units between compatible and incompatible patients (2.3 ± 1.5 in compatible patients vs. 1.9 ± 1.5 in incompatible patients) and an increase in responders and decrease in non-responders according to the EULAR criteria (P = 0.03). A similar association was suggested for patients treated with ADM in the discovery collection, but it was not supported by replication. CONCLUSIONS: Our results suggest that G1m1,17 allotypes are associated with response to INX and could aid improved therapeutic targeting in RA.


Assuntos
Adalimumab/genética , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Imunoglobulina G/genética , Infliximab/genética , Adalimumab/uso terapêutico , Adulto , Antirreumáticos/uso terapêutico , Artrite Reumatoide/imunologia , Sequência de Bases , Feminino , Genótipo , Humanos , Alótipos de Imunoglobulina , Infliximab/uso terapêutico , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Resultado do Tratamento , Fator de Necrose Tumoral alfa/antagonistas & inibidores
12.
Plant Cell Rep ; 34(6): 959-68, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25689888

RESUMO

KEY MESSAGE: We successfully developed a method for metabolic isotope labeling of recombinant proteins produced in transgenic tobacco. This enabled assessment of structural integrity of plant-derived therapeutic antibodies by NMR analysis. A variety of expression vehicles have been developed for the production of promising biologics, including plants, fungi, bacteria, insects, and mammals. Glycoprotein biologics often experience altered folding and post-translational modifications that are typified by variant glycosylation patterns. These differences can dramatically affect their efficacy, as exemplified by therapeutic antibodies. However, it is generally difficult to validate the structural integrity of biologics produced using different expression vehicles. To address this issue, we have developed and applied a stable-isotope-assisted nuclear magnetic resonance (NMR) spectroscopy method for the conformational characterization of recombinant antibodies produced in plants. Nicotiana benthamiana used as a vehicle for the production of recombinant immunoglobulin G (IgG) was grown in a (15)N-enriched plant growth medium. The Fc fragment derived from the (15)N-labeled antibody thus prepared was subjected to heteronuclear two-dimensional (2D) NMR measurements. This approach enabled assessment of the structural integrity of the plant-derived therapeutic antibodies by comparing their NMR spectral properties with those of an authentic IgG-Fc derived from mammalian cells.


Assuntos
Nicotiana/genética , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Adalimumab/genética , Sequência de Aminoácidos , Sequência de Carboidratos , Glicosilação , Fragmentos Fc das Imunoglobulinas/química , Fragmentos Fc das Imunoglobulinas/genética , Fragmentos Fc das Imunoglobulinas/isolamento & purificação , Imunoglobulina G/química , Imunoglobulina G/genética , Imunoglobulina G/metabolismo , Dados de Sequência Molecular , Isótopos de Nitrogênio , Plantas Geneticamente Modificadas/genética , Proteínas Recombinantes/metabolismo , Reprodutibilidade dos Testes , Nicotiana/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA